A feasible path-based approach for Dividing Wall Column design procedure

•A feasible path-based procedure allows to bypass the simulation failures due to the non-ideal thermodynamics or complex optimization algorithms.•The proposed procedure use a shortcut design provided by ProSimPlus® process simulator to initialize the design algorithm coupled with rigorous process si...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & chemical engineering Ročník 149; s. 107309
Hlavní autoři: Di Pretoro, Alessandro, Ciranna, Flavia, Fedeli, Matteo, Joulia, Xavier, Montastruc, Ludovic, Manenti, Flavio
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.06.2021
Elsevier
Témata:
ISSN:0098-1354, 1873-4375
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A feasible path-based procedure allows to bypass the simulation failures due to the non-ideal thermodynamics or complex optimization algorithms.•The proposed procedure use a shortcut design provided by ProSimPlus® process simulator to initialize the design algorithm coupled with rigorous process simulations.•Although “non-optimal”, the DWC design obtained via the feasible path-based procedure fulfills the expectations both from an economic and an environmental point of view with respect to the equivalent distillation train. Process integration has become the best practice over the last years in separation units design. In particular, distillation trains can be reduced in a single column shell by means of internal separating wall under the name of Dividing Wall Column. This configuration allows on average for a 30% total costs reduction and is more and more popular for multicomponent mixtures purification. However, the DWC design optimization results much more complex than the one related to a series of standard distillation columns due to the higher number of column sections and side cuts. Moreover, in case of process simulation assisted design, the model convergence is very sensitive with respect to the initial guess, resulting in discontinuities in the sequence of optimization steps. In this paper an innovative design procedure based on feasible paths is presented for an ABEW mixture separation case study. Starting from a converged design based on shortcut methods, the number of trays can be increased and or removed from the proper column section selected with the help of composition profiles analysis. This procedure results to be particularly effective for non-ideal mixtures separations, such as the ABEW one, likely to undergo simulation convergence failures. This design algorithm provides an optimized solution really close to the optimal one in a relatively short time and without the need to solve the related MINLP problem.
AbstractList Process integration has become the best practice over the last years in separation units design. In particular, distillation trains can be reduced in a single column shell by means of internal separating wall under the name of Dividing Wall Column. This configuration allows on average for a 30% total costs reduction and is more and more popular for multicomponent mixtures purification.However, the DWC design optimization results much more complex than the one related to a series of standard distillation columns due to the higher number of column sections and side cuts. Moreover, in case of process simulation assisted design, the model convergence is very sensitive with respect to the initial guess, resulting in discontinuities in the sequence of optimization steps.In this paper an innovative design procedure based on feasible paths is presented for an ABEW mixture separation case study. Starting from a converged design based on shortcut methods, the number of trays can be increased and or removed from the proper column section selected with the help of composition profiles analysis. This procedure results to be particularly effective for non-ideal mixtures separations, such as the ABEW one, likely to undergo simulation convergence failures. This design algorithm provides an optimized solution really close to the optimal one in a relatively short time and without the need to solve the related MINLP problem.
•A feasible path-based procedure allows to bypass the simulation failures due to the non-ideal thermodynamics or complex optimization algorithms.•The proposed procedure use a shortcut design provided by ProSimPlus® process simulator to initialize the design algorithm coupled with rigorous process simulations.•Although “non-optimal”, the DWC design obtained via the feasible path-based procedure fulfills the expectations both from an economic and an environmental point of view with respect to the equivalent distillation train. Process integration has become the best practice over the last years in separation units design. In particular, distillation trains can be reduced in a single column shell by means of internal separating wall under the name of Dividing Wall Column. This configuration allows on average for a 30% total costs reduction and is more and more popular for multicomponent mixtures purification. However, the DWC design optimization results much more complex than the one related to a series of standard distillation columns due to the higher number of column sections and side cuts. Moreover, in case of process simulation assisted design, the model convergence is very sensitive with respect to the initial guess, resulting in discontinuities in the sequence of optimization steps. In this paper an innovative design procedure based on feasible paths is presented for an ABEW mixture separation case study. Starting from a converged design based on shortcut methods, the number of trays can be increased and or removed from the proper column section selected with the help of composition profiles analysis. This procedure results to be particularly effective for non-ideal mixtures separations, such as the ABEW one, likely to undergo simulation convergence failures. This design algorithm provides an optimized solution really close to the optimal one in a relatively short time and without the need to solve the related MINLP problem.
ArticleNumber 107309
Author Joulia, Xavier
Montastruc, Ludovic
Di Pretoro, Alessandro
Manenti, Flavio
Ciranna, Flavia
Fedeli, Matteo
Author_xml – sequence: 1
  givenname: Alessandro
  surname: Di Pretoro
  fullname: Di Pretoro, Alessandro
  organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica <<Giulio Natta>>, Piazza Leonardo da Vinci 32, Milano 20133, Italy
– sequence: 2
  givenname: Flavia
  surname: Ciranna
  fullname: Ciranna, Flavia
  organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica <<Giulio Natta>>, Piazza Leonardo da Vinci 32, Milano 20133, Italy
– sequence: 3
  givenname: Matteo
  surname: Fedeli
  fullname: Fedeli, Matteo
  organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica <<Giulio Natta>>, Piazza Leonardo da Vinci 32, Milano 20133, Italy
– sequence: 4
  givenname: Xavier
  orcidid: 0000-0002-2374-7516
  surname: Joulia
  fullname: Joulia, Xavier
  organization: Laboratoire de Génie Chimique, Université de Toulouse, CNRS/INP/UPS, Toulouse, France
– sequence: 5
  givenname: Ludovic
  surname: Montastruc
  fullname: Montastruc, Ludovic
  email: ludovic.montastruc@ensiacet.fr
  organization: Laboratoire de Génie Chimique, Université de Toulouse, CNRS/INP/UPS, Toulouse, France
– sequence: 6
  givenname: Flavio
  surname: Manenti
  fullname: Manenti, Flavio
  organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica <<Giulio Natta>>, Piazza Leonardo da Vinci 32, Milano 20133, Italy
BackLink https://hal.science/hal-04726893$$DView record in HAL
BookMark eNqNkEtLAzEUhYNUsK3-h7h0MTWTTGYmKyn1UaHgRnEZ8rhpU6aTIZkW_PdOqYK46urC4ZzvwjdBoza0gNBtTmY5ycv77cyEXWc2sIN2PaOE5kNeMSIu0DivK5YVrOIjNCZE1FnOeHGFJiltCSG0qOsxWs6xA5W8bgB3qt9kWiWwWHVdDMpssAsRP_qDt75d40_VNHgRmv2uxRaSX7d4qBmw-wjX6NKpJsHNz52ij-en98UyW729vC7mq8wwzvvM6pJqYhno2gmnGXOEas2ZNSU4TgstnFGaKcEFddxWpOSVUJYN7dpQwdgU3Z24G9XILvqdil8yKC-X85U8ZqSoaFkLdsiH7sOpa2JIKYKTxveq96Hto_KNzIk8SpRb-UeiPEqUJ4kDQfwj_L48Z7s4bWHQcfAQZTIe2kGXj2B6aYM_g_IN73CWGg
CitedBy_id crossref_primary_10_1016_j_compchemeng_2021_107627
crossref_primary_10_1016_j_cep_2024_109709
crossref_primary_10_1016_j_cep_2023_109639
crossref_primary_10_1016_j_compchemeng_2024_108875
crossref_primary_10_1016_j_compchemeng_2022_107663
crossref_primary_10_1016_j_seppur_2022_122708
crossref_primary_10_1016_j_cep_2022_109069
Cites_doi 10.1016/j.energy.2012.09.038
10.1021/ie00045a018
10.1002/jctb.4108
10.1016/j.cherd.2015.03.029
10.1016/j.cjche.2016.05.023
10.1016/j.cep.2013.10.007
10.1016/j.rser.2010.11.008
10.1021/ie9006936
10.1021/acs.iecr.7b03459
10.1080/13873954.2012.691521
10.1002/ceat.200800116
10.1016/j.cherd.2017.07.028
10.1016/j.jclepro.2017.09.223
10.1016/j.compchemeng.2011.01.028
10.1016/j.jclepro.2019.06.224
10.1016/j.energy.2019.01.126
10.1021/ie0610344
10.1002/aic.15609
10.1021/acs.iecr.0c02383
10.1016/j.cep.2010.04.001
10.1016/j.cep.2016.10.009
10.1002/ceat.201100176
10.1021/acs.iecr.7b03078
10.1021/acs.iecr.7b02125
10.1002/aic.690140124
10.1205/026387602753501870
10.1016/j.compchemeng.2012.01.015
10.1016/j.cep.2011.04.002
10.1016/j.seppur.2011.05.009
10.1021/ie9802919
10.1016/j.ces.2019.03.061
10.1016/B978-0-444-63428-3.50039-4
10.1016/j.seppur.2016.12.008
10.1016/j.cherd.2019.07.010
10.1016/j.energy.2005.10.030
10.1016/j.seppur.2020.116891
10.1016/j.cep.2014.08.011
10.1016/j.cep.2016.02.012
10.1016/j.cep.2015.07.002
10.1016/j.cep.2015.12.010
10.1016/j.compchemeng.2009.04.011
10.1016/j.compchemeng.2020.106831
10.1016/j.jclepro.2014.03.015
10.1021/ie3014346
10.1016/j.cep.2019.107688
10.1021/acs.iecr.8b00668
10.1016/j.compchemeng.2014.05.001
10.1002/ceat.200700378
10.1205/026387601753192037
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Attribution - NonCommercial
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.compchemeng.2021.107309
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
ExternalDocumentID oai:HAL:hal-04726893v1
10_1016_j_compchemeng_2021_107309
S0098135421000879
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSH
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
1XC
VOOES
ID FETCH-LOGICAL-c355t-db62b0d3eb8f9fb33f02bb53dc6ef524b9fcab3a9592f5d706579ad38f98c2933
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000641462000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-1354
IngestDate Sat Oct 25 07:23:52 EDT 2025
Tue Nov 18 21:49:52 EST 2025
Sat Nov 29 07:27:27 EST 2025
Sun Apr 06 06:54:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords DWC
Biomass
Feasible paths
Process integration
Optimal design
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c355t-db62b0d3eb8f9fb33f02bb53dc6ef524b9fcab3a9592f5d706579ad38f98c2933
ORCID 0000-0002-2374-7516
0000-0001-7394-5396
0000-0003-3141-6618
0000-0002-7083-6183
OpenAccessLink https://hal.science/hal-04726893
ParticipantIDs hal_primary_oai_HAL_hal_04726893v1
crossref_citationtrail_10_1016_j_compchemeng_2021_107309
crossref_primary_10_1016_j_compchemeng_2021_107309
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2021_107309
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
2021-06
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Computers & chemical engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hasheminasab, Gholipour, Kharrazi, Streimikiene (bib0023) 2018; 171
Lorenz, Staak, Grutzner, Repke (bib0033) 2018; 1
Dünnebier, Pantelides (bib0011) 1999; 38
Kiss (bib0027) 2013
Wang, Xie, Tian, Tian (bib0062) 2016; 110
Wolff, Skogestad (bib0063) 1995; 34
Safe, Khazraee, Setoodeh, Jahanmiri (bib0049) 2013; 19
Dwivedi, Strandberg, Halvorsen, Preisig, Skogestad (bib0012) 2012; 51
Zitzewitz, Fieg (bib0070) 2017; 63
Dejanovic, Matijašević, Olujić (bib0006) 2010; 49
IEA, 2018. IEA bioenergy annual report 2018.
Ge, Yuan, Ao, Yu (bib0016) 2014; 68
Sotudeh, Shahraki (bib0053) 2008; 31
Muralikrishna, Madhavan, Shah (bib0038) 2002; 80
Vazquez-Castillo, Venegas-Sánchez, Segovia-Hernández, Hernández-Escoto, Hernández, Gutiérrez-Antonio, Briones-Ramírez (bib0059) 2009; 33
Li, Zhang, Xie, Fang, Li (bib0032) 2020; 247
Triantafyllou, Smith (bib0056) 1992; 70
Yang, Wei, Sun, Wei, Shen, Chien (bib0067) 2018; 57
Navarrete, Cole (bib0039) 2001
Yildirim, Kiss, Kenig (bib0069) 2011; 80
Becker, Godorr, Kreis, Vaughan (bib0002) 2001; 108
Goldberg, Wang, Zimmerman (bib0018) 1994
Jia, Qian, Yuan (bib0026) 2017; 125
.
Glinos, Malone (bib0017) 1988; 66
Nguyen, Rouzineau, Meyer, Meyer (bib0040) 2016; 104
Dejanović, Matijašević, Halvorsen, Skogestad, Jansen, Kaibel, Olujić (bib0005) 2011; 89
Hoffmann, Bortz, Burger, Hasse, Küfer (bib0024) 2016
Bravo-Bravo, Segovia-Hernández, Gutiérrez-Antonio, Durán, Bonilla-Petriciolet, Briones-Ramírez (bib0003) 2010; 49
Kraemer, K., Harwardt, A., Bronneberg, R., & Marquardt, W. (2011). Separation of butanol from acetone–butanol–ethanol fermentation by a hybrid extraction–distillation process. computers & chemical engineering. Selected Papers from ESCAPE-20 (European Symposium of Computer Aided Process Engineering - 20), 6-9 June 2010, Ischia, Italy, 35, 949–963.
Guthrie (bib0021) 1969; 76
Staak, Grützner, Schwegler, Roederer (bib0054) 2014; 75
Rangaiah, Ooi, Premkumar (bib0047) 2009; 4
Okoli, Adams (bib0041) 2015; 95
Di Pretoro, Montastruc, Manenti, Joulia (bib0007) 2020; 59
Ulrich (bib0057) 1984
Qian, Jia, Luo, Yuan, Yu (bib0046) 2015; 99
Dimian, Bildea, Kiss (bib0009) 2014
Petlyuk (bib0045) 2004
Kiss (bib0028) 2013; 88
Patraşcu, Bîldea, Kiss (bib0043) 2017; 177
Lestak, Smith (bib0031) 1993; 71
Seihoub, Benyounes, Shen, Gerbaud (bib0052) 2017; 56
Wang, Chen, Chang, Hu, Cheng (bib0061) 2014; 85
Sangal, Kumar, Mishra (bib0050) 2012; 40
Schultz, Stewart, Harris, Rosenblum, Shakur, O’Brien (bib0051) 2002; 98
Yang, El-Ensashy, Thongchul (bib0068) 2013
Pan, Wu, Qiu, He, Ling (bib0042) 2019; 203
Garcia, Päkkilä, Ojamo, Muurinen, Keiski (bib0015) 2011; 15
Tavan, Shahhosseini, Hosseini (bib0055) 2014; 72
Gómez-Castro, Segovia-Hernández, Hernández, Gutiérrez-Antonio, Briones-Ramírez (bib0020) 2008; 31
Di Pretoro, Montastruc, Manenti, Joulia (bib0008) 2020; 138
Yang, Lv, Shen, Dong, Li, Xiao (bib0065) 2017; 56
Ding, Tan (bib0010) 2013
Mueller, Kenig (bib0037) 2007; 46
Yang, Sun, Eslamimanesh, Wei, Shen (bib0066) 2019; 172
Kiss, Flores Landaeta, Infante Ferreira (bib0029) 2012; 47
Gómez-Castro, Rodríguez-Ángeles, Segovia-Hernández, Gutiérrez-Antonio, Briones-Ramírez (bib0019) 2011; 34
Maleta, Kiss, Taran, Maleta (bib0036) 2011; 50
Waltermann, Sibbing, Skiborowski (bib0060) 2019; 146
Amminudin, Smith (bib0001) 2001; 79
Renon, Prausnitz (bib0048) 1968; 14
Errico, Sanchez-Ramirez, Quiroz-Ramírez, Rong, Segovia-Hernandez (bib0013) 2017; 56
Gadalla, Olujić, Jobson, Smith (bib0014) 2006; 31
Lumin Li, Lumin Li (bib0034) 2016; 24
Petlyuk (bib0044) 1965; 5
Yang, Jin, Shen, Cui, Chien, Ren (bib0064) 2019; 234
Guthrie (bib0022) 1974
Luyben (bib0035) 2019; 149
Uwitonze, Suk Hwang, Lee (bib0058) 2016; 102
Li (10.1016/j.compchemeng.2021.107309_bib0032) 2020; 247
Lumin Li (10.1016/j.compchemeng.2021.107309_bib0034) 2016; 24
Hasheminasab (10.1016/j.compchemeng.2021.107309_bib0023) 2018; 171
Zitzewitz (10.1016/j.compchemeng.2021.107309_bib0070) 2017; 63
Wolff (10.1016/j.compchemeng.2021.107309_bib0063) 1995; 34
10.1016/j.compchemeng.2021.107309_bib0025
Okoli (10.1016/j.compchemeng.2021.107309_bib0041) 2015; 95
Amminudin (10.1016/j.compchemeng.2021.107309_bib0001) 2001; 79
Jia (10.1016/j.compchemeng.2021.107309_bib0026) 2017; 125
Gómez-Castro (10.1016/j.compchemeng.2021.107309_bib0019) 2011; 34
Safe (10.1016/j.compchemeng.2021.107309_bib0049) 2013; 19
Schultz (10.1016/j.compchemeng.2021.107309_bib0051) 2002; 98
Di Pretoro (10.1016/j.compchemeng.2021.107309_bib0008) 2020; 138
Renon (10.1016/j.compchemeng.2021.107309_sbref0048) 1968; 14
Dimian (10.1016/j.compchemeng.2021.107309_bib0009) 2014
Tavan (10.1016/j.compchemeng.2021.107309_bib0055) 2014; 72
Yang (10.1016/j.compchemeng.2021.107309_bib0067) 2018; 57
Bravo-Bravo (10.1016/j.compchemeng.2021.107309_bib0003) 2010; 49
Dejanovic (10.1016/j.compchemeng.2021.107309_bib0006) 2010; 49
10.1016/j.compchemeng.2021.107309_bib0030
Muralikrishna (10.1016/j.compchemeng.2021.107309_bib0038) 2002; 80
Pan (10.1016/j.compchemeng.2021.107309_bib0042) 2019; 203
Yang (10.1016/j.compchemeng.2021.107309_bib0068) 2013
Ge (10.1016/j.compchemeng.2021.107309_bib0016) 2014; 68
Garcia (10.1016/j.compchemeng.2021.107309_bib0015) 2011; 15
Dwivedi (10.1016/j.compchemeng.2021.107309_bib0012) 2012; 51
Guthrie (10.1016/j.compchemeng.2021.107309_bib0021) 1969; 76
Hoffmann (10.1016/j.compchemeng.2021.107309_bib0024) 2016
Seihoub (10.1016/j.compchemeng.2021.107309_bib0052) 2017; 56
Patraşcu (10.1016/j.compchemeng.2021.107309_bib0043) 2017; 177
Dünnebier (10.1016/j.compchemeng.2021.107309_bib0011) 1999; 38
Gómez-Castro (10.1016/j.compchemeng.2021.107309_bib0020) 2008; 31
Yang (10.1016/j.compchemeng.2021.107309_bib0066) 2019; 172
Becker (10.1016/j.compchemeng.2021.107309_sbref0002) 2001; 108
Petlyuk (10.1016/j.compchemeng.2021.107309_bib0045) 2004
Yang (10.1016/j.compchemeng.2021.107309_bib0064) 2019; 234
Sotudeh (10.1016/j.compchemeng.2021.107309_bib0053) 2008; 31
Maleta (10.1016/j.compchemeng.2021.107309_bib0036) 2011; 50
Nguyen (10.1016/j.compchemeng.2021.107309_bib0040) 2016; 104
Staak (10.1016/j.compchemeng.2021.107309_bib0054) 2014; 75
Errico (10.1016/j.compchemeng.2021.107309_bib0013) 2017; 56
Guthrie (10.1016/j.compchemeng.2021.107309_bib0022) 1974
Qian (10.1016/j.compchemeng.2021.107309_bib0046) 2015; 99
Mueller (10.1016/j.compchemeng.2021.107309_bib0037) 2007; 46
Wang (10.1016/j.compchemeng.2021.107309_bib0062) 2016; 110
Kiss (10.1016/j.compchemeng.2021.107309_bib0029) 2012; 47
Navarrete (10.1016/j.compchemeng.2021.107309_bib0039) 2001
Dejanović (10.1016/j.compchemeng.2021.107309_bib0005) 2011; 89
Sangal (10.1016/j.compchemeng.2021.107309_bib0050) 2012; 40
Glinos (10.1016/j.compchemeng.2021.107309_bib0017) 1988; 66
Triantafyllou (10.1016/j.compchemeng.2021.107309_bib0056) 1992; 70
Ding (10.1016/j.compchemeng.2021.107309_bib0010) 2013
Luyben (10.1016/j.compchemeng.2021.107309_bib0035) 2019; 149
Waltermann (10.1016/j.compchemeng.2021.107309_bib0060) 2019; 146
Yildirim (10.1016/j.compchemeng.2021.107309_bib0069) 2011; 80
Petlyuk (10.1016/j.compchemeng.2021.107309_bib0044) 1965; 5
Rangaiah (10.1016/j.compchemeng.2021.107309_bib0047) 2009; 4
Vazquez-Castillo (10.1016/j.compchemeng.2021.107309_bib0059) 2009; 33
Gadalla (10.1016/j.compchemeng.2021.107309_bib0014) 2006; 31
Wang (10.1016/j.compchemeng.2021.107309_bib0061) 2014; 85
Lestak (10.1016/j.compchemeng.2021.107309_bib0031) 1993; 71
Ulrich (10.1016/j.compchemeng.2021.107309_bib0057) 1984
Di Pretoro (10.1016/j.compchemeng.2021.107309_bib0007) 2020; 59
Kiss (10.1016/j.compchemeng.2021.107309_bib0027) 2013
Lorenz (10.1016/j.compchemeng.2021.107309_bib0033) 2018; 1
Yang (10.1016/j.compchemeng.2021.107309_bib0065) 2017; 56
Uwitonze (10.1016/j.compchemeng.2021.107309_bib0058) 2016; 102
Goldberg (10.1016/j.compchemeng.2021.107309_bib0018) 1994
Kiss (10.1016/j.compchemeng.2021.107309_bib0028) 2013; 88
References_xml – volume: 31
  start-page: 2398
  year: 2006
  end-page: 2408
  ident: bib0014
  article-title: Estimation and reduction of CO2 emissions from crude oil distillation units
  publication-title: Energy
– volume: 99
  start-page: 176
  year: 2015
  end-page: 184
  ident: bib0046
  article-title: Selective hydrogenation and separation of c3 stream by thermally coupled reactive distillation
  publication-title: Chem. Eng. Res. Des. Distill. Absorpt.
– volume: 72
  start-page: 222
  year: 2014
  end-page: 229
  ident: bib0055
  article-title: Design and simulation of ethane recovery process in an extractive dividing wall column
  publication-title: J. Clean. Prod.
– volume: 177
  start-page: 49
  year: 2017
  end-page: 61
  ident: bib0043
  article-title: Eco-efficient butanol separation in the ABE fermentation process
  publication-title: Sep. Purif. Technol.
– volume: 31
  start-page: 1246
  year: 2008
  end-page: 1260
  ident: bib0020
  article-title: Dividing wall distillation columns: Optimization and control properties
  publication-title: Chem. Eng. Technol.
– volume: 95
  start-page: 302
  year: 2015
  ident: bib0041
  article-title: II design of dividing wall columns for butanol recovery in a thermochemical biomass to butanol process
  publication-title: Chem. Eng. Process.
– volume: 88
  start-page: 1387
  year: 2013
  ident: bib0028
  article-title: Novel applications of dividing-wall column technology to biofuel production processes
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 49
  start-page: 3672
  year: 2010
  end-page: 3688
  ident: bib0003
  article-title: Extractive dividing wall column: Design and optimization
  publication-title: Ind. Eng. Chem. Res.
– volume: 46
  start-page: 3709
  year: 2007
  end-page: 3719
  ident: bib0037
  article-title: Reactive distillation in a dividing wall column: Rate-based modeling and simulation
  publication-title: Ind. Eng. Chem. Res.
– volume: 38
  start-page: 162
  year: 1999
  end-page: 176
  ident: bib0011
  article-title: Optimal design of thermally coupled distillation columns
  publication-title: Ind. Eng. Chem. Res.
– year: 1994
  ident: bib0018
  article-title: Applications of feasible path analysis to program testing
  publication-title: in: ISSTA ’94
– volume: 104
  start-page: 94
  year: 2016
  end-page: 111
  ident: bib0040
  article-title: Design and simulation of divided wall column: Experimental validation and sensitivity analysis
  publication-title: Chem. Eng. Process.
– reference: Kraemer, K., Harwardt, A., Bronneberg, R., & Marquardt, W. (2011). Separation of butanol from acetone–butanol–ethanol fermentation by a hybrid extraction–distillation process. computers & chemical engineering. Selected Papers from ESCAPE-20 (European Symposium of Computer Aided Process Engineering - 20), 6-9 June 2010, Ischia, Italy, 35, 949–963.
– volume: 34
  start-page: 2051
  year: 2011
  end-page: 2058
  ident: bib0019
  article-title: Optimal designs of multiple Dividing Wall columns
  publication-title: Chem. Eng. Technol.
– volume: 171
  start-page: 1215
  year: 2018
  end-page: 1224
  ident: bib0023
  article-title: A novel metric of sustainability for petroleum refinery projects
  publication-title: J. Clean. Prod.
– year: 2013
  ident: bib0027
  article-title: Advanced Distillation Technologies: Design, Control and Applications
– reference: IEA, 2018. IEA bioenergy annual report 2018.
– volume: 56
  start-page: 14565
  year: 2017
  end-page: 14581
  ident: bib0065
  article-title: Optimal design and effective control of the tert-amyl methyl ether production process using an integrated reactive dividing wall and pressure swing columns
  publication-title: Ind. Eng. Chem. Res.
– volume: 89
  start-page: 1155
  year: 2011
  end-page: 1167
  ident: bib0005
  article-title: Designing four-product dividing wall columns for separation of a multicomponent aromatics mixture
  publication-title: Chem. Eng. Res. Des. Spec. Issue Distill. Absorpt.
– volume: 59
  start-page: 16004
  year: 2020
  end-page: 16016
  ident: bib0007
  article-title: Exploiting residue curve maps to assess thermodynamic feasibility boundaries under uncertain operating conditions
  publication-title: Ind. Eng. Chem. Res.
– volume: 76
  start-page: 114
  year: 1969
  end-page: 142
  ident: bib0021
  article-title: Capital cost estimating
  publication-title: Chem. Eng.
– volume: 24
  start-page: 1360
  year: 2016
  end-page: 1368
  ident: bib0034
  article-title: Reactive dividing wall column for hydrolysis of methyl acetate: Design and control
  publication-title: Chin. J. Chem. Eng.
– volume: 49
  start-page: 559
  year: 2010
  end-page: 580
  ident: bib0006
  article-title: Dividing wall column—a breakthrough towards sustainable distilling
  publication-title: Chem. Eng. Process.
– volume: 33
  start-page: 1841
  year: 2009
  end-page: 1850
  ident: bib0059
  article-title: Design and optimization, using genetic algorithms, of intensified distillation systems for a class of quaternary mixtures
  publication-title: Comput. Chem. Eng.
– volume: 125
  start-page: 422
  year: 2017
  end-page: 432
  ident: bib0026
  article-title: Optimal design for dividing wall column using support vector machine and particle swarm optimization
  publication-title: Chem. Eng. Res. Des.
– volume: 102
  start-page: 47
  year: 2016
  end-page: 58
  ident: bib0058
  article-title: A new design method and operation of fully thermally coupled distillation column
  publication-title: Chem. Eng. Process.
– volume: 5
  start-page: 555
  year: 1965
  end-page: 561
  ident: bib0044
  article-title: Thermodynamically optimal method for separating multicomponent mixtures
  publication-title: Int. Chem. Eng.
– volume: 19
  start-page: 29
  year: 2013
  end-page: 50
  ident: bib0049
  article-title: Model reduction and optimization of a reactive dividing wall batch distillation column inspired by response surface methodology and differential evolution
  publication-title: Math. Comput. Model. Dyn. Syst.
– volume: 85
  start-page: 108
  year: 2014
  end-page: 124
  ident: bib0061
  article-title: Optimal design of mixed acid esterification and isopropanol dehydration systems via incorporation of dividing-wall columns
  publication-title: Chem. Eng. Process.
– volume: 80
  start-page: 155
  year: 2002
  end-page: 166
  ident: bib0038
  article-title: Development of dividing wall distillation column design space for a specified separation
  publication-title: Chem. Eng. Res. Des.
– volume: 146
  start-page: 107688
  year: 2019
  ident: bib0060
  article-title: Optimization-based design of dividing wall columns with extended and multiple dividing walls for three- and four-product separations
  publication-title: Chem. Eng. Process.
– volume: 172
  start-page: 320
  year: 2019
  end-page: 332
  ident: bib0066
  article-title: Energy-saving investigation for diethyl carbonate synthesis through the reactive dividing wall column combining the vapor recompression heat pump or different pressure thermally coupled technique
  publication-title: Energy
– volume: 75
  start-page: 48
  year: 2014
  end-page: 57
  ident: bib0054
  article-title: Dividing wall column for industrial multi purpose use
  publication-title: Chem. Eng. Process.
– volume: 47
  start-page: 531
  year: 2012
  end-page: 542
  ident: bib0029
  article-title: Towards energy efficient distillation technologies – making the right choice
  publication-title: Energy
– volume: 15
  start-page: 964
  year: 2011
  end-page: 980
  ident: bib0015
  article-title: Challenges in biobutanol production: How to improve the efficiency?
  publication-title: Renew. Sustain. Energy Rev.
– volume: 68
  start-page: 38
  year: 2014
  end-page: 46
  ident: bib0016
  article-title: Simulation based approach to optimal design of dividing wall column using random search method
  publication-title: Comput. Chem. Eng.
– volume: 71
  start-page: 307
  year: 1993
  ident: bib0031
  article-title: The control of a dividing wall column
  publication-title: Chem. Eng. Res. Des.
– volume: 1
  start-page: 229
  year: 2018
  end-page: 234
  ident: bib0033
  publication-title: Divided Wall Columns
– volume: 138
  start-page: 106831
  year: 2020
  ident: bib0008
  article-title: Flexibility assessment of a biorefinery distillation train: Optimal design under uncertain conditions
  publication-title: Comput. Chem. Eng.
– start-page: 64
  year: 2013
  end-page: 78
  ident: bib0010
  article-title: Detection of infeasible paths: Approaches and challenges
  publication-title: Evaluation of novel approaches to software engineering, communications in computer and information science
– volume: 203
  start-page: 321
  year: 2019
  end-page: 332
  ident: bib0042
  article-title: Pressure compensated temperature control of kaibel divided-wall column
  publication-title: Chem. Eng. Sci.
– year: 2004
  ident: bib0045
  article-title: Distillation Theory and its Application to Optimal Design of Separation Units
– volume: 14
  year: 1968
  ident: bib0048
  article-title: Local compositions in thermodynamic excess functions for liquid mixtures
  publication-title: AIChE J.
– volume: 56
  start-page: 11575
  year: 2017
  end-page: 11583
  ident: bib0013
  article-title: Multiobjective optimal acetone–butanol–ethanol separation systems using liquid–liquid extraction-assisted divided wall columns
  publication-title: Ind. Eng. Chem. Res.
– volume: 50
  start-page: 655
  year: 2011
  end-page: 664
  ident: bib0036
  article-title: Understanding process intensification in cyclic distillation systems
  publication-title: Chem. Eng. Process Process Intens.
– volume: 31
  start-page: 83
  year: 2008
  end-page: 86
  ident: bib0053
  article-title: Extension of a method for the design of divided wall columns
  publication-title: Chem. Eng. Technol.
– volume: 57
  start-page: 8036
  year: 2018
  end-page: 8056
  ident: bib0067
  article-title: Energy-saving optimal design and effective control of heat integration-extractive dividing wall column for separating heterogeneous mixture methanol/toluene/water with multiazeotropes
  publication-title: Ind. Eng. Chem. Res.
– volume: 110
  start-page: 172
  year: 2016
  end-page: 187
  ident: bib0062
  article-title: Design and control of extractive dividing wall column and pressure-swing distillation for separating azeotropic mixture of acetonitrile/n-propanol
  publication-title: Chem. Eng. Process.
– year: 2014
  ident: bib0009
  article-title: Integrated Design and Simulation of Chemical Processes, 2 edition. ed
– volume: 4
  year: 2009
  ident: bib0047
  article-title: A Simplified Procedure for Quick Design of Dividing-Wall Columns for Industrial Applications
  publication-title: Chem. Prod. Process Model.
– volume: 98
  start-page: 64
  year: 2002
  end-page: 71
  ident: bib0051
  article-title: Reduce costs with dividing-wall columns
  publication-title: Chem. Eng. Prog.
– volume: 51
  start-page: 15176
  year: 2012
  end-page: 15183
  ident: bib0012
  article-title: Active vapor split control for dividing-wall columns
  publication-title: Ind. Eng. Chem. Res.
– volume: 40
  start-page: 33
  year: 2012
  end-page: 40
  ident: bib0050
  article-title: Optimization of structural and operational variables for the energy efficiency of a divided wall distillation column
  publication-title: Comput. Chem. Eng.
– volume: 63
  start-page: 1974
  year: 2017
  end-page: 1988
  ident: bib0070
  article-title: Multi-objective optimization superimposed model-based process design of an enzymatic hydrolysis process
  publication-title: AIChE J.
– volume: 247
  start-page: 116891
  year: 2020
  ident: bib0032
  article-title: Design, optimization, and industrial-scale experimental study of a high-efficiency dividing wall column
  publication-title: Sep. Purif. Technol.
– volume: 79
  start-page: 716
  year: 2001
  end-page: 724
  ident: bib0001
  article-title: Design and optimization of fully thermally coupled distillation columns: Part 2: Application of dividing wall columns in retrofit
  publication-title: Chem. Eng. Res. Des. Distill. Absorpt.
– year: 1974
  ident: bib0022
  article-title: Process Plant Estimating, Evaluation, and Control
– year: 2001
  ident: bib0039
  article-title: Planning, Estimating, and Control of Chemical Construction Projects, 2nd Edition
– reference: .
– volume: 56
  start-page: 9710
  year: 2017
  end-page: 9720
  ident: bib0052
  article-title: An improved shortcut design method of divided wall columns exemplified by a liquefied petroleum gas process
  publication-title: Ind. Eng. Chem. Res.
– volume: 70
  start-page: 118
  year: 1992
  end-page: 132
  ident: bib0056
  article-title: The design and optimisation of fully thermally coupled distillation columns : Process design
  publication-title: Chem. eng. res. des
– year: 2013
  ident: bib0068
  article-title: Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, 1 edition. ed
– volume: 234
  start-page: 410
  year: 2019
  end-page: 422
  ident: bib0064
  article-title: Investigation of energy-saving azeotropic dividing wall column to achieve cleaner production via heat exchanger network and heat pump technique
  publication-title: J. Clean. Prod.
– volume: 66
  start-page: 229
  year: 1988
  end-page: 240
  ident: bib0017
  article-title: Optimality regions for complex column alternatives in distillation systems
  publication-title: Chem. Eng. Res. Des.
– volume: 80
  start-page: 403
  year: 2011
  end-page: 417
  ident: bib0069
  article-title: Dividing wall columns in chemical process industry: A review on current activities
  publication-title: Sep. Purif. Technol.
– start-page: 205
  year: 2016
  end-page: 210
  ident: bib0024
  article-title: A new scheme for process simulation by optimization: distillation as an example
  publication-title: Computer aided chemical engineering, 26 european symposium on computer aided process engineering
– volume: 34
  start-page: 2094
  year: 1995
  end-page: 2103
  ident: bib0063
  article-title: Operation of integrated three-product (petlyuk) distillation columns
  publication-title: Ind. Eng. Chem. Res.
– volume: 149
  start-page: 220
  year: 2019
  end-page: 225
  ident: bib0035
  article-title: Improved control structure for extractive divided-wall column with vapor recompression
  publication-title: Chem. Eng. Res. Des.
– year: 1984
  ident: bib0057
  article-title: A Guide to Chemical Engineering Process Design and Economics
– volume: 108
  year: 2001
  ident: bib0002
  article-title: Partitioned distillation columns -- why
  publication-title: When & How. Chem. Eng.
– volume: 5
  start-page: 555
  year: 1965
  ident: 10.1016/j.compchemeng.2021.107309_bib0044
  article-title: Thermodynamically optimal method for separating multicomponent mixtures
  publication-title: Int. Chem. Eng.
– volume: 47
  start-page: 531
  issue: 1
  year: 2012
  ident: 10.1016/j.compchemeng.2021.107309_bib0029
  article-title: Towards energy efficient distillation technologies – making the right choice
  publication-title: Energy
  doi: 10.1016/j.energy.2012.09.038
– volume: 34
  start-page: 2094
  year: 1995
  ident: 10.1016/j.compchemeng.2021.107309_bib0063
  article-title: Operation of integrated three-product (petlyuk) distillation columns
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00045a018
– volume: 88
  start-page: 1387
  year: 2013
  ident: 10.1016/j.compchemeng.2021.107309_bib0028
  article-title: Novel applications of dividing-wall column technology to biofuel production processes
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.4108
– volume: 99
  start-page: 176
  year: 2015
  ident: 10.1016/j.compchemeng.2021.107309_bib0046
  article-title: Selective hydrogenation and separation of c3 stream by thermally coupled reactive distillation
  publication-title: Chem. Eng. Res. Des. Distill. Absorpt.
  doi: 10.1016/j.cherd.2015.03.029
– volume: 24
  start-page: 1360
  year: 2016
  ident: 10.1016/j.compchemeng.2021.107309_bib0034
  article-title: Reactive dividing wall column for hydrolysis of methyl acetate: Design and control
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2016.05.023
– volume: 98
  start-page: 64
  year: 2002
  ident: 10.1016/j.compchemeng.2021.107309_bib0051
  article-title: Reduce costs with dividing-wall columns
  publication-title: Chem. Eng. Prog.
– volume: 75
  start-page: 48
  year: 2014
  ident: 10.1016/j.compchemeng.2021.107309_bib0054
  article-title: Dividing wall column for industrial multi purpose use
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2013.10.007
– volume: 15
  start-page: 964
  year: 2011
  ident: 10.1016/j.compchemeng.2021.107309_bib0015
  article-title: Challenges in biobutanol production: How to improve the efficiency?
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.11.008
– volume: 1
  start-page: 229
  issue: 69
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107309_bib0033
  publication-title: Divided Wall Columns
– volume: 49
  start-page: 3672
  year: 2010
  ident: 10.1016/j.compchemeng.2021.107309_bib0003
  article-title: Extractive dividing wall column: Design and optimization
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9006936
– volume: 56
  start-page: 14565
  year: 2017
  ident: 10.1016/j.compchemeng.2021.107309_bib0065
  article-title: Optimal design and effective control of the tert-amyl methyl ether production process using an integrated reactive dividing wall and pressure swing columns
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b03459
– volume: 19
  start-page: 29
  year: 2013
  ident: 10.1016/j.compchemeng.2021.107309_bib0049
  article-title: Model reduction and optimization of a reactive dividing wall batch distillation column inspired by response surface methodology and differential evolution
  publication-title: Math. Comput. Model. Dyn. Syst.
  doi: 10.1080/13873954.2012.691521
– volume: 31
  start-page: 1246
  year: 2008
  ident: 10.1016/j.compchemeng.2021.107309_bib0020
  article-title: Dividing wall distillation columns: Optimization and control properties
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.200800116
– volume: 70
  start-page: 118
  year: 1992
  ident: 10.1016/j.compchemeng.2021.107309_bib0056
  article-title: The design and optimisation of fully thermally coupled distillation columns : Process design
  publication-title: Chem. eng. res. des
– volume: 125
  start-page: 422
  year: 2017
  ident: 10.1016/j.compchemeng.2021.107309_bib0026
  article-title: Optimal design for dividing wall column using support vector machine and particle swarm optimization
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2017.07.028
– volume: 171
  start-page: 1215
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107309_bib0023
  article-title: A novel metric of sustainability for petroleum refinery projects
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.09.223
– start-page: 64
  year: 2013
  ident: 10.1016/j.compchemeng.2021.107309_bib0010
  article-title: Detection of infeasible paths: Approaches and challenges
– ident: 10.1016/j.compchemeng.2021.107309_bib0030
  doi: 10.1016/j.compchemeng.2011.01.028
– volume: 234
  start-page: 410
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107309_bib0064
  article-title: Investigation of energy-saving azeotropic dividing wall column to achieve cleaner production via heat exchanger network and heat pump technique
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.06.224
– volume: 172
  start-page: 320
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107309_bib0066
  article-title: Energy-saving investigation for diethyl carbonate synthesis through the reactive dividing wall column combining the vapor recompression heat pump or different pressure thermally coupled technique
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.126
– volume: 46
  start-page: 3709
  year: 2007
  ident: 10.1016/j.compchemeng.2021.107309_bib0037
  article-title: Reactive distillation in a dividing wall column: Rate-based modeling and simulation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0610344
– volume: 63
  start-page: 1974
  year: 2017
  ident: 10.1016/j.compchemeng.2021.107309_bib0070
  article-title: Multi-objective optimization superimposed model-based process design of an enzymatic hydrolysis process
  publication-title: AIChE J.
  doi: 10.1002/aic.15609
– volume: 59
  start-page: 16004
  year: 2020
  ident: 10.1016/j.compchemeng.2021.107309_bib0007
  article-title: Exploiting residue curve maps to assess thermodynamic feasibility boundaries under uncertain operating conditions
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c02383
– year: 2013
  ident: 10.1016/j.compchemeng.2021.107309_bib0068
– volume: 49
  start-page: 559
  issue: 6
  year: 2010
  ident: 10.1016/j.compchemeng.2021.107309_bib0006
  article-title: Dividing wall column—a breakthrough towards sustainable distilling
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2010.04.001
– volume: 108
  year: 2001
  ident: 10.1016/j.compchemeng.2021.107309_sbref0002
  article-title: Partitioned distillation columns -- why
  publication-title: When & How. Chem. Eng.
– volume: 110
  start-page: 172
  year: 2016
  ident: 10.1016/j.compchemeng.2021.107309_bib0062
  article-title: Design and control of extractive dividing wall column and pressure-swing distillation for separating azeotropic mixture of acetonitrile/n-propanol
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2016.10.009
– volume: 34
  start-page: 2051
  year: 2011
  ident: 10.1016/j.compchemeng.2021.107309_bib0019
  article-title: Optimal designs of multiple Dividing Wall columns
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201100176
– volume: 56
  start-page: 11575
  year: 2017
  ident: 10.1016/j.compchemeng.2021.107309_bib0013
  article-title: Multiobjective optimal acetone–butanol–ethanol separation systems using liquid–liquid extraction-assisted divided wall columns
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b03078
– volume: 56
  start-page: 9710
  year: 2017
  ident: 10.1016/j.compchemeng.2021.107309_bib0052
  article-title: An improved shortcut design method of divided wall columns exemplified by a liquefied petroleum gas process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b02125
– volume: 76
  start-page: 114
  issue: 3
  year: 1969
  ident: 10.1016/j.compchemeng.2021.107309_bib0021
  article-title: Capital cost estimating
  publication-title: Chem. Eng.
– volume: 14
  issue: 1
  year: 1968
  ident: 10.1016/j.compchemeng.2021.107309_sbref0048
  article-title: Local compositions in thermodynamic excess functions for liquid mixtures
  publication-title: AIChE J.
  doi: 10.1002/aic.690140124
– volume: 4
  issue: 1
  year: 2009
  ident: 10.1016/j.compchemeng.2021.107309_bib0047
  article-title: A Simplified Procedure for Quick Design of Dividing-Wall Columns for Industrial Applications
  publication-title: Chem. Prod. Process Model.
– volume: 71
  start-page: 307
  year: 1993
  ident: 10.1016/j.compchemeng.2021.107309_bib0031
  article-title: The control of a dividing wall column
  publication-title: Chem. Eng. Res. Des.
– volume: 80
  start-page: 155
  issue: 2
  year: 2002
  ident: 10.1016/j.compchemeng.2021.107309_bib0038
  article-title: Development of dividing wall distillation column design space for a specified separation
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/026387602753501870
– year: 2001
  ident: 10.1016/j.compchemeng.2021.107309_bib0039
– year: 1974
  ident: 10.1016/j.compchemeng.2021.107309_bib0022
– volume: 40
  start-page: 33
  year: 2012
  ident: 10.1016/j.compchemeng.2021.107309_bib0050
  article-title: Optimization of structural and operational variables for the energy efficiency of a divided wall distillation column
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.01.015
– volume: 50
  start-page: 655
  year: 2011
  ident: 10.1016/j.compchemeng.2021.107309_bib0036
  article-title: Understanding process intensification in cyclic distillation systems
  publication-title: Chem. Eng. Process Process Intens.
  doi: 10.1016/j.cep.2011.04.002
– year: 2014
  ident: 10.1016/j.compchemeng.2021.107309_bib0009
– volume: 80
  start-page: 403
  issue: 3
  year: 2011
  ident: 10.1016/j.compchemeng.2021.107309_bib0069
  article-title: Dividing wall columns in chemical process industry: A review on current activities
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2011.05.009
– volume: 38
  start-page: 162
  year: 1999
  ident: 10.1016/j.compchemeng.2021.107309_bib0011
  article-title: Optimal design of thermally coupled distillation columns
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9802919
– volume: 203
  start-page: 321
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107309_bib0042
  article-title: Pressure compensated temperature control of kaibel divided-wall column
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.03.061
– start-page: 205
  year: 2016
  ident: 10.1016/j.compchemeng.2021.107309_bib0024
  article-title: A new scheme for process simulation by optimization: distillation as an example
  doi: 10.1016/B978-0-444-63428-3.50039-4
– volume: 177
  start-page: 49
  year: 2017
  ident: 10.1016/j.compchemeng.2021.107309_bib0043
  article-title: Eco-efficient butanol separation in the ABE fermentation process
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.12.008
– volume: 149
  start-page: 220
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107309_bib0035
  article-title: Improved control structure for extractive divided-wall column with vapor recompression
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.07.010
– volume: 31
  start-page: 2398
  year: 2006
  ident: 10.1016/j.compchemeng.2021.107309_bib0014
  article-title: Estimation and reduction of CO2 emissions from crude oil distillation units
  publication-title: Energy
  doi: 10.1016/j.energy.2005.10.030
– volume: 247
  start-page: 116891
  year: 2020
  ident: 10.1016/j.compchemeng.2021.107309_bib0032
  article-title: Design, optimization, and industrial-scale experimental study of a high-efficiency dividing wall column
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116891
– year: 2004
  ident: 10.1016/j.compchemeng.2021.107309_bib0045
– volume: 85
  start-page: 108
  year: 2014
  ident: 10.1016/j.compchemeng.2021.107309_bib0061
  article-title: Optimal design of mixed acid esterification and isopropanol dehydration systems via incorporation of dividing-wall columns
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2014.08.011
– volume: 104
  start-page: 94
  year: 2016
  ident: 10.1016/j.compchemeng.2021.107309_bib0040
  article-title: Design and simulation of divided wall column: Experimental validation and sensitivity analysis
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2016.02.012
– volume: 95
  start-page: 302
  year: 2015
  ident: 10.1016/j.compchemeng.2021.107309_bib0041
  article-title: II design of dividing wall columns for butanol recovery in a thermochemical biomass to butanol process
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2015.07.002
– volume: 102
  start-page: 47
  year: 2016
  ident: 10.1016/j.compchemeng.2021.107309_bib0058
  article-title: A new design method and operation of fully thermally coupled distillation column
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2015.12.010
– year: 1984
  ident: 10.1016/j.compchemeng.2021.107309_bib0057
– year: 2013
  ident: 10.1016/j.compchemeng.2021.107309_bib0027
– volume: 33
  start-page: 1841
  year: 2009
  ident: 10.1016/j.compchemeng.2021.107309_bib0059
  article-title: Design and optimization, using genetic algorithms, of intensified distillation systems for a class of quaternary mixtures
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.04.011
– year: 1994
  ident: 10.1016/j.compchemeng.2021.107309_bib0018
  article-title: Applications of feasible path analysis to program testing
  publication-title: in: ISSTA ’94
– volume: 138
  start-page: 106831
  year: 2020
  ident: 10.1016/j.compchemeng.2021.107309_bib0008
  article-title: Flexibility assessment of a biorefinery distillation train: Optimal design under uncertain conditions
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106831
– ident: 10.1016/j.compchemeng.2021.107309_bib0025
– volume: 72
  start-page: 222
  year: 2014
  ident: 10.1016/j.compchemeng.2021.107309_bib0055
  article-title: Design and simulation of ethane recovery process in an extractive dividing wall column
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.03.015
– volume: 66
  start-page: 229
  year: 1988
  ident: 10.1016/j.compchemeng.2021.107309_bib0017
  article-title: Optimality regions for complex column alternatives in distillation systems
  publication-title: Chem. Eng. Res. Des.
– volume: 51
  start-page: 15176
  year: 2012
  ident: 10.1016/j.compchemeng.2021.107309_bib0012
  article-title: Active vapor split control for dividing-wall columns
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie3014346
– volume: 146
  start-page: 107688
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107309_bib0060
  article-title: Optimization-based design of dividing wall columns with extended and multiple dividing walls for three- and four-product separations
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2019.107688
– volume: 57
  start-page: 8036
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107309_bib0067
  article-title: Energy-saving optimal design and effective control of heat integration-extractive dividing wall column for separating heterogeneous mixture methanol/toluene/water with multiazeotropes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b00668
– volume: 89
  start-page: 1155
  year: 2011
  ident: 10.1016/j.compchemeng.2021.107309_bib0005
  article-title: Designing four-product dividing wall columns for separation of a multicomponent aromatics mixture
  publication-title: Chem. Eng. Res. Des. Spec. Issue Distill. Absorpt.
– volume: 68
  start-page: 38
  year: 2014
  ident: 10.1016/j.compchemeng.2021.107309_bib0016
  article-title: Simulation based approach to optimal design of dividing wall column using random search method
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.05.001
– volume: 31
  start-page: 83
  year: 2008
  ident: 10.1016/j.compchemeng.2021.107309_bib0053
  article-title: Extension of a method for the design of divided wall columns
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.200700378
– volume: 79
  start-page: 716
  year: 2001
  ident: 10.1016/j.compchemeng.2021.107309_bib0001
  article-title: Design and optimization of fully thermally coupled distillation columns: Part 2: Application of dividing wall columns in retrofit
  publication-title: Chem. Eng. Res. Des. Distill. Absorpt.
  doi: 10.1205/026387601753192037
SSID ssj0002488
Score 2.395533
Snippet •A feasible path-based procedure allows to bypass the simulation failures due to the non-ideal thermodynamics or complex optimization algorithms.•The proposed...
Process integration has become the best practice over the last years in separation units design. In particular, distillation trains can be reduced in a single...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 107309
SubjectTerms Biomass
Chemical and Process Engineering
DWC
Engineering Sciences
Feasible paths
Optimal design
Process integration
Title A feasible path-based approach for Dividing Wall Column design procedure
URI https://dx.doi.org/10.1016/j.compchemeng.2021.107309
https://hal.science/hal-04726893
Volume 149
WOSCitedRecordID wos000641462000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AIEXJ
  dateStart: 19950611
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpOsb2UPZV1m0d2thbcUnk2JZgL6ZtyMooe-ggb0aSJZoSvNBkof_C_uvdWR_OxkqzwV6MEZZs-X6-O0t3vyPkA0ttLnNlEsVADCNhecKtyhMwxQNVgH9cG94WmyguLvh0Kr70ej9CLsx6XjQNv70Vi_8qamgDYWPq7F-IOw4KDXAOQocjiB2OWwm-PLJGAtDnBklTrxK0U3XkDm_DCk8xBwvXCNqN6RNUUBgTi7EcR61Fqz3PSOQw8LUfli1SdCAZMB2ZYXSIZxjVgbwIPn1muZTIiRD3OmZgHF0e2ngu17NoFcamNi5VG0uQm9jhHEu2t9dPJdrwzWUKthFOFVSvgN_V1DFGR9Xr6Eq98hyiuhF_1OtuieEaxbLAScL8jvEux12fX7m0f7NxMfIwBLVdVxtDVThU5YbaIbusyATvk93y09n0PJp1NuI8ELDiPB6Sd12w4B3PdZezs3MVlu1bN-byCdnz_x-0dLh5SnqmeUYeb7BSPieTkgYE0Q5BNCCIAoJoQBBFBFGHIOoQRCOCXpCv47PLk0niC24kGtzOVVKrnKlBnRrFrbAqTe2AKQXfq86NzdhICaulSqXIBLNZjTvkhZB1CldzDX5juk_6zbfGvCSUMaHBl-USt-mLTHFwDHWhBkOlhbQjcUB4eDOV9mz0WBRlXt0roQPCYteFo2TZptPH8Por71s6n7ECiG3T_T2ILN4OOdkn5ecK25BuNQevfz189S8P9po86j6XN6S_uvluDskDvV7NljdvPQh_As3LrX8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+feasible+path-based+approach+for+Dividing+Wall+Column+design+procedure&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Di+Pretoro%2C+Alessandro&rft.au=Ciranna%2C+Flavia&rft.au=Fedeli%2C+Matteo&rft.au=Joulia%2C+Xavier&rft.date=2021-06-01&rft.issn=0098-1354&rft.volume=149&rft.spage=107309&rft_id=info:doi/10.1016%2Fj.compchemeng.2021.107309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2021_107309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon