Intelligent driving methods based on sparse LSSVM and ensemble CART algorithms for high-speed trains
•Intelligent driving methods (IDMs) are proposed to solve the multi-objective control problem of HST.•We integrate the expert knowledge system, sparse algorithm and ensemble CART algorithm to realize IDMs.•We propose dynamic allocated strategies of operation time to reduce the operation time error.•...
Uložené v:
| Vydané v: | Computers & industrial engineering Ročník 127; s. 1203 - 1213 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.01.2019
|
| Predmet: | |
| ISSN: | 0360-8352, 1879-0550 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Intelligent driving methods (IDMs) are proposed to solve the multi-objective control problem of HST.•We integrate the expert knowledge system, sparse algorithm and ensemble CART algorithm to realize IDMs.•We propose dynamic allocated strategies of operation time to reduce the operation time error.•L0-norm minimization and ensemble CART algorithms can greatly enhance the generalization ability of proposed IDMs.•The proposed IDMs are better than traditional ATO controller and manual driving method.
Currently, high-speed train (HST) is mainly controlled by manual driving and automatic train protection system, which may reduce the comfort of passengers and impair the intelligence of train operation. In recent years, some intelligent driving methods have been proposed for subway line. However, because of the continuous rise of HST’s operation speed and mileage, the driving data collected from HST is more than that of subway and the intelligent driving model will be complex if the source driving data is directly trained by data mining algorithms. So, the source driving data sets are classified into several classes in terms of the features of the driving data. In addition, iterative sparse L0-norm minimization is applied to sparsify the classified driving data and thus the redundant data will be deleted, which can speed up the computation speed of learning process. Furthermore, ensemble CART, including B-CART and A-CART are used to find the driving rules of both experienced drivers and ATO controller. Finally, the field data of Beijing-Shanghai high-speed railway and ATO simulation data are used to test the performance of the proposed intelligent driving methods. Compared with A-CART, the energy consumption, and the redundancy of the training data set of S-A-CART algorithm can be respectively decreased by 0.27% and 40% and the passengers’ riding comfort can be increased by 17.71%. |
|---|---|
| AbstractList | •Intelligent driving methods (IDMs) are proposed to solve the multi-objective control problem of HST.•We integrate the expert knowledge system, sparse algorithm and ensemble CART algorithm to realize IDMs.•We propose dynamic allocated strategies of operation time to reduce the operation time error.•L0-norm minimization and ensemble CART algorithms can greatly enhance the generalization ability of proposed IDMs.•The proposed IDMs are better than traditional ATO controller and manual driving method.
Currently, high-speed train (HST) is mainly controlled by manual driving and automatic train protection system, which may reduce the comfort of passengers and impair the intelligence of train operation. In recent years, some intelligent driving methods have been proposed for subway line. However, because of the continuous rise of HST’s operation speed and mileage, the driving data collected from HST is more than that of subway and the intelligent driving model will be complex if the source driving data is directly trained by data mining algorithms. So, the source driving data sets are classified into several classes in terms of the features of the driving data. In addition, iterative sparse L0-norm minimization is applied to sparsify the classified driving data and thus the redundant data will be deleted, which can speed up the computation speed of learning process. Furthermore, ensemble CART, including B-CART and A-CART are used to find the driving rules of both experienced drivers and ATO controller. Finally, the field data of Beijing-Shanghai high-speed railway and ATO simulation data are used to test the performance of the proposed intelligent driving methods. Compared with A-CART, the energy consumption, and the redundancy of the training data set of S-A-CART algorithm can be respectively decreased by 0.27% and 40% and the passengers’ riding comfort can be increased by 17.71%. |
| Author | Cheng, Ruijun Gai, Weilong Chen, Dewang Zheng, Song |
| Author_xml | – sequence: 1 givenname: Ruijun orcidid: 0000-0002-3634-4695 surname: Cheng fullname: Cheng, Ruijun email: 14111052@bjtu.edu.cn organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China – sequence: 2 givenname: Dewang orcidid: 0000-0002-8660-9700 surname: Chen fullname: Chen, Dewang email: dwchen@fzu.edu.cn organization: Key Laboratory of Spatial Data Mining & Information Sharing of MOE, College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China – sequence: 3 givenname: Weilong surname: Gai fullname: Gai, Weilong email: 11125065@bjtu.edu.cn organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China – sequence: 4 givenname: Song surname: Zheng fullname: Zheng, Song email: s.zheng@fzu.edu.cn organization: Advanced Control Technology Research Center, Fuzhou University, Fuzhou 350116, China |
| BookMark | eNp90M1qwzAMB3AzOljX7QF28wskk2PHadiplH0UOgZrt6txbKV1SZ1im8LefindaYeeBEI_If1vycj3Hgl5YJAzYPJxlxuHeQFsmgPPoSiuyJhNqzqDsoQRGQOXkE15WdyQ2xh3ACDKmo2JXfiEXec26BO1wR2d39A9pm1vI210REt7T-NBh4h0uVp9v1PtLUUfcd90SOezzzXV3aYPLm33kbZ9oFu32WbxgINNQTsf78h1q7uI9391Qr5entfzt2z58bqYz5aZ4WWZMtMiSM2gsdJIYUUjBMe6rk0FhlegDYhqKqxttShqbrkWpaylbE3JJJeF4RNSnfea0McYsFXGJZ1c7093dIqBOoWldkMf1SksBVwNYQ2S_ZOH4PY6_Fw0T2eDw0tHh0HFYcQbtC6gScr27oL-BYx5hKg |
| CitedBy_id | crossref_primary_10_1109_TII_2021_3138098 crossref_primary_10_1109_TITS_2024_3513717 crossref_primary_10_1109_TITS_2018_2878442 crossref_primary_10_1016_j_engappai_2020_103573 crossref_primary_10_3390_en13082065 crossref_primary_10_1049_itr2_12201 crossref_primary_10_1109_TCYB_2019_2915191 crossref_primary_10_1016_j_trpro_2022_06_119 crossref_primary_10_1007_s11227_024_06110_z crossref_primary_10_1016_j_engappai_2020_103801 |
| Cites_doi | 10.1109/TITS.2014.2366495 10.1109/TITS.2015.2447507 10.1016/j.ress.2015.09.014 10.1109/TITS.2012.2219620 10.1016/j.conengprac.2011.03.003 10.1006/jcss.1997.1504 10.1109/TITS.2015.2445920 10.1142/S0219691317500230 10.1016/j.trb.2017.01.001 10.1016/j.trc.2017.09.009 10.1109/TITS.2016.2633344 10.1109/TITS.2015.2402160 10.1016/j.knosys.2015.10.016 10.1007/BF00058655 10.1016/j.trb.2016.05.009 10.1016/j.ins.2015.06.019 10.1016/j.patrec.2010.06.017 10.1016/j.aei.2016.07.004 10.1016/j.isatra.2013.12.007 10.1109/9.867018 10.1016/j.automatica.2013.07.008 10.1109/TII.2017.2785786 10.1109/TITS.2013.2292712 10.1109/TITS.2011.2143409 10.1109/TITS.2013.2296655 10.1109/TITS.2014.2320757 10.1016/j.conengprac.2013.10.006 10.1007/s00521-015-1960-6 10.1016/j.eswa.2017.06.006 10.1109/TNN.2011.2175451 10.1109/9.262051 10.1049/ip-epa:19970797 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cie.2018.03.022 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-0550 |
| EndPage | 1213 |
| ExternalDocumentID | 10_1016_j_cie_2018_03_022 S0360835218301074 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c355t-cfe06a10bd6c64d4b443e999c70c370ac04784ddfa4293d3a456966fc516362c3 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460708800091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-8352 |
| IngestDate | Tue Nov 18 21:49:23 EST 2025 Sat Nov 29 04:15:41 EST 2025 Fri Feb 23 02:29:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | High-speed train Expert knowledge Bagging CART AdaBoost CART L0-norm minimization algorithm LSSVM |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c355t-cfe06a10bd6c64d4b443e999c70c370ac04784ddfa4293d3a456966fc516362c3 |
| ORCID | 0000-0002-8660-9700 0000-0002-3634-4695 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cie_2018_03_022 crossref_primary_10_1016_j_cie_2018_03_022 elsevier_sciencedirect_doi_10_1016_j_cie_2018_03_022 |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 2019-01-00 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Cheng, Song, Chen (b0145) 2017; 18 Wang, Ning, Tang (b0035) 2015; 16 Ke, Lin, Lai (b0105) 2011; 19 Yang, Li, Gao (b0060) 2013; 14 Albrecht, Howlett, Pudney (b0040) 2013; 49 Yin, Chen, Li (b0115) 2014; 15 Ning, Xun, Gao (b0025) 2015; 16 Huang, Zheng, Sun (b0135) 2010; 31 Chen, Han, Cheng (b0150) 2016; 27 Zhang, Chen, Yin (b0130) 2017; 15 Chang, Sim (b0165) 1997; 144 Yin, Tang, Yang (b0020) 2017; 85 Zhang, Chen, Yin (b0125) 2016; 30 Yang, Li, Ning (b0055) 2016; 17 Song, Song (b0110) 2011; 22 Breiman, Friedman, Stone (b0170) 1984 ShangGuan, Yan, Cai (b0030) 2015; 16 Breiman (b0155) 1996; 24 Freund, Schapire (b0160) 1997; 55 Khmelnitsky (b0095) 2000; 45 Song, Song, Tang (b0075) 2011; 12 Yang, Fu, Zhang (b0085) 2014; 23 Yin, Yang, Tang (b0070) 2017; 97 norm minimization. In . Yin, Tang, Yang (b0065) 2016; 91 Wu, Karkouba, Weng (b0090) 2015; 324 Bai, Ho, Mao (b0050) 2014; 15 (pp. 189–194). Cheng, Howlett (b0100) 1993; 38 Cheng, Zhou, Chen, Song (b0005) 2016; 145 Faieghi, Jalali, Mashhadi (b0080) 2014; 53 Lopez, J., De Brabanter, K., Dorronsoro, J. R., et al. (2011) Sparse LSSVMs with Gu, Tang, Cao (b0045) 2014; 15 Cheng, Chen, Cheng, Zheng (b0010) 2017; 87 Ma, X., Dong, H., & Liu, X., et al. (2017) An Optimal Communications Protocol for Maximizing Lifetime of Railway Infrastructure Wireless Monitoring Network. In Yin, Chen, Li (b0120) 2016; 92 Bai (10.1016/j.cie.2018.03.022_b0050) 2014; 15 Huang (10.1016/j.cie.2018.03.022_b0135) 2010; 31 Wang (10.1016/j.cie.2018.03.022_b0035) 2015; 16 Chang (10.1016/j.cie.2018.03.022_b0165) 1997; 144 Khmelnitsky (10.1016/j.cie.2018.03.022_b0095) 2000; 45 ShangGuan (10.1016/j.cie.2018.03.022_b0030) 2015; 16 Zhang (10.1016/j.cie.2018.03.022_b0130) 2017; 15 Gu (10.1016/j.cie.2018.03.022_b0045) 2014; 15 Yin (10.1016/j.cie.2018.03.022_b0070) 2017; 97 Albrecht (10.1016/j.cie.2018.03.022_b0040) 2013; 49 Breiman (10.1016/j.cie.2018.03.022_b0170) 1984 Freund (10.1016/j.cie.2018.03.022_b0160) 1997; 55 Cheng (10.1016/j.cie.2018.03.022_b0005) 2016; 145 Cheng (10.1016/j.cie.2018.03.022_b0145) 2017; 18 Yang (10.1016/j.cie.2018.03.022_b0055) 2016; 17 Cheng (10.1016/j.cie.2018.03.022_b0100) 1993; 38 Yang (10.1016/j.cie.2018.03.022_b0060) 2013; 14 Yin (10.1016/j.cie.2018.03.022_b0115) 2014; 15 10.1016/j.cie.2018.03.022_b0140 Yin (10.1016/j.cie.2018.03.022_b0065) 2016; 91 Ke (10.1016/j.cie.2018.03.022_b0105) 2011; 19 Wu (10.1016/j.cie.2018.03.022_b0090) 2015; 324 Chen (10.1016/j.cie.2018.03.022_b0150) 2016; 27 Yin (10.1016/j.cie.2018.03.022_b0120) 2016; 92 Yang (10.1016/j.cie.2018.03.022_b0085) 2014; 23 Ning (10.1016/j.cie.2018.03.022_b0025) 2015; 16 Song (10.1016/j.cie.2018.03.022_b0110) 2011; 22 Song (10.1016/j.cie.2018.03.022_b0075) 2011; 12 Yin (10.1016/j.cie.2018.03.022_b0020) 2017; 85 Zhang (10.1016/j.cie.2018.03.022_b0125) 2016; 30 10.1016/j.cie.2018.03.022_b0015 Breiman (10.1016/j.cie.2018.03.022_b0155) 1996; 24 Cheng (10.1016/j.cie.2018.03.022_b0010) 2017; 87 Faieghi (10.1016/j.cie.2018.03.022_b0080) 2014; 53 |
| References_xml | – volume: 17 start-page: 2 year: 2016 end-page: 13 ident: b0055 article-title: A survey on energy-efficient train operation for urban rail transit publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 27 start-page: 1617 year: 2016 end-page: 1628, ident: b0150 article-title: Position calculation models by neural computing and online learning methods for high-speed train publication-title: Neural Computing and Application – volume: 12 start-page: 1116 year: 2011 end-page: 1125 ident: b0075 article-title: Computationally inexpensive tracking control of high-speed trains with tractionbraking saturation publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 18 start-page: 2071 year: 2017 end-page: 2084, ident: b0145 article-title: Intelligent Localization of a High-Speed Train Using LSSVM and the Online Sparse Optimization Approach publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 91 start-page: 178 year: 2016 end-page: 210 ident: b0065 article-title: Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach publication-title: Transportation Research Part B: Methodological – volume: 92 start-page: 78 year: 2016 end-page: 91, ident: b0120 article-title: Smart train operation algorithms based on expert knowledge and ensemble cart for the electric locomotive publication-title: Knowledge-Based Systems – volume: 53 start-page: 533 year: 2014 end-page: 541, ident: b0080 article-title: Robust adaptive cruise control of high speed trains publication-title: ISA Transactions – volume: 144 start-page: 65 year: 1997 end-page: 73, ident: b0165 article-title: Optimising train movements through coast control using genetic algorithms publication-title: IEE Proceedings-Electric Power Applications – volume: 15 start-page: 2561 year: 2014 end-page: 2571, ident: b0115 article-title: Intelligent train operation algorithms for subway by expert system and reinforcement learning publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 45 start-page: 1257 year: 2000 end-page: 1266, ident: b0095 article-title: On an optimal control problem of train operation publication-title: IEEE Transactions on Automatic Control – volume: 85 start-page: 548 year: 2017 end-page: 572 ident: b0020 article-title: Research and development of automatic train operation for railway transportation systems: A survey publication-title: Transportation Research Part C: Emerging Technologies – volume: 24 start-page: 123 year: 1996 end-page: 140, ident: b0155 article-title: Bagging predictors publication-title: Machine learning – volume: 22 start-page: 2250 year: 2011 end-page: 2261 ident: b0110 article-title: Data-based fault-tolerant control of high-speed trains with traction/braking notch nonlinearities and actuator failures publication-title: IEEE Transactions on Neural Networks – volume: 87 start-page: 228 year: 2017 end-page: 239 ident: b0010 article-title: Intelligent driving methods based on expert knowledge and online optimization for high-speed trains publication-title: Expert Systems with Applications – volume: 15 start-page: 1216 year: 2014 end-page: 1233 ident: b0045 article-title: Energy-efficient train operation in urban rail transit using real-time traffic information publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 38 start-page: 1730 year: 1993 end-page: 1734, ident: b0100 article-title: A note on the calculation of optimal strategies for the minimization of fuel consumption in the control of trains publication-title: IEEE Transactions on Automatic Control – volume: 16 start-page: 2215 year: 2015 end-page: 2225 ident: b0030 article-title: Multiobjective optimization for train speed trajectory in ctcs high-speed railway with hybrid evolutionary algorithm publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 19 start-page: 675 year: 2011 end-page: 687, ident: b0105 article-title: Optimization of train-speed trajectory and control for mass rapid transit systems publication-title: Control Engineering Practice – volume: 145 start-page: 169 year: 2016 end-page: 182 ident: b0005 article-title: Model-based verification method for solving the parameter uncertainty in the train control system publication-title: Reliability Engineering & System Safety – reference: (pp. 189–194). – volume: 16 start-page: 3337 year: 2015 end-page: 3352 ident: b0035 article-title: Efficient real-time train scheduling for urban rail transit systems using iterative convex programming publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 49 start-page: 3072 year: 2013 end-page: 3078 ident: b0040 article-title: Energy-efficient train control: From local convexity to global optimization and uniqueness publication-title: Automatica – reference: Lopez, J., De Brabanter, K., Dorronsoro, J. R., et al. (2011) Sparse LSSVMs with – reference: . – volume: 97 start-page: 182 year: 2017 end-page: 213 ident: b0070 article-title: Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches publication-title: Transportation Research Part B: Methodological – volume: 324 start-page: 1 year: 2015 end-page: 22 ident: b0090 article-title: Trajectory tracking for uncertainty time delayed-state self-balancing train vehicles using observer-based adaptive fuzzy control publication-title: Information Sciences – volume: 30 start-page: 553 year: 2016 end-page: 563, ident: b0125 article-title: Data-driven train operation models based on data mining and driving experience for the diesel-electric locomotive publication-title: Advanced Engineering Informatics – volume: 14 start-page: 438 year: 2013 end-page: 447 ident: b0060 article-title: A cooperative scheduling model for timetable optimization in subway systems publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 15 start-page: 1750023 year: 2017 ident: b0130 article-title: A flexible and robust train operation model based on expert knowledge and online adjustment publication-title: International Journal of Wavelets, Multiresolution and Information Processing – volume: 31 start-page: 1944 year: 2010 end-page: 1951, ident: b0135 article-title: Sparse learning for support vector classification publication-title: Pattern Recognition Letters – reference: -norm minimization. In – volume: 55 start-page: 119 year: 1997 end-page: 139, ident: b0160 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: Journal of Computer and System Sciences – reference: Ma, X., Dong, H., & Liu, X., et al. (2017) An Optimal Communications Protocol for Maximizing Lifetime of Railway Infrastructure Wireless Monitoring Network. In – volume: 23 start-page: 57 year: 2014 end-page: 65, ident: b0085 article-title: Speed tracking control using an anfis model for high-speed electric multiple unit publication-title: Control Engineering Practice – volume: 15 start-page: 938 year: 2014 end-page: 948 ident: b0050 article-title: Energy-efficient locomotive operation for chinese mainline railways by fuzzy predictive control publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 1984 ident: b0170 article-title: Classification and regression trees – volume: 16 start-page: 1469 year: 2015 end-page: 1478, ident: b0025 article-title: An integrated control model for headway regulation and energy saving in urban rail transit publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 16 start-page: 1469 year: 2015 ident: 10.1016/j.cie.2018.03.022_b0025 article-title: An integrated control model for headway regulation and energy saving in urban rail transit publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2014.2366495 – volume: 17 start-page: 2 year: 2016 ident: 10.1016/j.cie.2018.03.022_b0055 article-title: A survey on energy-efficient train operation for urban rail transit publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2015.2447507 – volume: 145 start-page: 169 year: 2016 ident: 10.1016/j.cie.2018.03.022_b0005 article-title: Model-based verification method for solving the parameter uncertainty in the train control system publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2015.09.014 – volume: 14 start-page: 438 year: 2013 ident: 10.1016/j.cie.2018.03.022_b0060 article-title: A cooperative scheduling model for timetable optimization in subway systems publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2012.2219620 – volume: 19 start-page: 675 year: 2011 ident: 10.1016/j.cie.2018.03.022_b0105 article-title: Optimization of train-speed trajectory and control for mass rapid transit systems publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2011.03.003 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 10.1016/j.cie.2018.03.022_b0160 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: Journal of Computer and System Sciences doi: 10.1006/jcss.1997.1504 – volume: 16 start-page: 3337 year: 2015 ident: 10.1016/j.cie.2018.03.022_b0035 article-title: Efficient real-time train scheduling for urban rail transit systems using iterative convex programming publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2015.2445920 – volume: 15 start-page: 1750023 issue: 03 year: 2017 ident: 10.1016/j.cie.2018.03.022_b0130 article-title: A flexible and robust train operation model based on expert knowledge and online adjustment publication-title: International Journal of Wavelets, Multiresolution and Information Processing doi: 10.1142/S0219691317500230 – volume: 97 start-page: 182 year: 2017 ident: 10.1016/j.cie.2018.03.022_b0070 article-title: Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches publication-title: Transportation Research Part B: Methodological doi: 10.1016/j.trb.2017.01.001 – volume: 85 start-page: 548 year: 2017 ident: 10.1016/j.cie.2018.03.022_b0020 article-title: Research and development of automatic train operation for railway transportation systems: A survey publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2017.09.009 – volume: 18 start-page: 2071 year: 2017 ident: 10.1016/j.cie.2018.03.022_b0145 article-title: Intelligent Localization of a High-Speed Train Using LSSVM and the Online Sparse Optimization Approach publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2016.2633344 – volume: 16 start-page: 2215 year: 2015 ident: 10.1016/j.cie.2018.03.022_b0030 article-title: Multiobjective optimization for train speed trajectory in ctcs high-speed railway with hybrid evolutionary algorithm publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2015.2402160 – volume: 92 start-page: 78 year: 2016 ident: 10.1016/j.cie.2018.03.022_b0120 article-title: Smart train operation algorithms based on expert knowledge and ensemble cart for the electric locomotive publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.10.016 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.cie.2018.03.022_b0155 article-title: Bagging predictors publication-title: Machine learning doi: 10.1007/BF00058655 – volume: 91 start-page: 178 year: 2016 ident: 10.1016/j.cie.2018.03.022_b0065 article-title: Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach publication-title: Transportation Research Part B: Methodological doi: 10.1016/j.trb.2016.05.009 – volume: 324 start-page: 1 year: 2015 ident: 10.1016/j.cie.2018.03.022_b0090 article-title: Trajectory tracking for uncertainty time delayed-state self-balancing train vehicles using observer-based adaptive fuzzy control publication-title: Information Sciences doi: 10.1016/j.ins.2015.06.019 – volume: 31 start-page: 1944 issue: 13 year: 2010 ident: 10.1016/j.cie.2018.03.022_b0135 article-title: Sparse learning for support vector classification publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2010.06.017 – volume: 30 start-page: 553 issue: 3 year: 2016 ident: 10.1016/j.cie.2018.03.022_b0125 article-title: Data-driven train operation models based on data mining and driving experience for the diesel-electric locomotive publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2016.07.004 – volume: 53 start-page: 533 year: 2014 ident: 10.1016/j.cie.2018.03.022_b0080 article-title: Robust adaptive cruise control of high speed trains publication-title: ISA Transactions doi: 10.1016/j.isatra.2013.12.007 – volume: 45 start-page: 1257 year: 2000 ident: 10.1016/j.cie.2018.03.022_b0095 article-title: On an optimal control problem of train operation publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.867018 – volume: 49 start-page: 3072 year: 2013 ident: 10.1016/j.cie.2018.03.022_b0040 article-title: Energy-efficient train control: From local convexity to global optimization and uniqueness publication-title: Automatica doi: 10.1016/j.automatica.2013.07.008 – ident: 10.1016/j.cie.2018.03.022_b0015 doi: 10.1109/TII.2017.2785786 – volume: 15 start-page: 938 year: 2014 ident: 10.1016/j.cie.2018.03.022_b0050 article-title: Energy-efficient locomotive operation for chinese mainline railways by fuzzy predictive control publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2013.2292712 – volume: 12 start-page: 1116 year: 2011 ident: 10.1016/j.cie.2018.03.022_b0075 article-title: Computationally inexpensive tracking control of high-speed trains with tractionbraking saturation publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2011.2143409 – year: 1984 ident: 10.1016/j.cie.2018.03.022_b0170 – volume: 15 start-page: 1216 year: 2014 ident: 10.1016/j.cie.2018.03.022_b0045 article-title: Energy-efficient train operation in urban rail transit using real-time traffic information publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2013.2296655 – volume: 15 start-page: 2561 year: 2014 ident: 10.1016/j.cie.2018.03.022_b0115 article-title: Intelligent train operation algorithms for subway by expert system and reinforcement learning publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2014.2320757 – ident: 10.1016/j.cie.2018.03.022_b0140 – volume: 23 start-page: 57 year: 2014 ident: 10.1016/j.cie.2018.03.022_b0085 article-title: Speed tracking control using an anfis model for high-speed electric multiple unit publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2013.10.006 – volume: 27 start-page: 1617 year: 2016 ident: 10.1016/j.cie.2018.03.022_b0150 article-title: Position calculation models by neural computing and online learning methods for high-speed train publication-title: Neural Computing and Application doi: 10.1007/s00521-015-1960-6 – volume: 87 start-page: 228 year: 2017 ident: 10.1016/j.cie.2018.03.022_b0010 article-title: Intelligent driving methods based on expert knowledge and online optimization for high-speed trains publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.06.006 – volume: 22 start-page: 2250 year: 2011 ident: 10.1016/j.cie.2018.03.022_b0110 article-title: Data-based fault-tolerant control of high-speed trains with traction/braking notch nonlinearities and actuator failures publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2011.2175451 – volume: 38 start-page: 1730 year: 1993 ident: 10.1016/j.cie.2018.03.022_b0100 article-title: A note on the calculation of optimal strategies for the minimization of fuel consumption in the control of trains publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.262051 – volume: 144 start-page: 65 issue: 1 year: 1997 ident: 10.1016/j.cie.2018.03.022_b0165 article-title: Optimising train movements through coast control using genetic algorithms publication-title: IEE Proceedings-Electric Power Applications doi: 10.1049/ip-epa:19970797 |
| SSID | ssj0004591 |
| Score | 2.3103948 |
| Snippet | •Intelligent driving methods (IDMs) are proposed to solve the multi-objective control problem of HST.•We integrate the expert knowledge system, sparse... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1203 |
| SubjectTerms | [formula omitted]-norm minimization algorithm AdaBoost CART Bagging CART Expert knowledge High-speed train LSSVM |
| Title | Intelligent driving methods based on sparse LSSVM and ensemble CART algorithms for high-speed trains |
| URI | https://dx.doi.org/10.1016/j.cie.2018.03.022 |
| Volume | 127 |
| WOSCitedRecordID | wos000460708800091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMceBQQLQ_5wIkoyJs4jz1WVYGiUiG2wIpLlLWdktU2u0qypX-G_8pMbMcBFQRIXKLIG2etzJd5ODPfEPJMFnkR5vgihWLu83GKZ9HEz9NYiSJOi2DeFQofJycn6Ww2eTcafbO1MBfLpKrSy8vJ-r-KGsZA2Fg6-xfi7m8KA3AOQocjiB2OfyT4o55ks_VkXXYbBrpPdOOhzZL4fQD0SN0o73g6_fi2-34A0aw6xyqqA_BwvXx5tqrL9otma_CQ09hv1mDodEuJZujS2r4QTYei0rUCUY7q0CURKK1b3m_KxaYaDmvl9zV3F7_SnbI_qXK5cqOf7S2mdtDsWWCZ1A97Fn0xjctc0gVczEeHUJsmrY_TBCZHmpu2V9iaTcCo3HHAwoH5Roq6K02D3qVYvACViRl9acdtGwTODvbZiVNcCS4E1B3DhNVrZDtIogkoze39o8PZmwEdvW7JaFduP5t3CYQ__dHVjs_AmTm9Q26ZKITua_TcJSNV7ZDbJiKhRt83O-TmgK7yHpEDaFEDLWqgRTto0VVFNbRoBy0K0KIWWhShRR20KECLOmhRDa375MPLw9OD177p0uEL8FVbXxSKxfmYzWUsYi75nPNQQdghEibChOUC-Z-4BKUArk8owxxcdoixCxFBKBAHInxAtqpVpR4SKrkCAxTBLzmExaBBWFGg-kg5zmd8lzD7CDNhKOxxbcvM5iouYFxl-NQzFmbw1HfJ837KWvO3_O5ibuWSGQdUO5YZgOjX0_b-bdojcsO9G4_JVltv1BNyXVy0ZVM_NVD7DgrRqRg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+driving+methods+based+on+sparse+LSSVM+and+ensemble+CART+algorithms+for+high-speed+trains&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Cheng%2C+Ruijun&rft.au=Chen%2C+Dewang&rft.au=Gai%2C+Weilong&rft.au=Zheng%2C+Song&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=127&rft.spage=1203&rft.epage=1213&rft_id=info:doi/10.1016%2Fj.cie.2018.03.022&rft.externalDocID=S0360835218301074 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |