Intelligent driving methods based on sparse LSSVM and ensemble CART algorithms for high-speed trains

•Intelligent driving methods (IDMs) are proposed to solve the multi-objective control problem of HST.•We integrate the expert knowledge system, sparse algorithm and ensemble CART algorithm to realize IDMs.•We propose dynamic allocated strategies of operation time to reduce the operation time error.•...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & industrial engineering Ročník 127; s. 1203 - 1213
Hlavní autori: Cheng, Ruijun, Chen, Dewang, Gai, Weilong, Zheng, Song
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.01.2019
Predmet:
ISSN:0360-8352, 1879-0550
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Intelligent driving methods (IDMs) are proposed to solve the multi-objective control problem of HST.•We integrate the expert knowledge system, sparse algorithm and ensemble CART algorithm to realize IDMs.•We propose dynamic allocated strategies of operation time to reduce the operation time error.•L0-norm minimization and ensemble CART algorithms can greatly enhance the generalization ability of proposed IDMs.•The proposed IDMs are better than traditional ATO controller and manual driving method. Currently, high-speed train (HST) is mainly controlled by manual driving and automatic train protection system, which may reduce the comfort of passengers and impair the intelligence of train operation. In recent years, some intelligent driving methods have been proposed for subway line. However, because of the continuous rise of HST’s operation speed and mileage, the driving data collected from HST is more than that of subway and the intelligent driving model will be complex if the source driving data is directly trained by data mining algorithms. So, the source driving data sets are classified into several classes in terms of the features of the driving data. In addition, iterative sparse L0-norm minimization is applied to sparsify the classified driving data and thus the redundant data will be deleted, which can speed up the computation speed of learning process. Furthermore, ensemble CART, including B-CART and A-CART are used to find the driving rules of both experienced drivers and ATO controller. Finally, the field data of Beijing-Shanghai high-speed railway and ATO simulation data are used to test the performance of the proposed intelligent driving methods. Compared with A-CART, the energy consumption, and the redundancy of the training data set of S-A-CART algorithm can be respectively decreased by 0.27% and 40% and the passengers’ riding comfort can be increased by 17.71%.
AbstractList •Intelligent driving methods (IDMs) are proposed to solve the multi-objective control problem of HST.•We integrate the expert knowledge system, sparse algorithm and ensemble CART algorithm to realize IDMs.•We propose dynamic allocated strategies of operation time to reduce the operation time error.•L0-norm minimization and ensemble CART algorithms can greatly enhance the generalization ability of proposed IDMs.•The proposed IDMs are better than traditional ATO controller and manual driving method. Currently, high-speed train (HST) is mainly controlled by manual driving and automatic train protection system, which may reduce the comfort of passengers and impair the intelligence of train operation. In recent years, some intelligent driving methods have been proposed for subway line. However, because of the continuous rise of HST’s operation speed and mileage, the driving data collected from HST is more than that of subway and the intelligent driving model will be complex if the source driving data is directly trained by data mining algorithms. So, the source driving data sets are classified into several classes in terms of the features of the driving data. In addition, iterative sparse L0-norm minimization is applied to sparsify the classified driving data and thus the redundant data will be deleted, which can speed up the computation speed of learning process. Furthermore, ensemble CART, including B-CART and A-CART are used to find the driving rules of both experienced drivers and ATO controller. Finally, the field data of Beijing-Shanghai high-speed railway and ATO simulation data are used to test the performance of the proposed intelligent driving methods. Compared with A-CART, the energy consumption, and the redundancy of the training data set of S-A-CART algorithm can be respectively decreased by 0.27% and 40% and the passengers’ riding comfort can be increased by 17.71%.
Author Cheng, Ruijun
Gai, Weilong
Chen, Dewang
Zheng, Song
Author_xml – sequence: 1
  givenname: Ruijun
  orcidid: 0000-0002-3634-4695
  surname: Cheng
  fullname: Cheng, Ruijun
  email: 14111052@bjtu.edu.cn
  organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
– sequence: 2
  givenname: Dewang
  orcidid: 0000-0002-8660-9700
  surname: Chen
  fullname: Chen, Dewang
  email: dwchen@fzu.edu.cn
  organization: Key Laboratory of Spatial Data Mining & Information Sharing of MOE, College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
– sequence: 3
  givenname: Weilong
  surname: Gai
  fullname: Gai, Weilong
  email: 11125065@bjtu.edu.cn
  organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
– sequence: 4
  givenname: Song
  surname: Zheng
  fullname: Zheng, Song
  email: s.zheng@fzu.edu.cn
  organization: Advanced Control Technology Research Center, Fuzhou University, Fuzhou 350116, China
BookMark eNp90M1qwzAMB3AzOljX7QF28wskk2PHadiplH0UOgZrt6txbKV1SZ1im8LefindaYeeBEI_If1vycj3Hgl5YJAzYPJxlxuHeQFsmgPPoSiuyJhNqzqDsoQRGQOXkE15WdyQ2xh3ACDKmo2JXfiEXec26BO1wR2d39A9pm1vI210REt7T-NBh4h0uVp9v1PtLUUfcd90SOezzzXV3aYPLm33kbZ9oFu32WbxgINNQTsf78h1q7uI9391Qr5entfzt2z58bqYz5aZ4WWZMtMiSM2gsdJIYUUjBMe6rk0FhlegDYhqKqxttShqbrkWpaylbE3JJJeF4RNSnfea0McYsFXGJZ1c7093dIqBOoWldkMf1SksBVwNYQ2S_ZOH4PY6_Fw0T2eDw0tHh0HFYcQbtC6gScr27oL-BYx5hKg
CitedBy_id crossref_primary_10_1109_TII_2021_3138098
crossref_primary_10_1109_TITS_2024_3513717
crossref_primary_10_1109_TITS_2018_2878442
crossref_primary_10_1016_j_engappai_2020_103573
crossref_primary_10_3390_en13082065
crossref_primary_10_1049_itr2_12201
crossref_primary_10_1109_TCYB_2019_2915191
crossref_primary_10_1016_j_trpro_2022_06_119
crossref_primary_10_1007_s11227_024_06110_z
crossref_primary_10_1016_j_engappai_2020_103801
Cites_doi 10.1109/TITS.2014.2366495
10.1109/TITS.2015.2447507
10.1016/j.ress.2015.09.014
10.1109/TITS.2012.2219620
10.1016/j.conengprac.2011.03.003
10.1006/jcss.1997.1504
10.1109/TITS.2015.2445920
10.1142/S0219691317500230
10.1016/j.trb.2017.01.001
10.1016/j.trc.2017.09.009
10.1109/TITS.2016.2633344
10.1109/TITS.2015.2402160
10.1016/j.knosys.2015.10.016
10.1007/BF00058655
10.1016/j.trb.2016.05.009
10.1016/j.ins.2015.06.019
10.1016/j.patrec.2010.06.017
10.1016/j.aei.2016.07.004
10.1016/j.isatra.2013.12.007
10.1109/9.867018
10.1016/j.automatica.2013.07.008
10.1109/TII.2017.2785786
10.1109/TITS.2013.2292712
10.1109/TITS.2011.2143409
10.1109/TITS.2013.2296655
10.1109/TITS.2014.2320757
10.1016/j.conengprac.2013.10.006
10.1007/s00521-015-1960-6
10.1016/j.eswa.2017.06.006
10.1109/TNN.2011.2175451
10.1109/9.262051
10.1049/ip-epa:19970797
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2018.03.022
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
EndPage 1213
ExternalDocumentID 10_1016_j_cie_2018_03_022
S0360835218301074
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c355t-cfe06a10bd6c64d4b443e999c70c370ac04784ddfa4293d3a456966fc516362c3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460708800091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Tue Nov 18 21:49:23 EST 2025
Sat Nov 29 04:15:41 EST 2025
Fri Feb 23 02:29:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High-speed train
Expert knowledge
Bagging CART
AdaBoost CART
L0-norm minimization algorithm
LSSVM
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c355t-cfe06a10bd6c64d4b443e999c70c370ac04784ddfa4293d3a456966fc516362c3
ORCID 0000-0002-8660-9700
0000-0002-3634-4695
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2018_03_022
crossref_primary_10_1016_j_cie_2018_03_022
elsevier_sciencedirect_doi_10_1016_j_cie_2018_03_022
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Computers & industrial engineering
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cheng, Song, Chen (b0145) 2017; 18
Wang, Ning, Tang (b0035) 2015; 16
Ke, Lin, Lai (b0105) 2011; 19
Yang, Li, Gao (b0060) 2013; 14
Albrecht, Howlett, Pudney (b0040) 2013; 49
Yin, Chen, Li (b0115) 2014; 15
Ning, Xun, Gao (b0025) 2015; 16
Huang, Zheng, Sun (b0135) 2010; 31
Chen, Han, Cheng (b0150) 2016; 27
Zhang, Chen, Yin (b0130) 2017; 15
Chang, Sim (b0165) 1997; 144
Yin, Tang, Yang (b0020) 2017; 85
Zhang, Chen, Yin (b0125) 2016; 30
Yang, Li, Ning (b0055) 2016; 17
Song, Song (b0110) 2011; 22
Breiman, Friedman, Stone (b0170) 1984
ShangGuan, Yan, Cai (b0030) 2015; 16
Breiman (b0155) 1996; 24
Freund, Schapire (b0160) 1997; 55
Khmelnitsky (b0095) 2000; 45
Song, Song, Tang (b0075) 2011; 12
Yang, Fu, Zhang (b0085) 2014; 23
Yin, Yang, Tang (b0070) 2017; 97
norm minimization. In
.
Yin, Tang, Yang (b0065) 2016; 91
Wu, Karkouba, Weng (b0090) 2015; 324
Bai, Ho, Mao (b0050) 2014; 15
(pp. 189–194).
Cheng, Howlett (b0100) 1993; 38
Cheng, Zhou, Chen, Song (b0005) 2016; 145
Faieghi, Jalali, Mashhadi (b0080) 2014; 53
Lopez, J., De Brabanter, K., Dorronsoro, J. R., et al. (2011) Sparse LSSVMs with
Gu, Tang, Cao (b0045) 2014; 15
Cheng, Chen, Cheng, Zheng (b0010) 2017; 87
Ma, X., Dong, H., & Liu, X., et al. (2017) An Optimal Communications Protocol for Maximizing Lifetime of Railway Infrastructure Wireless Monitoring Network. In
Yin, Chen, Li (b0120) 2016; 92
Bai (10.1016/j.cie.2018.03.022_b0050) 2014; 15
Huang (10.1016/j.cie.2018.03.022_b0135) 2010; 31
Wang (10.1016/j.cie.2018.03.022_b0035) 2015; 16
Chang (10.1016/j.cie.2018.03.022_b0165) 1997; 144
Khmelnitsky (10.1016/j.cie.2018.03.022_b0095) 2000; 45
ShangGuan (10.1016/j.cie.2018.03.022_b0030) 2015; 16
Zhang (10.1016/j.cie.2018.03.022_b0130) 2017; 15
Gu (10.1016/j.cie.2018.03.022_b0045) 2014; 15
Yin (10.1016/j.cie.2018.03.022_b0070) 2017; 97
Albrecht (10.1016/j.cie.2018.03.022_b0040) 2013; 49
Breiman (10.1016/j.cie.2018.03.022_b0170) 1984
Freund (10.1016/j.cie.2018.03.022_b0160) 1997; 55
Cheng (10.1016/j.cie.2018.03.022_b0005) 2016; 145
Cheng (10.1016/j.cie.2018.03.022_b0145) 2017; 18
Yang (10.1016/j.cie.2018.03.022_b0055) 2016; 17
Cheng (10.1016/j.cie.2018.03.022_b0100) 1993; 38
Yang (10.1016/j.cie.2018.03.022_b0060) 2013; 14
Yin (10.1016/j.cie.2018.03.022_b0115) 2014; 15
10.1016/j.cie.2018.03.022_b0140
Yin (10.1016/j.cie.2018.03.022_b0065) 2016; 91
Ke (10.1016/j.cie.2018.03.022_b0105) 2011; 19
Wu (10.1016/j.cie.2018.03.022_b0090) 2015; 324
Chen (10.1016/j.cie.2018.03.022_b0150) 2016; 27
Yin (10.1016/j.cie.2018.03.022_b0120) 2016; 92
Yang (10.1016/j.cie.2018.03.022_b0085) 2014; 23
Ning (10.1016/j.cie.2018.03.022_b0025) 2015; 16
Song (10.1016/j.cie.2018.03.022_b0110) 2011; 22
Song (10.1016/j.cie.2018.03.022_b0075) 2011; 12
Yin (10.1016/j.cie.2018.03.022_b0020) 2017; 85
Zhang (10.1016/j.cie.2018.03.022_b0125) 2016; 30
10.1016/j.cie.2018.03.022_b0015
Breiman (10.1016/j.cie.2018.03.022_b0155) 1996; 24
Cheng (10.1016/j.cie.2018.03.022_b0010) 2017; 87
Faieghi (10.1016/j.cie.2018.03.022_b0080) 2014; 53
References_xml – volume: 17
  start-page: 2
  year: 2016
  end-page: 13
  ident: b0055
  article-title: A survey on energy-efficient train operation for urban rail transit
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 27
  start-page: 1617
  year: 2016
  end-page: 1628,
  ident: b0150
  article-title: Position calculation models by neural computing and online learning methods for high-speed train
  publication-title: Neural Computing and Application
– volume: 12
  start-page: 1116
  year: 2011
  end-page: 1125
  ident: b0075
  article-title: Computationally inexpensive tracking control of high-speed trains with tractionbraking saturation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 18
  start-page: 2071
  year: 2017
  end-page: 2084,
  ident: b0145
  article-title: Intelligent Localization of a High-Speed Train Using LSSVM and the Online Sparse Optimization Approach
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 91
  start-page: 178
  year: 2016
  end-page: 210
  ident: b0065
  article-title: Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach
  publication-title: Transportation Research Part B: Methodological
– volume: 92
  start-page: 78
  year: 2016
  end-page: 91,
  ident: b0120
  article-title: Smart train operation algorithms based on expert knowledge and ensemble cart for the electric locomotive
  publication-title: Knowledge-Based Systems
– volume: 53
  start-page: 533
  year: 2014
  end-page: 541,
  ident: b0080
  article-title: Robust adaptive cruise control of high speed trains
  publication-title: ISA Transactions
– volume: 144
  start-page: 65
  year: 1997
  end-page: 73,
  ident: b0165
  article-title: Optimising train movements through coast control using genetic algorithms
  publication-title: IEE Proceedings-Electric Power Applications
– volume: 15
  start-page: 2561
  year: 2014
  end-page: 2571,
  ident: b0115
  article-title: Intelligent train operation algorithms for subway by expert system and reinforcement learning
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 45
  start-page: 1257
  year: 2000
  end-page: 1266,
  ident: b0095
  article-title: On an optimal control problem of train operation
  publication-title: IEEE Transactions on Automatic Control
– volume: 85
  start-page: 548
  year: 2017
  end-page: 572
  ident: b0020
  article-title: Research and development of automatic train operation for railway transportation systems: A survey
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140,
  ident: b0155
  article-title: Bagging predictors
  publication-title: Machine learning
– volume: 22
  start-page: 2250
  year: 2011
  end-page: 2261
  ident: b0110
  article-title: Data-based fault-tolerant control of high-speed trains with traction/braking notch nonlinearities and actuator failures
  publication-title: IEEE Transactions on Neural Networks
– volume: 87
  start-page: 228
  year: 2017
  end-page: 239
  ident: b0010
  article-title: Intelligent driving methods based on expert knowledge and online optimization for high-speed trains
  publication-title: Expert Systems with Applications
– volume: 15
  start-page: 1216
  year: 2014
  end-page: 1233
  ident: b0045
  article-title: Energy-efficient train operation in urban rail transit using real-time traffic information
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 38
  start-page: 1730
  year: 1993
  end-page: 1734,
  ident: b0100
  article-title: A note on the calculation of optimal strategies for the minimization of fuel consumption in the control of trains
  publication-title: IEEE Transactions on Automatic Control
– volume: 16
  start-page: 2215
  year: 2015
  end-page: 2225
  ident: b0030
  article-title: Multiobjective optimization for train speed trajectory in ctcs high-speed railway with hybrid evolutionary algorithm
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 19
  start-page: 675
  year: 2011
  end-page: 687,
  ident: b0105
  article-title: Optimization of train-speed trajectory and control for mass rapid transit systems
  publication-title: Control Engineering Practice
– volume: 145
  start-page: 169
  year: 2016
  end-page: 182
  ident: b0005
  article-title: Model-based verification method for solving the parameter uncertainty in the train control system
  publication-title: Reliability Engineering & System Safety
– reference: (pp. 189–194).
– volume: 16
  start-page: 3337
  year: 2015
  end-page: 3352
  ident: b0035
  article-title: Efficient real-time train scheduling for urban rail transit systems using iterative convex programming
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 49
  start-page: 3072
  year: 2013
  end-page: 3078
  ident: b0040
  article-title: Energy-efficient train control: From local convexity to global optimization and uniqueness
  publication-title: Automatica
– reference: Lopez, J., De Brabanter, K., Dorronsoro, J. R., et al. (2011) Sparse LSSVMs with
– reference: .
– volume: 97
  start-page: 182
  year: 2017
  end-page: 213
  ident: b0070
  article-title: Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches
  publication-title: Transportation Research Part B: Methodological
– volume: 324
  start-page: 1
  year: 2015
  end-page: 22
  ident: b0090
  article-title: Trajectory tracking for uncertainty time delayed-state self-balancing train vehicles using observer-based adaptive fuzzy control
  publication-title: Information Sciences
– volume: 30
  start-page: 553
  year: 2016
  end-page: 563,
  ident: b0125
  article-title: Data-driven train operation models based on data mining and driving experience for the diesel-electric locomotive
  publication-title: Advanced Engineering Informatics
– volume: 14
  start-page: 438
  year: 2013
  end-page: 447
  ident: b0060
  article-title: A cooperative scheduling model for timetable optimization in subway systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 15
  start-page: 1750023
  year: 2017
  ident: b0130
  article-title: A flexible and robust train operation model based on expert knowledge and online adjustment
  publication-title: International Journal of Wavelets, Multiresolution and Information Processing
– volume: 31
  start-page: 1944
  year: 2010
  end-page: 1951,
  ident: b0135
  article-title: Sparse learning for support vector classification
  publication-title: Pattern Recognition Letters
– reference: -norm minimization. In
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139,
  ident: b0160
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: Journal of Computer and System Sciences
– reference: Ma, X., Dong, H., & Liu, X., et al. (2017) An Optimal Communications Protocol for Maximizing Lifetime of Railway Infrastructure Wireless Monitoring Network. In
– volume: 23
  start-page: 57
  year: 2014
  end-page: 65,
  ident: b0085
  article-title: Speed tracking control using an anfis model for high-speed electric multiple unit
  publication-title: Control Engineering Practice
– volume: 15
  start-page: 938
  year: 2014
  end-page: 948
  ident: b0050
  article-title: Energy-efficient locomotive operation for chinese mainline railways by fuzzy predictive control
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 1984
  ident: b0170
  article-title: Classification and regression trees
– volume: 16
  start-page: 1469
  year: 2015
  end-page: 1478,
  ident: b0025
  article-title: An integrated control model for headway regulation and energy saving in urban rail transit
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 16
  start-page: 1469
  year: 2015
  ident: 10.1016/j.cie.2018.03.022_b0025
  article-title: An integrated control model for headway regulation and energy saving in urban rail transit
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2014.2366495
– volume: 17
  start-page: 2
  year: 2016
  ident: 10.1016/j.cie.2018.03.022_b0055
  article-title: A survey on energy-efficient train operation for urban rail transit
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2015.2447507
– volume: 145
  start-page: 169
  year: 2016
  ident: 10.1016/j.cie.2018.03.022_b0005
  article-title: Model-based verification method for solving the parameter uncertainty in the train control system
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2015.09.014
– volume: 14
  start-page: 438
  year: 2013
  ident: 10.1016/j.cie.2018.03.022_b0060
  article-title: A cooperative scheduling model for timetable optimization in subway systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2012.2219620
– volume: 19
  start-page: 675
  year: 2011
  ident: 10.1016/j.cie.2018.03.022_b0105
  article-title: Optimization of train-speed trajectory and control for mass rapid transit systems
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2011.03.003
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 10.1016/j.cie.2018.03.022_b0160
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: Journal of Computer and System Sciences
  doi: 10.1006/jcss.1997.1504
– volume: 16
  start-page: 3337
  year: 2015
  ident: 10.1016/j.cie.2018.03.022_b0035
  article-title: Efficient real-time train scheduling for urban rail transit systems using iterative convex programming
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2015.2445920
– volume: 15
  start-page: 1750023
  issue: 03
  year: 2017
  ident: 10.1016/j.cie.2018.03.022_b0130
  article-title: A flexible and robust train operation model based on expert knowledge and online adjustment
  publication-title: International Journal of Wavelets, Multiresolution and Information Processing
  doi: 10.1142/S0219691317500230
– volume: 97
  start-page: 182
  year: 2017
  ident: 10.1016/j.cie.2018.03.022_b0070
  article-title: Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches
  publication-title: Transportation Research Part B: Methodological
  doi: 10.1016/j.trb.2017.01.001
– volume: 85
  start-page: 548
  year: 2017
  ident: 10.1016/j.cie.2018.03.022_b0020
  article-title: Research and development of automatic train operation for railway transportation systems: A survey
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2017.09.009
– volume: 18
  start-page: 2071
  year: 2017
  ident: 10.1016/j.cie.2018.03.022_b0145
  article-title: Intelligent Localization of a High-Speed Train Using LSSVM and the Online Sparse Optimization Approach
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2016.2633344
– volume: 16
  start-page: 2215
  year: 2015
  ident: 10.1016/j.cie.2018.03.022_b0030
  article-title: Multiobjective optimization for train speed trajectory in ctcs high-speed railway with hybrid evolutionary algorithm
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2015.2402160
– volume: 92
  start-page: 78
  year: 2016
  ident: 10.1016/j.cie.2018.03.022_b0120
  article-title: Smart train operation algorithms based on expert knowledge and ensemble cart for the electric locomotive
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.10.016
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.cie.2018.03.022_b0155
  article-title: Bagging predictors
  publication-title: Machine learning
  doi: 10.1007/BF00058655
– volume: 91
  start-page: 178
  year: 2016
  ident: 10.1016/j.cie.2018.03.022_b0065
  article-title: Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach
  publication-title: Transportation Research Part B: Methodological
  doi: 10.1016/j.trb.2016.05.009
– volume: 324
  start-page: 1
  year: 2015
  ident: 10.1016/j.cie.2018.03.022_b0090
  article-title: Trajectory tracking for uncertainty time delayed-state self-balancing train vehicles using observer-based adaptive fuzzy control
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.06.019
– volume: 31
  start-page: 1944
  issue: 13
  year: 2010
  ident: 10.1016/j.cie.2018.03.022_b0135
  article-title: Sparse learning for support vector classification
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2010.06.017
– volume: 30
  start-page: 553
  issue: 3
  year: 2016
  ident: 10.1016/j.cie.2018.03.022_b0125
  article-title: Data-driven train operation models based on data mining and driving experience for the diesel-electric locomotive
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2016.07.004
– volume: 53
  start-page: 533
  year: 2014
  ident: 10.1016/j.cie.2018.03.022_b0080
  article-title: Robust adaptive cruise control of high speed trains
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2013.12.007
– volume: 45
  start-page: 1257
  year: 2000
  ident: 10.1016/j.cie.2018.03.022_b0095
  article-title: On an optimal control problem of train operation
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.867018
– volume: 49
  start-page: 3072
  year: 2013
  ident: 10.1016/j.cie.2018.03.022_b0040
  article-title: Energy-efficient train control: From local convexity to global optimization and uniqueness
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.07.008
– ident: 10.1016/j.cie.2018.03.022_b0015
  doi: 10.1109/TII.2017.2785786
– volume: 15
  start-page: 938
  year: 2014
  ident: 10.1016/j.cie.2018.03.022_b0050
  article-title: Energy-efficient locomotive operation for chinese mainline railways by fuzzy predictive control
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2013.2292712
– volume: 12
  start-page: 1116
  year: 2011
  ident: 10.1016/j.cie.2018.03.022_b0075
  article-title: Computationally inexpensive tracking control of high-speed trains with tractionbraking saturation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2011.2143409
– year: 1984
  ident: 10.1016/j.cie.2018.03.022_b0170
– volume: 15
  start-page: 1216
  year: 2014
  ident: 10.1016/j.cie.2018.03.022_b0045
  article-title: Energy-efficient train operation in urban rail transit using real-time traffic information
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2013.2296655
– volume: 15
  start-page: 2561
  year: 2014
  ident: 10.1016/j.cie.2018.03.022_b0115
  article-title: Intelligent train operation algorithms for subway by expert system and reinforcement learning
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2014.2320757
– ident: 10.1016/j.cie.2018.03.022_b0140
– volume: 23
  start-page: 57
  year: 2014
  ident: 10.1016/j.cie.2018.03.022_b0085
  article-title: Speed tracking control using an anfis model for high-speed electric multiple unit
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2013.10.006
– volume: 27
  start-page: 1617
  year: 2016
  ident: 10.1016/j.cie.2018.03.022_b0150
  article-title: Position calculation models by neural computing and online learning methods for high-speed train
  publication-title: Neural Computing and Application
  doi: 10.1007/s00521-015-1960-6
– volume: 87
  start-page: 228
  year: 2017
  ident: 10.1016/j.cie.2018.03.022_b0010
  article-title: Intelligent driving methods based on expert knowledge and online optimization for high-speed trains
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.06.006
– volume: 22
  start-page: 2250
  year: 2011
  ident: 10.1016/j.cie.2018.03.022_b0110
  article-title: Data-based fault-tolerant control of high-speed trains with traction/braking notch nonlinearities and actuator failures
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2011.2175451
– volume: 38
  start-page: 1730
  year: 1993
  ident: 10.1016/j.cie.2018.03.022_b0100
  article-title: A note on the calculation of optimal strategies for the minimization of fuel consumption in the control of trains
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.262051
– volume: 144
  start-page: 65
  issue: 1
  year: 1997
  ident: 10.1016/j.cie.2018.03.022_b0165
  article-title: Optimising train movements through coast control using genetic algorithms
  publication-title: IEE Proceedings-Electric Power Applications
  doi: 10.1049/ip-epa:19970797
SSID ssj0004591
Score 2.3103948
Snippet •Intelligent driving methods (IDMs) are proposed to solve the multi-objective control problem of HST.•We integrate the expert knowledge system, sparse...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1203
SubjectTerms [formula omitted]-norm minimization algorithm
AdaBoost CART
Bagging CART
Expert knowledge
High-speed train
LSSVM
Title Intelligent driving methods based on sparse LSSVM and ensemble CART algorithms for high-speed trains
URI https://dx.doi.org/10.1016/j.cie.2018.03.022
Volume 127
WOSCitedRecordID wos000460708800091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMceBQQLQ_5wIkoyJs4jz1WVYGiUiG2wIpLlLWdktU2u0qypX-G_8pMbMcBFQRIXKLIG2etzJd5ODPfEPJMFnkR5vgihWLu83GKZ9HEz9NYiSJOi2DeFQofJycn6Ww2eTcafbO1MBfLpKrSy8vJ-r-KGsZA2Fg6-xfi7m8KA3AOQocjiB2OfyT4o55ks_VkXXYbBrpPdOOhzZL4fQD0SN0o73g6_fi2-34A0aw6xyqqA_BwvXx5tqrL9otma_CQ09hv1mDodEuJZujS2r4QTYei0rUCUY7q0CURKK1b3m_KxaYaDmvl9zV3F7_SnbI_qXK5cqOf7S2mdtDsWWCZ1A97Fn0xjctc0gVczEeHUJsmrY_TBCZHmpu2V9iaTcCo3HHAwoH5Roq6K02D3qVYvACViRl9acdtGwTODvbZiVNcCS4E1B3DhNVrZDtIogkoze39o8PZmwEdvW7JaFduP5t3CYQ__dHVjs_AmTm9Q26ZKITua_TcJSNV7ZDbJiKhRt83O-TmgK7yHpEDaFEDLWqgRTto0VVFNbRoBy0K0KIWWhShRR20KECLOmhRDa375MPLw9OD177p0uEL8FVbXxSKxfmYzWUsYi75nPNQQdghEibChOUC-Z-4BKUArk8owxxcdoixCxFBKBAHInxAtqpVpR4SKrkCAxTBLzmExaBBWFGg-kg5zmd8lzD7CDNhKOxxbcvM5iouYFxl-NQzFmbw1HfJ837KWvO3_O5ibuWSGQdUO5YZgOjX0_b-bdojcsO9G4_JVltv1BNyXVy0ZVM_NVD7DgrRqRg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+driving+methods+based+on+sparse+LSSVM+and+ensemble+CART+algorithms+for+high-speed+trains&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Cheng%2C+Ruijun&rft.au=Chen%2C+Dewang&rft.au=Gai%2C+Weilong&rft.au=Zheng%2C+Song&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=127&rft.spage=1203&rft.epage=1213&rft_id=info:doi/10.1016%2Fj.cie.2018.03.022&rft.externalDocID=S0360835218301074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon