A feasible path-based approach for Dividing Wall Column design procedure
•A feasible path-based procedure allows to bypass the simulation failures due to the non-ideal thermodynamics or complex optimization algorithms.•The proposed procedure use a shortcut design provided by ProSimPlus® process simulator to initialize the design algorithm coupled with rigorous process si...
Uloženo v:
| Vydáno v: | Computers & chemical engineering Ročník 149; s. 107309 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.06.2021
Elsevier |
| Témata: | |
| ISSN: | 0098-1354, 1873-4375 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A feasible path-based procedure allows to bypass the simulation failures due to the non-ideal thermodynamics or complex optimization algorithms.•The proposed procedure use a shortcut design provided by ProSimPlus® process simulator to initialize the design algorithm coupled with rigorous process simulations.•Although “non-optimal”, the DWC design obtained via the feasible path-based procedure fulfills the expectations both from an economic and an environmental point of view with respect to the equivalent distillation train.
Process integration has become the best practice over the last years in separation units design. In particular, distillation trains can be reduced in a single column shell by means of internal separating wall under the name of Dividing Wall Column. This configuration allows on average for a 30% total costs reduction and is more and more popular for multicomponent mixtures purification.
However, the DWC design optimization results much more complex than the one related to a series of standard distillation columns due to the higher number of column sections and side cuts. Moreover, in case of process simulation assisted design, the model convergence is very sensitive with respect to the initial guess, resulting in discontinuities in the sequence of optimization steps.
In this paper an innovative design procedure based on feasible paths is presented for an ABEW mixture separation case study. Starting from a converged design based on shortcut methods, the number of trays can be increased and or removed from the proper column section selected with the help of composition profiles analysis. This procedure results to be particularly effective for non-ideal mixtures separations, such as the ABEW one, likely to undergo simulation convergence failures. This design algorithm provides an optimized solution really close to the optimal one in a relatively short time and without the need to solve the related MINLP problem. |
|---|---|
| AbstractList | Process integration has become the best practice over the last years in separation units design. In particular, distillation trains can be reduced in a single column shell by means of internal separating wall under the name of Dividing Wall Column. This configuration allows on average for a 30% total costs reduction and is more and more popular for multicomponent mixtures purification.However, the DWC design optimization results much more complex than the one related to a series of standard distillation columns due to the higher number of column sections and side cuts. Moreover, in case of process simulation assisted design, the model convergence is very sensitive with respect to the initial guess, resulting in discontinuities in the sequence of optimization steps.In this paper an innovative design procedure based on feasible paths is presented for an ABEW mixture separation case study. Starting from a converged design based on shortcut methods, the number of trays can be increased and or removed from the proper column section selected with the help of composition profiles analysis. This procedure results to be particularly effective for non-ideal mixtures separations, such as the ABEW one, likely to undergo simulation convergence failures. This design algorithm provides an optimized solution really close to the optimal one in a relatively short time and without the need to solve the related MINLP problem. •A feasible path-based procedure allows to bypass the simulation failures due to the non-ideal thermodynamics or complex optimization algorithms.•The proposed procedure use a shortcut design provided by ProSimPlus® process simulator to initialize the design algorithm coupled with rigorous process simulations.•Although “non-optimal”, the DWC design obtained via the feasible path-based procedure fulfills the expectations both from an economic and an environmental point of view with respect to the equivalent distillation train. Process integration has become the best practice over the last years in separation units design. In particular, distillation trains can be reduced in a single column shell by means of internal separating wall under the name of Dividing Wall Column. This configuration allows on average for a 30% total costs reduction and is more and more popular for multicomponent mixtures purification. However, the DWC design optimization results much more complex than the one related to a series of standard distillation columns due to the higher number of column sections and side cuts. Moreover, in case of process simulation assisted design, the model convergence is very sensitive with respect to the initial guess, resulting in discontinuities in the sequence of optimization steps. In this paper an innovative design procedure based on feasible paths is presented for an ABEW mixture separation case study. Starting from a converged design based on shortcut methods, the number of trays can be increased and or removed from the proper column section selected with the help of composition profiles analysis. This procedure results to be particularly effective for non-ideal mixtures separations, such as the ABEW one, likely to undergo simulation convergence failures. This design algorithm provides an optimized solution really close to the optimal one in a relatively short time and without the need to solve the related MINLP problem. |
| ArticleNumber | 107309 |
| Author | Joulia, Xavier Montastruc, Ludovic Di Pretoro, Alessandro Manenti, Flavio Ciranna, Flavia Fedeli, Matteo |
| Author_xml | – sequence: 1 givenname: Alessandro surname: Di Pretoro fullname: Di Pretoro, Alessandro organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica <<Giulio Natta>>, Piazza Leonardo da Vinci 32, Milano 20133, Italy – sequence: 2 givenname: Flavia surname: Ciranna fullname: Ciranna, Flavia organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica <<Giulio Natta>>, Piazza Leonardo da Vinci 32, Milano 20133, Italy – sequence: 3 givenname: Matteo surname: Fedeli fullname: Fedeli, Matteo organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica <<Giulio Natta>>, Piazza Leonardo da Vinci 32, Milano 20133, Italy – sequence: 4 givenname: Xavier orcidid: 0000-0002-2374-7516 surname: Joulia fullname: Joulia, Xavier organization: Laboratoire de Génie Chimique, Université de Toulouse, CNRS/INP/UPS, Toulouse, France – sequence: 5 givenname: Ludovic surname: Montastruc fullname: Montastruc, Ludovic email: ludovic.montastruc@ensiacet.fr organization: Laboratoire de Génie Chimique, Université de Toulouse, CNRS/INP/UPS, Toulouse, France – sequence: 6 givenname: Flavio surname: Manenti fullname: Manenti, Flavio organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica <<Giulio Natta>>, Piazza Leonardo da Vinci 32, Milano 20133, Italy |
| BackLink | https://hal.science/hal-04726893$$DView record in HAL |
| BookMark | eNqNkEtLAzEUhYNUsK3-h7h0MTWTTGYmKyn1UaHgRnEZ8rhpU6aTIZkW_PdOqYK46urC4ZzvwjdBoza0gNBtTmY5ycv77cyEXWc2sIN2PaOE5kNeMSIu0DivK5YVrOIjNCZE1FnOeHGFJiltCSG0qOsxWs6xA5W8bgB3qt9kWiWwWHVdDMpssAsRP_qDt75d40_VNHgRmv2uxRaSX7d4qBmw-wjX6NKpJsHNz52ij-en98UyW729vC7mq8wwzvvM6pJqYhno2gmnGXOEas2ZNSU4TgstnFGaKcEFddxWpOSVUJYN7dpQwdgU3Z24G9XILvqdil8yKC-X85U8ZqSoaFkLdsiH7sOpa2JIKYKTxveq96Hto_KNzIk8SpRb-UeiPEqUJ4kDQfwj_L48Z7s4bWHQcfAQZTIe2kGXj2B6aYM_g_IN73CWGg |
| CitedBy_id | crossref_primary_10_1016_j_compchemeng_2021_107627 crossref_primary_10_1016_j_cep_2024_109709 crossref_primary_10_1016_j_cep_2023_109639 crossref_primary_10_1016_j_compchemeng_2024_108875 crossref_primary_10_1016_j_compchemeng_2022_107663 crossref_primary_10_1016_j_seppur_2022_122708 crossref_primary_10_1016_j_cep_2022_109069 |
| Cites_doi | 10.1016/j.energy.2012.09.038 10.1021/ie00045a018 10.1002/jctb.4108 10.1016/j.cherd.2015.03.029 10.1016/j.cjche.2016.05.023 10.1016/j.cep.2013.10.007 10.1016/j.rser.2010.11.008 10.1021/ie9006936 10.1021/acs.iecr.7b03459 10.1080/13873954.2012.691521 10.1002/ceat.200800116 10.1016/j.cherd.2017.07.028 10.1016/j.jclepro.2017.09.223 10.1016/j.compchemeng.2011.01.028 10.1016/j.jclepro.2019.06.224 10.1016/j.energy.2019.01.126 10.1021/ie0610344 10.1002/aic.15609 10.1021/acs.iecr.0c02383 10.1016/j.cep.2010.04.001 10.1016/j.cep.2016.10.009 10.1002/ceat.201100176 10.1021/acs.iecr.7b03078 10.1021/acs.iecr.7b02125 10.1002/aic.690140124 10.1205/026387602753501870 10.1016/j.compchemeng.2012.01.015 10.1016/j.cep.2011.04.002 10.1016/j.seppur.2011.05.009 10.1021/ie9802919 10.1016/j.ces.2019.03.061 10.1016/B978-0-444-63428-3.50039-4 10.1016/j.seppur.2016.12.008 10.1016/j.cherd.2019.07.010 10.1016/j.energy.2005.10.030 10.1016/j.seppur.2020.116891 10.1016/j.cep.2014.08.011 10.1016/j.cep.2016.02.012 10.1016/j.cep.2015.07.002 10.1016/j.cep.2015.12.010 10.1016/j.compchemeng.2009.04.011 10.1016/j.compchemeng.2020.106831 10.1016/j.jclepro.2014.03.015 10.1021/ie3014346 10.1016/j.cep.2019.107688 10.1021/acs.iecr.8b00668 10.1016/j.compchemeng.2014.05.001 10.1002/ceat.200700378 10.1205/026387601753192037 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Attribution - NonCommercial |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Attribution - NonCommercial |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1016/j.compchemeng.2021.107309 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-4375 |
| ExternalDocumentID | oai:HAL:hal-04726893v1 10_1016_j_compchemeng_2021_107309 S0098135421000879 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSH SST SSZ T5K VH1 WUQ ZY4 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 1XC VOOES |
| ID | FETCH-LOGICAL-c355t-db62b0d3eb8f9fb33f02bb53dc6ef524b9fcab3a9592f5d706579ad38f98c2933 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000641462000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-1354 |
| IngestDate | Sat Oct 25 07:23:52 EDT 2025 Tue Nov 18 21:49:52 EST 2025 Sat Nov 29 07:27:27 EST 2025 Sun Apr 06 06:54:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | DWC Biomass Feasible paths Process integration Optimal design |
| Language | English |
| License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c355t-db62b0d3eb8f9fb33f02bb53dc6ef524b9fcab3a9592f5d706579ad38f98c2933 |
| ORCID | 0000-0002-2374-7516 0000-0001-7394-5396 0000-0003-3141-6618 0000-0002-7083-6183 |
| OpenAccessLink | https://hal.science/hal-04726893 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04726893v1 crossref_citationtrail_10_1016_j_compchemeng_2021_107309 crossref_primary_10_1016_j_compchemeng_2021_107309 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2021_107309 |
| PublicationCentury | 2000 |
| PublicationDate | June 2021 2021-06-00 2021-06 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & chemical engineering |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Hasheminasab, Gholipour, Kharrazi, Streimikiene (bib0023) 2018; 171 Lorenz, Staak, Grutzner, Repke (bib0033) 2018; 1 Dünnebier, Pantelides (bib0011) 1999; 38 Kiss (bib0027) 2013 Wang, Xie, Tian, Tian (bib0062) 2016; 110 Wolff, Skogestad (bib0063) 1995; 34 Safe, Khazraee, Setoodeh, Jahanmiri (bib0049) 2013; 19 Dwivedi, Strandberg, Halvorsen, Preisig, Skogestad (bib0012) 2012; 51 Zitzewitz, Fieg (bib0070) 2017; 63 Dejanovic, Matijašević, Olujić (bib0006) 2010; 49 IEA, 2018. IEA bioenergy annual report 2018. Ge, Yuan, Ao, Yu (bib0016) 2014; 68 Sotudeh, Shahraki (bib0053) 2008; 31 Muralikrishna, Madhavan, Shah (bib0038) 2002; 80 Vazquez-Castillo, Venegas-Sánchez, Segovia-Hernández, Hernández-Escoto, Hernández, Gutiérrez-Antonio, Briones-Ramírez (bib0059) 2009; 33 Li, Zhang, Xie, Fang, Li (bib0032) 2020; 247 Triantafyllou, Smith (bib0056) 1992; 70 Yang, Wei, Sun, Wei, Shen, Chien (bib0067) 2018; 57 Navarrete, Cole (bib0039) 2001 Yildirim, Kiss, Kenig (bib0069) 2011; 80 Becker, Godorr, Kreis, Vaughan (bib0002) 2001; 108 Goldberg, Wang, Zimmerman (bib0018) 1994 Jia, Qian, Yuan (bib0026) 2017; 125 . Glinos, Malone (bib0017) 1988; 66 Nguyen, Rouzineau, Meyer, Meyer (bib0040) 2016; 104 Dejanović, Matijašević, Halvorsen, Skogestad, Jansen, Kaibel, Olujić (bib0005) 2011; 89 Hoffmann, Bortz, Burger, Hasse, Küfer (bib0024) 2016 Bravo-Bravo, Segovia-Hernández, Gutiérrez-Antonio, Durán, Bonilla-Petriciolet, Briones-Ramírez (bib0003) 2010; 49 Kraemer, K., Harwardt, A., Bronneberg, R., & Marquardt, W. (2011). Separation of butanol from acetone–butanol–ethanol fermentation by a hybrid extraction–distillation process. computers & chemical engineering. Selected Papers from ESCAPE-20 (European Symposium of Computer Aided Process Engineering - 20), 6-9 June 2010, Ischia, Italy, 35, 949–963. Guthrie (bib0021) 1969; 76 Staak, Grützner, Schwegler, Roederer (bib0054) 2014; 75 Rangaiah, Ooi, Premkumar (bib0047) 2009; 4 Okoli, Adams (bib0041) 2015; 95 Di Pretoro, Montastruc, Manenti, Joulia (bib0007) 2020; 59 Ulrich (bib0057) 1984 Qian, Jia, Luo, Yuan, Yu (bib0046) 2015; 99 Dimian, Bildea, Kiss (bib0009) 2014 Petlyuk (bib0045) 2004 Kiss (bib0028) 2013; 88 Patraşcu, Bîldea, Kiss (bib0043) 2017; 177 Lestak, Smith (bib0031) 1993; 71 Seihoub, Benyounes, Shen, Gerbaud (bib0052) 2017; 56 Wang, Chen, Chang, Hu, Cheng (bib0061) 2014; 85 Sangal, Kumar, Mishra (bib0050) 2012; 40 Schultz, Stewart, Harris, Rosenblum, Shakur, O’Brien (bib0051) 2002; 98 Yang, El-Ensashy, Thongchul (bib0068) 2013 Pan, Wu, Qiu, He, Ling (bib0042) 2019; 203 Garcia, Päkkilä, Ojamo, Muurinen, Keiski (bib0015) 2011; 15 Tavan, Shahhosseini, Hosseini (bib0055) 2014; 72 Gómez-Castro, Segovia-Hernández, Hernández, Gutiérrez-Antonio, Briones-Ramírez (bib0020) 2008; 31 Di Pretoro, Montastruc, Manenti, Joulia (bib0008) 2020; 138 Yang, Lv, Shen, Dong, Li, Xiao (bib0065) 2017; 56 Ding, Tan (bib0010) 2013 Mueller, Kenig (bib0037) 2007; 46 Yang, Sun, Eslamimanesh, Wei, Shen (bib0066) 2019; 172 Kiss, Flores Landaeta, Infante Ferreira (bib0029) 2012; 47 Gómez-Castro, Rodríguez-Ángeles, Segovia-Hernández, Gutiérrez-Antonio, Briones-Ramírez (bib0019) 2011; 34 Maleta, Kiss, Taran, Maleta (bib0036) 2011; 50 Waltermann, Sibbing, Skiborowski (bib0060) 2019; 146 Amminudin, Smith (bib0001) 2001; 79 Renon, Prausnitz (bib0048) 1968; 14 Errico, Sanchez-Ramirez, Quiroz-Ramírez, Rong, Segovia-Hernandez (bib0013) 2017; 56 Gadalla, Olujić, Jobson, Smith (bib0014) 2006; 31 Lumin Li, Lumin Li (bib0034) 2016; 24 Petlyuk (bib0044) 1965; 5 Yang, Jin, Shen, Cui, Chien, Ren (bib0064) 2019; 234 Guthrie (bib0022) 1974 Luyben (bib0035) 2019; 149 Uwitonze, Suk Hwang, Lee (bib0058) 2016; 102 Li (10.1016/j.compchemeng.2021.107309_bib0032) 2020; 247 Lumin Li (10.1016/j.compchemeng.2021.107309_bib0034) 2016; 24 Hasheminasab (10.1016/j.compchemeng.2021.107309_bib0023) 2018; 171 Zitzewitz (10.1016/j.compchemeng.2021.107309_bib0070) 2017; 63 Wolff (10.1016/j.compchemeng.2021.107309_bib0063) 1995; 34 10.1016/j.compchemeng.2021.107309_bib0025 Okoli (10.1016/j.compchemeng.2021.107309_bib0041) 2015; 95 Amminudin (10.1016/j.compchemeng.2021.107309_bib0001) 2001; 79 Jia (10.1016/j.compchemeng.2021.107309_bib0026) 2017; 125 Gómez-Castro (10.1016/j.compchemeng.2021.107309_bib0019) 2011; 34 Safe (10.1016/j.compchemeng.2021.107309_bib0049) 2013; 19 Schultz (10.1016/j.compchemeng.2021.107309_bib0051) 2002; 98 Di Pretoro (10.1016/j.compchemeng.2021.107309_bib0008) 2020; 138 Renon (10.1016/j.compchemeng.2021.107309_sbref0048) 1968; 14 Dimian (10.1016/j.compchemeng.2021.107309_bib0009) 2014 Tavan (10.1016/j.compchemeng.2021.107309_bib0055) 2014; 72 Yang (10.1016/j.compchemeng.2021.107309_bib0067) 2018; 57 Bravo-Bravo (10.1016/j.compchemeng.2021.107309_bib0003) 2010; 49 Dejanovic (10.1016/j.compchemeng.2021.107309_bib0006) 2010; 49 10.1016/j.compchemeng.2021.107309_bib0030 Muralikrishna (10.1016/j.compchemeng.2021.107309_bib0038) 2002; 80 Pan (10.1016/j.compchemeng.2021.107309_bib0042) 2019; 203 Yang (10.1016/j.compchemeng.2021.107309_bib0068) 2013 Ge (10.1016/j.compchemeng.2021.107309_bib0016) 2014; 68 Garcia (10.1016/j.compchemeng.2021.107309_bib0015) 2011; 15 Dwivedi (10.1016/j.compchemeng.2021.107309_bib0012) 2012; 51 Guthrie (10.1016/j.compchemeng.2021.107309_bib0021) 1969; 76 Hoffmann (10.1016/j.compchemeng.2021.107309_bib0024) 2016 Seihoub (10.1016/j.compchemeng.2021.107309_bib0052) 2017; 56 Patraşcu (10.1016/j.compchemeng.2021.107309_bib0043) 2017; 177 Dünnebier (10.1016/j.compchemeng.2021.107309_bib0011) 1999; 38 Gómez-Castro (10.1016/j.compchemeng.2021.107309_bib0020) 2008; 31 Yang (10.1016/j.compchemeng.2021.107309_bib0066) 2019; 172 Becker (10.1016/j.compchemeng.2021.107309_sbref0002) 2001; 108 Petlyuk (10.1016/j.compchemeng.2021.107309_bib0045) 2004 Yang (10.1016/j.compchemeng.2021.107309_bib0064) 2019; 234 Sotudeh (10.1016/j.compchemeng.2021.107309_bib0053) 2008; 31 Maleta (10.1016/j.compchemeng.2021.107309_bib0036) 2011; 50 Nguyen (10.1016/j.compchemeng.2021.107309_bib0040) 2016; 104 Staak (10.1016/j.compchemeng.2021.107309_bib0054) 2014; 75 Errico (10.1016/j.compchemeng.2021.107309_bib0013) 2017; 56 Guthrie (10.1016/j.compchemeng.2021.107309_bib0022) 1974 Qian (10.1016/j.compchemeng.2021.107309_bib0046) 2015; 99 Mueller (10.1016/j.compchemeng.2021.107309_bib0037) 2007; 46 Wang (10.1016/j.compchemeng.2021.107309_bib0062) 2016; 110 Kiss (10.1016/j.compchemeng.2021.107309_bib0029) 2012; 47 Navarrete (10.1016/j.compchemeng.2021.107309_bib0039) 2001 Dejanović (10.1016/j.compchemeng.2021.107309_bib0005) 2011; 89 Sangal (10.1016/j.compchemeng.2021.107309_bib0050) 2012; 40 Glinos (10.1016/j.compchemeng.2021.107309_bib0017) 1988; 66 Triantafyllou (10.1016/j.compchemeng.2021.107309_bib0056) 1992; 70 Ding (10.1016/j.compchemeng.2021.107309_bib0010) 2013 Luyben (10.1016/j.compchemeng.2021.107309_bib0035) 2019; 149 Waltermann (10.1016/j.compchemeng.2021.107309_bib0060) 2019; 146 Yildirim (10.1016/j.compchemeng.2021.107309_bib0069) 2011; 80 Petlyuk (10.1016/j.compchemeng.2021.107309_bib0044) 1965; 5 Rangaiah (10.1016/j.compchemeng.2021.107309_bib0047) 2009; 4 Vazquez-Castillo (10.1016/j.compchemeng.2021.107309_bib0059) 2009; 33 Gadalla (10.1016/j.compchemeng.2021.107309_bib0014) 2006; 31 Wang (10.1016/j.compchemeng.2021.107309_bib0061) 2014; 85 Lestak (10.1016/j.compchemeng.2021.107309_bib0031) 1993; 71 Ulrich (10.1016/j.compchemeng.2021.107309_bib0057) 1984 Di Pretoro (10.1016/j.compchemeng.2021.107309_bib0007) 2020; 59 Kiss (10.1016/j.compchemeng.2021.107309_bib0027) 2013 Lorenz (10.1016/j.compchemeng.2021.107309_bib0033) 2018; 1 Yang (10.1016/j.compchemeng.2021.107309_bib0065) 2017; 56 Uwitonze (10.1016/j.compchemeng.2021.107309_bib0058) 2016; 102 Goldberg (10.1016/j.compchemeng.2021.107309_bib0018) 1994 Kiss (10.1016/j.compchemeng.2021.107309_bib0028) 2013; 88 |
| References_xml | – volume: 31 start-page: 2398 year: 2006 end-page: 2408 ident: bib0014 article-title: Estimation and reduction of CO2 emissions from crude oil distillation units publication-title: Energy – volume: 99 start-page: 176 year: 2015 end-page: 184 ident: bib0046 article-title: Selective hydrogenation and separation of c3 stream by thermally coupled reactive distillation publication-title: Chem. Eng. Res. Des. Distill. Absorpt. – volume: 72 start-page: 222 year: 2014 end-page: 229 ident: bib0055 article-title: Design and simulation of ethane recovery process in an extractive dividing wall column publication-title: J. Clean. Prod. – volume: 177 start-page: 49 year: 2017 end-page: 61 ident: bib0043 article-title: Eco-efficient butanol separation in the ABE fermentation process publication-title: Sep. Purif. Technol. – volume: 31 start-page: 1246 year: 2008 end-page: 1260 ident: bib0020 article-title: Dividing wall distillation columns: Optimization and control properties publication-title: Chem. Eng. Technol. – volume: 95 start-page: 302 year: 2015 ident: bib0041 article-title: II design of dividing wall columns for butanol recovery in a thermochemical biomass to butanol process publication-title: Chem. Eng. Process. – volume: 88 start-page: 1387 year: 2013 ident: bib0028 article-title: Novel applications of dividing-wall column technology to biofuel production processes publication-title: J. Chem. Technol. Biotechnol. – volume: 49 start-page: 3672 year: 2010 end-page: 3688 ident: bib0003 article-title: Extractive dividing wall column: Design and optimization publication-title: Ind. Eng. Chem. Res. – volume: 46 start-page: 3709 year: 2007 end-page: 3719 ident: bib0037 article-title: Reactive distillation in a dividing wall column: Rate-based modeling and simulation publication-title: Ind. Eng. Chem. Res. – volume: 38 start-page: 162 year: 1999 end-page: 176 ident: bib0011 article-title: Optimal design of thermally coupled distillation columns publication-title: Ind. Eng. Chem. Res. – year: 1994 ident: bib0018 article-title: Applications of feasible path analysis to program testing publication-title: in: ISSTA ’94 – volume: 104 start-page: 94 year: 2016 end-page: 111 ident: bib0040 article-title: Design and simulation of divided wall column: Experimental validation and sensitivity analysis publication-title: Chem. Eng. Process. – reference: Kraemer, K., Harwardt, A., Bronneberg, R., & Marquardt, W. (2011). Separation of butanol from acetone–butanol–ethanol fermentation by a hybrid extraction–distillation process. computers & chemical engineering. Selected Papers from ESCAPE-20 (European Symposium of Computer Aided Process Engineering - 20), 6-9 June 2010, Ischia, Italy, 35, 949–963. – volume: 34 start-page: 2051 year: 2011 end-page: 2058 ident: bib0019 article-title: Optimal designs of multiple Dividing Wall columns publication-title: Chem. Eng. Technol. – volume: 171 start-page: 1215 year: 2018 end-page: 1224 ident: bib0023 article-title: A novel metric of sustainability for petroleum refinery projects publication-title: J. Clean. Prod. – year: 2013 ident: bib0027 article-title: Advanced Distillation Technologies: Design, Control and Applications – reference: IEA, 2018. IEA bioenergy annual report 2018. – volume: 56 start-page: 14565 year: 2017 end-page: 14581 ident: bib0065 article-title: Optimal design and effective control of the tert-amyl methyl ether production process using an integrated reactive dividing wall and pressure swing columns publication-title: Ind. Eng. Chem. Res. – volume: 89 start-page: 1155 year: 2011 end-page: 1167 ident: bib0005 article-title: Designing four-product dividing wall columns for separation of a multicomponent aromatics mixture publication-title: Chem. Eng. Res. Des. Spec. Issue Distill. Absorpt. – volume: 59 start-page: 16004 year: 2020 end-page: 16016 ident: bib0007 article-title: Exploiting residue curve maps to assess thermodynamic feasibility boundaries under uncertain operating conditions publication-title: Ind. Eng. Chem. Res. – volume: 76 start-page: 114 year: 1969 end-page: 142 ident: bib0021 article-title: Capital cost estimating publication-title: Chem. Eng. – volume: 24 start-page: 1360 year: 2016 end-page: 1368 ident: bib0034 article-title: Reactive dividing wall column for hydrolysis of methyl acetate: Design and control publication-title: Chin. J. Chem. Eng. – volume: 49 start-page: 559 year: 2010 end-page: 580 ident: bib0006 article-title: Dividing wall column—a breakthrough towards sustainable distilling publication-title: Chem. Eng. Process. – volume: 33 start-page: 1841 year: 2009 end-page: 1850 ident: bib0059 article-title: Design and optimization, using genetic algorithms, of intensified distillation systems for a class of quaternary mixtures publication-title: Comput. Chem. Eng. – volume: 125 start-page: 422 year: 2017 end-page: 432 ident: bib0026 article-title: Optimal design for dividing wall column using support vector machine and particle swarm optimization publication-title: Chem. Eng. Res. Des. – volume: 102 start-page: 47 year: 2016 end-page: 58 ident: bib0058 article-title: A new design method and operation of fully thermally coupled distillation column publication-title: Chem. Eng. Process. – volume: 5 start-page: 555 year: 1965 end-page: 561 ident: bib0044 article-title: Thermodynamically optimal method for separating multicomponent mixtures publication-title: Int. Chem. Eng. – volume: 19 start-page: 29 year: 2013 end-page: 50 ident: bib0049 article-title: Model reduction and optimization of a reactive dividing wall batch distillation column inspired by response surface methodology and differential evolution publication-title: Math. Comput. Model. Dyn. Syst. – volume: 85 start-page: 108 year: 2014 end-page: 124 ident: bib0061 article-title: Optimal design of mixed acid esterification and isopropanol dehydration systems via incorporation of dividing-wall columns publication-title: Chem. Eng. Process. – volume: 80 start-page: 155 year: 2002 end-page: 166 ident: bib0038 article-title: Development of dividing wall distillation column design space for a specified separation publication-title: Chem. Eng. Res. Des. – volume: 146 start-page: 107688 year: 2019 ident: bib0060 article-title: Optimization-based design of dividing wall columns with extended and multiple dividing walls for three- and four-product separations publication-title: Chem. Eng. Process. – volume: 172 start-page: 320 year: 2019 end-page: 332 ident: bib0066 article-title: Energy-saving investigation for diethyl carbonate synthesis through the reactive dividing wall column combining the vapor recompression heat pump or different pressure thermally coupled technique publication-title: Energy – volume: 75 start-page: 48 year: 2014 end-page: 57 ident: bib0054 article-title: Dividing wall column for industrial multi purpose use publication-title: Chem. Eng. Process. – volume: 47 start-page: 531 year: 2012 end-page: 542 ident: bib0029 article-title: Towards energy efficient distillation technologies – making the right choice publication-title: Energy – volume: 15 start-page: 964 year: 2011 end-page: 980 ident: bib0015 article-title: Challenges in biobutanol production: How to improve the efficiency? publication-title: Renew. Sustain. Energy Rev. – volume: 68 start-page: 38 year: 2014 end-page: 46 ident: bib0016 article-title: Simulation based approach to optimal design of dividing wall column using random search method publication-title: Comput. Chem. Eng. – volume: 71 start-page: 307 year: 1993 ident: bib0031 article-title: The control of a dividing wall column publication-title: Chem. Eng. Res. Des. – volume: 1 start-page: 229 year: 2018 end-page: 234 ident: bib0033 publication-title: Divided Wall Columns – volume: 138 start-page: 106831 year: 2020 ident: bib0008 article-title: Flexibility assessment of a biorefinery distillation train: Optimal design under uncertain conditions publication-title: Comput. Chem. Eng. – start-page: 64 year: 2013 end-page: 78 ident: bib0010 article-title: Detection of infeasible paths: Approaches and challenges publication-title: Evaluation of novel approaches to software engineering, communications in computer and information science – volume: 203 start-page: 321 year: 2019 end-page: 332 ident: bib0042 article-title: Pressure compensated temperature control of kaibel divided-wall column publication-title: Chem. Eng. Sci. – year: 2004 ident: bib0045 article-title: Distillation Theory and its Application to Optimal Design of Separation Units – volume: 14 year: 1968 ident: bib0048 article-title: Local compositions in thermodynamic excess functions for liquid mixtures publication-title: AIChE J. – volume: 56 start-page: 11575 year: 2017 end-page: 11583 ident: bib0013 article-title: Multiobjective optimal acetone–butanol–ethanol separation systems using liquid–liquid extraction-assisted divided wall columns publication-title: Ind. Eng. Chem. Res. – volume: 50 start-page: 655 year: 2011 end-page: 664 ident: bib0036 article-title: Understanding process intensification in cyclic distillation systems publication-title: Chem. Eng. Process Process Intens. – volume: 31 start-page: 83 year: 2008 end-page: 86 ident: bib0053 article-title: Extension of a method for the design of divided wall columns publication-title: Chem. Eng. Technol. – volume: 57 start-page: 8036 year: 2018 end-page: 8056 ident: bib0067 article-title: Energy-saving optimal design and effective control of heat integration-extractive dividing wall column for separating heterogeneous mixture methanol/toluene/water with multiazeotropes publication-title: Ind. Eng. Chem. Res. – volume: 110 start-page: 172 year: 2016 end-page: 187 ident: bib0062 article-title: Design and control of extractive dividing wall column and pressure-swing distillation for separating azeotropic mixture of acetonitrile/n-propanol publication-title: Chem. Eng. Process. – year: 2014 ident: bib0009 article-title: Integrated Design and Simulation of Chemical Processes, 2 edition. ed – volume: 4 year: 2009 ident: bib0047 article-title: A Simplified Procedure for Quick Design of Dividing-Wall Columns for Industrial Applications publication-title: Chem. Prod. Process Model. – volume: 98 start-page: 64 year: 2002 end-page: 71 ident: bib0051 article-title: Reduce costs with dividing-wall columns publication-title: Chem. Eng. Prog. – volume: 51 start-page: 15176 year: 2012 end-page: 15183 ident: bib0012 article-title: Active vapor split control for dividing-wall columns publication-title: Ind. Eng. Chem. Res. – volume: 40 start-page: 33 year: 2012 end-page: 40 ident: bib0050 article-title: Optimization of structural and operational variables for the energy efficiency of a divided wall distillation column publication-title: Comput. Chem. Eng. – volume: 63 start-page: 1974 year: 2017 end-page: 1988 ident: bib0070 article-title: Multi-objective optimization superimposed model-based process design of an enzymatic hydrolysis process publication-title: AIChE J. – volume: 247 start-page: 116891 year: 2020 ident: bib0032 article-title: Design, optimization, and industrial-scale experimental study of a high-efficiency dividing wall column publication-title: Sep. Purif. Technol. – volume: 79 start-page: 716 year: 2001 end-page: 724 ident: bib0001 article-title: Design and optimization of fully thermally coupled distillation columns: Part 2: Application of dividing wall columns in retrofit publication-title: Chem. Eng. Res. Des. Distill. Absorpt. – year: 1974 ident: bib0022 article-title: Process Plant Estimating, Evaluation, and Control – year: 2001 ident: bib0039 article-title: Planning, Estimating, and Control of Chemical Construction Projects, 2nd Edition – reference: . – volume: 56 start-page: 9710 year: 2017 end-page: 9720 ident: bib0052 article-title: An improved shortcut design method of divided wall columns exemplified by a liquefied petroleum gas process publication-title: Ind. Eng. Chem. Res. – volume: 70 start-page: 118 year: 1992 end-page: 132 ident: bib0056 article-title: The design and optimisation of fully thermally coupled distillation columns : Process design publication-title: Chem. eng. res. des – year: 2013 ident: bib0068 article-title: Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, 1 edition. ed – volume: 234 start-page: 410 year: 2019 end-page: 422 ident: bib0064 article-title: Investigation of energy-saving azeotropic dividing wall column to achieve cleaner production via heat exchanger network and heat pump technique publication-title: J. Clean. Prod. – volume: 66 start-page: 229 year: 1988 end-page: 240 ident: bib0017 article-title: Optimality regions for complex column alternatives in distillation systems publication-title: Chem. Eng. Res. Des. – volume: 80 start-page: 403 year: 2011 end-page: 417 ident: bib0069 article-title: Dividing wall columns in chemical process industry: A review on current activities publication-title: Sep. Purif. Technol. – start-page: 205 year: 2016 end-page: 210 ident: bib0024 article-title: A new scheme for process simulation by optimization: distillation as an example publication-title: Computer aided chemical engineering, 26 european symposium on computer aided process engineering – volume: 34 start-page: 2094 year: 1995 end-page: 2103 ident: bib0063 article-title: Operation of integrated three-product (petlyuk) distillation columns publication-title: Ind. Eng. Chem. Res. – volume: 149 start-page: 220 year: 2019 end-page: 225 ident: bib0035 article-title: Improved control structure for extractive divided-wall column with vapor recompression publication-title: Chem. Eng. Res. Des. – year: 1984 ident: bib0057 article-title: A Guide to Chemical Engineering Process Design and Economics – volume: 108 year: 2001 ident: bib0002 article-title: Partitioned distillation columns -- why publication-title: When & How. Chem. Eng. – volume: 5 start-page: 555 year: 1965 ident: 10.1016/j.compchemeng.2021.107309_bib0044 article-title: Thermodynamically optimal method for separating multicomponent mixtures publication-title: Int. Chem. Eng. – volume: 47 start-page: 531 issue: 1 year: 2012 ident: 10.1016/j.compchemeng.2021.107309_bib0029 article-title: Towards energy efficient distillation technologies – making the right choice publication-title: Energy doi: 10.1016/j.energy.2012.09.038 – volume: 34 start-page: 2094 year: 1995 ident: 10.1016/j.compchemeng.2021.107309_bib0063 article-title: Operation of integrated three-product (petlyuk) distillation columns publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00045a018 – volume: 88 start-page: 1387 year: 2013 ident: 10.1016/j.compchemeng.2021.107309_bib0028 article-title: Novel applications of dividing-wall column technology to biofuel production processes publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.4108 – volume: 99 start-page: 176 year: 2015 ident: 10.1016/j.compchemeng.2021.107309_bib0046 article-title: Selective hydrogenation and separation of c3 stream by thermally coupled reactive distillation publication-title: Chem. Eng. Res. Des. Distill. Absorpt. doi: 10.1016/j.cherd.2015.03.029 – volume: 24 start-page: 1360 year: 2016 ident: 10.1016/j.compchemeng.2021.107309_bib0034 article-title: Reactive dividing wall column for hydrolysis of methyl acetate: Design and control publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2016.05.023 – volume: 98 start-page: 64 year: 2002 ident: 10.1016/j.compchemeng.2021.107309_bib0051 article-title: Reduce costs with dividing-wall columns publication-title: Chem. Eng. Prog. – volume: 75 start-page: 48 year: 2014 ident: 10.1016/j.compchemeng.2021.107309_bib0054 article-title: Dividing wall column for industrial multi purpose use publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2013.10.007 – volume: 15 start-page: 964 year: 2011 ident: 10.1016/j.compchemeng.2021.107309_bib0015 article-title: Challenges in biobutanol production: How to improve the efficiency? publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.11.008 – volume: 1 start-page: 229 issue: 69 year: 2018 ident: 10.1016/j.compchemeng.2021.107309_bib0033 publication-title: Divided Wall Columns – volume: 49 start-page: 3672 year: 2010 ident: 10.1016/j.compchemeng.2021.107309_bib0003 article-title: Extractive dividing wall column: Design and optimization publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9006936 – volume: 56 start-page: 14565 year: 2017 ident: 10.1016/j.compchemeng.2021.107309_bib0065 article-title: Optimal design and effective control of the tert-amyl methyl ether production process using an integrated reactive dividing wall and pressure swing columns publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b03459 – volume: 19 start-page: 29 year: 2013 ident: 10.1016/j.compchemeng.2021.107309_bib0049 article-title: Model reduction and optimization of a reactive dividing wall batch distillation column inspired by response surface methodology and differential evolution publication-title: Math. Comput. Model. Dyn. Syst. doi: 10.1080/13873954.2012.691521 – volume: 31 start-page: 1246 year: 2008 ident: 10.1016/j.compchemeng.2021.107309_bib0020 article-title: Dividing wall distillation columns: Optimization and control properties publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.200800116 – volume: 70 start-page: 118 year: 1992 ident: 10.1016/j.compchemeng.2021.107309_bib0056 article-title: The design and optimisation of fully thermally coupled distillation columns : Process design publication-title: Chem. eng. res. des – volume: 125 start-page: 422 year: 2017 ident: 10.1016/j.compchemeng.2021.107309_bib0026 article-title: Optimal design for dividing wall column using support vector machine and particle swarm optimization publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2017.07.028 – volume: 171 start-page: 1215 year: 2018 ident: 10.1016/j.compchemeng.2021.107309_bib0023 article-title: A novel metric of sustainability for petroleum refinery projects publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.09.223 – start-page: 64 year: 2013 ident: 10.1016/j.compchemeng.2021.107309_bib0010 article-title: Detection of infeasible paths: Approaches and challenges – ident: 10.1016/j.compchemeng.2021.107309_bib0030 doi: 10.1016/j.compchemeng.2011.01.028 – volume: 234 start-page: 410 year: 2019 ident: 10.1016/j.compchemeng.2021.107309_bib0064 article-title: Investigation of energy-saving azeotropic dividing wall column to achieve cleaner production via heat exchanger network and heat pump technique publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.06.224 – volume: 172 start-page: 320 year: 2019 ident: 10.1016/j.compchemeng.2021.107309_bib0066 article-title: Energy-saving investigation for diethyl carbonate synthesis through the reactive dividing wall column combining the vapor recompression heat pump or different pressure thermally coupled technique publication-title: Energy doi: 10.1016/j.energy.2019.01.126 – volume: 46 start-page: 3709 year: 2007 ident: 10.1016/j.compchemeng.2021.107309_bib0037 article-title: Reactive distillation in a dividing wall column: Rate-based modeling and simulation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0610344 – volume: 63 start-page: 1974 year: 2017 ident: 10.1016/j.compchemeng.2021.107309_bib0070 article-title: Multi-objective optimization superimposed model-based process design of an enzymatic hydrolysis process publication-title: AIChE J. doi: 10.1002/aic.15609 – volume: 59 start-page: 16004 year: 2020 ident: 10.1016/j.compchemeng.2021.107309_bib0007 article-title: Exploiting residue curve maps to assess thermodynamic feasibility boundaries under uncertain operating conditions publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c02383 – year: 2013 ident: 10.1016/j.compchemeng.2021.107309_bib0068 – volume: 49 start-page: 559 issue: 6 year: 2010 ident: 10.1016/j.compchemeng.2021.107309_bib0006 article-title: Dividing wall column—a breakthrough towards sustainable distilling publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2010.04.001 – volume: 108 year: 2001 ident: 10.1016/j.compchemeng.2021.107309_sbref0002 article-title: Partitioned distillation columns -- why publication-title: When & How. Chem. Eng. – volume: 110 start-page: 172 year: 2016 ident: 10.1016/j.compchemeng.2021.107309_bib0062 article-title: Design and control of extractive dividing wall column and pressure-swing distillation for separating azeotropic mixture of acetonitrile/n-propanol publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2016.10.009 – volume: 34 start-page: 2051 year: 2011 ident: 10.1016/j.compchemeng.2021.107309_bib0019 article-title: Optimal designs of multiple Dividing Wall columns publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201100176 – volume: 56 start-page: 11575 year: 2017 ident: 10.1016/j.compchemeng.2021.107309_bib0013 article-title: Multiobjective optimal acetone–butanol–ethanol separation systems using liquid–liquid extraction-assisted divided wall columns publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b03078 – volume: 56 start-page: 9710 year: 2017 ident: 10.1016/j.compchemeng.2021.107309_bib0052 article-title: An improved shortcut design method of divided wall columns exemplified by a liquefied petroleum gas process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b02125 – volume: 76 start-page: 114 issue: 3 year: 1969 ident: 10.1016/j.compchemeng.2021.107309_bib0021 article-title: Capital cost estimating publication-title: Chem. Eng. – volume: 14 issue: 1 year: 1968 ident: 10.1016/j.compchemeng.2021.107309_sbref0048 article-title: Local compositions in thermodynamic excess functions for liquid mixtures publication-title: AIChE J. doi: 10.1002/aic.690140124 – volume: 4 issue: 1 year: 2009 ident: 10.1016/j.compchemeng.2021.107309_bib0047 article-title: A Simplified Procedure for Quick Design of Dividing-Wall Columns for Industrial Applications publication-title: Chem. Prod. Process Model. – volume: 71 start-page: 307 year: 1993 ident: 10.1016/j.compchemeng.2021.107309_bib0031 article-title: The control of a dividing wall column publication-title: Chem. Eng. Res. Des. – volume: 80 start-page: 155 issue: 2 year: 2002 ident: 10.1016/j.compchemeng.2021.107309_bib0038 article-title: Development of dividing wall distillation column design space for a specified separation publication-title: Chem. Eng. Res. Des. doi: 10.1205/026387602753501870 – year: 2001 ident: 10.1016/j.compchemeng.2021.107309_bib0039 – year: 1974 ident: 10.1016/j.compchemeng.2021.107309_bib0022 – volume: 40 start-page: 33 year: 2012 ident: 10.1016/j.compchemeng.2021.107309_bib0050 article-title: Optimization of structural and operational variables for the energy efficiency of a divided wall distillation column publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2012.01.015 – volume: 50 start-page: 655 year: 2011 ident: 10.1016/j.compchemeng.2021.107309_bib0036 article-title: Understanding process intensification in cyclic distillation systems publication-title: Chem. Eng. Process Process Intens. doi: 10.1016/j.cep.2011.04.002 – year: 2014 ident: 10.1016/j.compchemeng.2021.107309_bib0009 – volume: 80 start-page: 403 issue: 3 year: 2011 ident: 10.1016/j.compchemeng.2021.107309_bib0069 article-title: Dividing wall columns in chemical process industry: A review on current activities publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2011.05.009 – volume: 38 start-page: 162 year: 1999 ident: 10.1016/j.compchemeng.2021.107309_bib0011 article-title: Optimal design of thermally coupled distillation columns publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9802919 – volume: 203 start-page: 321 year: 2019 ident: 10.1016/j.compchemeng.2021.107309_bib0042 article-title: Pressure compensated temperature control of kaibel divided-wall column publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.03.061 – start-page: 205 year: 2016 ident: 10.1016/j.compchemeng.2021.107309_bib0024 article-title: A new scheme for process simulation by optimization: distillation as an example doi: 10.1016/B978-0-444-63428-3.50039-4 – volume: 177 start-page: 49 year: 2017 ident: 10.1016/j.compchemeng.2021.107309_bib0043 article-title: Eco-efficient butanol separation in the ABE fermentation process publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.12.008 – volume: 149 start-page: 220 year: 2019 ident: 10.1016/j.compchemeng.2021.107309_bib0035 article-title: Improved control structure for extractive divided-wall column with vapor recompression publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.07.010 – volume: 31 start-page: 2398 year: 2006 ident: 10.1016/j.compchemeng.2021.107309_bib0014 article-title: Estimation and reduction of CO2 emissions from crude oil distillation units publication-title: Energy doi: 10.1016/j.energy.2005.10.030 – volume: 247 start-page: 116891 year: 2020 ident: 10.1016/j.compchemeng.2021.107309_bib0032 article-title: Design, optimization, and industrial-scale experimental study of a high-efficiency dividing wall column publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116891 – year: 2004 ident: 10.1016/j.compchemeng.2021.107309_bib0045 – volume: 85 start-page: 108 year: 2014 ident: 10.1016/j.compchemeng.2021.107309_bib0061 article-title: Optimal design of mixed acid esterification and isopropanol dehydration systems via incorporation of dividing-wall columns publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2014.08.011 – volume: 104 start-page: 94 year: 2016 ident: 10.1016/j.compchemeng.2021.107309_bib0040 article-title: Design and simulation of divided wall column: Experimental validation and sensitivity analysis publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2016.02.012 – volume: 95 start-page: 302 year: 2015 ident: 10.1016/j.compchemeng.2021.107309_bib0041 article-title: II design of dividing wall columns for butanol recovery in a thermochemical biomass to butanol process publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2015.07.002 – volume: 102 start-page: 47 year: 2016 ident: 10.1016/j.compchemeng.2021.107309_bib0058 article-title: A new design method and operation of fully thermally coupled distillation column publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2015.12.010 – year: 1984 ident: 10.1016/j.compchemeng.2021.107309_bib0057 – year: 2013 ident: 10.1016/j.compchemeng.2021.107309_bib0027 – volume: 33 start-page: 1841 year: 2009 ident: 10.1016/j.compchemeng.2021.107309_bib0059 article-title: Design and optimization, using genetic algorithms, of intensified distillation systems for a class of quaternary mixtures publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2009.04.011 – year: 1994 ident: 10.1016/j.compchemeng.2021.107309_bib0018 article-title: Applications of feasible path analysis to program testing publication-title: in: ISSTA ’94 – volume: 138 start-page: 106831 year: 2020 ident: 10.1016/j.compchemeng.2021.107309_bib0008 article-title: Flexibility assessment of a biorefinery distillation train: Optimal design under uncertain conditions publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106831 – ident: 10.1016/j.compchemeng.2021.107309_bib0025 – volume: 72 start-page: 222 year: 2014 ident: 10.1016/j.compchemeng.2021.107309_bib0055 article-title: Design and simulation of ethane recovery process in an extractive dividing wall column publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.03.015 – volume: 66 start-page: 229 year: 1988 ident: 10.1016/j.compchemeng.2021.107309_bib0017 article-title: Optimality regions for complex column alternatives in distillation systems publication-title: Chem. Eng. Res. Des. – volume: 51 start-page: 15176 year: 2012 ident: 10.1016/j.compchemeng.2021.107309_bib0012 article-title: Active vapor split control for dividing-wall columns publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie3014346 – volume: 146 start-page: 107688 year: 2019 ident: 10.1016/j.compchemeng.2021.107309_bib0060 article-title: Optimization-based design of dividing wall columns with extended and multiple dividing walls for three- and four-product separations publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2019.107688 – volume: 57 start-page: 8036 year: 2018 ident: 10.1016/j.compchemeng.2021.107309_bib0067 article-title: Energy-saving optimal design and effective control of heat integration-extractive dividing wall column for separating heterogeneous mixture methanol/toluene/water with multiazeotropes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b00668 – volume: 89 start-page: 1155 year: 2011 ident: 10.1016/j.compchemeng.2021.107309_bib0005 article-title: Designing four-product dividing wall columns for separation of a multicomponent aromatics mixture publication-title: Chem. Eng. Res. Des. Spec. Issue Distill. Absorpt. – volume: 68 start-page: 38 year: 2014 ident: 10.1016/j.compchemeng.2021.107309_bib0016 article-title: Simulation based approach to optimal design of dividing wall column using random search method publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.05.001 – volume: 31 start-page: 83 year: 2008 ident: 10.1016/j.compchemeng.2021.107309_bib0053 article-title: Extension of a method for the design of divided wall columns publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.200700378 – volume: 79 start-page: 716 year: 2001 ident: 10.1016/j.compchemeng.2021.107309_bib0001 article-title: Design and optimization of fully thermally coupled distillation columns: Part 2: Application of dividing wall columns in retrofit publication-title: Chem. Eng. Res. Des. Distill. Absorpt. doi: 10.1205/026387601753192037 |
| SSID | ssj0002488 |
| Score | 2.395533 |
| Snippet | •A feasible path-based procedure allows to bypass the simulation failures due to the non-ideal thermodynamics or complex optimization algorithms.•The proposed... Process integration has become the best practice over the last years in separation units design. In particular, distillation trains can be reduced in a single... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 107309 |
| SubjectTerms | Biomass Chemical and Process Engineering DWC Engineering Sciences Feasible paths Optimal design Process integration |
| Title | A feasible path-based approach for Dividing Wall Column design procedure |
| URI | https://dx.doi.org/10.1016/j.compchemeng.2021.107309 https://hal.science/hal-04726893 |
| Volume | 149 |
| WOSCitedRecordID | wos000641462000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: AIEXJ dateStart: 19950611 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpOsb2UPZV1m0d2thbcUnk2JZgL6ZtyMooe-ggb0aSJZoSvNBkof_C_uvdWR_OxkqzwV6MEZZs-X6-O0t3vyPkA0ttLnNlEsVADCNhecKtyhMwxQNVgH9cG94WmyguLvh0Kr70ej9CLsx6XjQNv70Vi_8qamgDYWPq7F-IOw4KDXAOQocjiB2OWwm-PLJGAtDnBklTrxK0U3XkDm_DCk8xBwvXCNqN6RNUUBgTi7EcR61Fqz3PSOQw8LUfli1SdCAZMB2ZYXSIZxjVgbwIPn1muZTIiRD3OmZgHF0e2ngu17NoFcamNi5VG0uQm9jhHEu2t9dPJdrwzWUKthFOFVSvgN_V1DFGR9Xr6Eq98hyiuhF_1OtuieEaxbLAScL8jvEux12fX7m0f7NxMfIwBLVdVxtDVThU5YbaIbusyATvk93y09n0PJp1NuI8ELDiPB6Sd12w4B3PdZezs3MVlu1bN-byCdnz_x-0dLh5SnqmeUYeb7BSPieTkgYE0Q5BNCCIAoJoQBBFBFGHIOoQRCOCXpCv47PLk0niC24kGtzOVVKrnKlBnRrFrbAqTe2AKQXfq86NzdhICaulSqXIBLNZjTvkhZB1CldzDX5juk_6zbfGvCSUMaHBl-USt-mLTHFwDHWhBkOlhbQjcUB4eDOV9mz0WBRlXt0roQPCYteFo2TZptPH8Por71s6n7ECiG3T_T2ILN4OOdkn5ecK25BuNQevfz189S8P9po86j6XN6S_uvluDskDvV7NljdvPQh_As3LrX8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+feasible+path-based+approach+for+Dividing+Wall+Column+design+procedure&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Di+Pretoro%2C+Alessandro&rft.au=Ciranna%2C+Flavia&rft.au=Fedeli%2C+Matteo&rft.au=Joulia%2C+Xavier&rft.date=2021-06-01&rft.issn=0098-1354&rft.volume=149&rft.spage=107309&rft_id=info:doi/10.1016%2Fj.compchemeng.2021.107309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2021_107309 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |