Urban link travel time estimation using large-scale taxi data with partial information
•Uses large scale GPS traces of taxi cabs in New York City.•A model for estimating link travel times is developed using large scale data.•Developed insights into the congestion issues in New York City.•Rigorous numerical results are performed to test the approach. Taxicabs equipped with Global Posit...
Saved in:
| Published in: | Transportation research. Part C, Emerging technologies Vol. 33; pp. 37 - 49 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Kidlington
Elsevier India Pvt Ltd
01.08.2013
Elsevier |
| Subjects: | |
| ISSN: | 0968-090X, 1879-2359 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Uses large scale GPS traces of taxi cabs in New York City.•A model for estimating link travel times is developed using large scale data.•Developed insights into the congestion issues in New York City.•Rigorous numerical results are performed to test the approach.
Taxicabs equipped with Global Positioning System (GPS) devices can serve as useful probes for monitoring the traffic state in an urban area. This paper presents a new descriptive model for estimating hourly average of urban link travel times using taxicab origin–destination (OD) trip data. The focus of this study is to develop a methodology to estimate link travel times from OD trip data and demonstrate the feasibility of estimating network condition using large-scale geo-location data with partial information. The data, collected from the taxicabs in New York City, provides the locations of origins and destinations, travel times, fares and other information of taxi trips. The new model infers the possible paths for each trip and then estimates the link travel times by minimizing the error between the expected path travel times and the observed path travel times. The model is evaluated using a test network from Midtown Manhattan. Results indicate that the proposed method can efficiently estimate hourly average link travel times. This research provides new possibilities for fully utilizing the partial information obtained from urban taxicab data for estimating network condition, which is not only very useful but also is inexpensive and has much better coverage than traditional sensor data. |
|---|---|
| AbstractList | •Uses large scale GPS traces of taxi cabs in New York City.•A model for estimating link travel times is developed using large scale data.•Developed insights into the congestion issues in New York City.•Rigorous numerical results are performed to test the approach.
Taxicabs equipped with Global Positioning System (GPS) devices can serve as useful probes for monitoring the traffic state in an urban area. This paper presents a new descriptive model for estimating hourly average of urban link travel times using taxicab origin–destination (OD) trip data. The focus of this study is to develop a methodology to estimate link travel times from OD trip data and demonstrate the feasibility of estimating network condition using large-scale geo-location data with partial information. The data, collected from the taxicabs in New York City, provides the locations of origins and destinations, travel times, fares and other information of taxi trips. The new model infers the possible paths for each trip and then estimates the link travel times by minimizing the error between the expected path travel times and the observed path travel times. The model is evaluated using a test network from Midtown Manhattan. Results indicate that the proposed method can efficiently estimate hourly average link travel times. This research provides new possibilities for fully utilizing the partial information obtained from urban taxicab data for estimating network condition, which is not only very useful but also is inexpensive and has much better coverage than traditional sensor data. |
| Author | Zhan, Xianyuan Kamga, Camille Hasan, Samiul Ukkusuri, Satish V. |
| Author_xml | – sequence: 1 givenname: Xianyuan surname: Zhan fullname: Zhan, Xianyuan email: zhanxianyuan@gmail.com organization: School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA – sequence: 2 givenname: Samiul surname: Hasan fullname: Hasan, Samiul email: samiul.hasan@gmail.com organization: School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA – sequence: 3 givenname: Satish V. surname: Ukkusuri fullname: Ukkusuri, Satish V. email: sukkusur@purdue.edu organization: School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA – sequence: 4 givenname: Camille surname: Kamga fullname: Kamga, Camille email: ckamga@utrc2.org organization: Civil Engineering, Marshak Hall, Suite 910, 160 Convent Avenue, The City College of New York, New York, NY 10031, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27527329$$DView record in Pascal Francis |
| BookMark | eNp9kD1PwzAQhi1UJFrgB7B5YUywnQ_HYkIVX1IlForYrItjF5fgVLYp8O9xCWJg6C3v8j6nu2eGJm5wGqEzSnJKaH2xzqNXOSO0yEmZE0IP0JQ2XGSsqMQETYmom4wI8nyEZiGsSWqIik_R09K34HBv3SuOHra6x9G-aaxDCoh2cPg9WLfCPfiVzoKCXuMInxZ3EAF_2PiCN-CjhR5bZwY_Qifo0EAf9OlvHqPlzfXj_C5bPNzez68WmSqqKmaK89bUpGkFq7kqBK_qxnDWtbo1AnipSmqaOg2hVNMWoDXMlA0joqS1Yao4Rufj3g3sTjMenLJBbnw63n9JxivGCyZSj4495YcQvDZ_FUrkTqBcyyRQ7gRKUsqkJzH8H6Ns_PkuibL9XvJyJHV6fWu1l0FZ7ZTurNcqym6we-hvFUeNzA |
| CitedBy_id | crossref_primary_10_1007_s11769_018_0982_2 crossref_primary_10_1109_TITS_2019_2899906 crossref_primary_10_1109_ACCESS_2018_2873779 crossref_primary_10_1109_ACCESS_2020_2971008 crossref_primary_10_1016_j_trc_2017_08_002 crossref_primary_10_1016_j_neucom_2020_05_038 crossref_primary_10_1016_j_physa_2019_123759 crossref_primary_10_1111_sjos_12780 crossref_primary_10_1007_s11707_016_0634_8 crossref_primary_10_1080_21680566_2024_2416181 crossref_primary_10_1016_j_neucom_2015_08_100 crossref_primary_10_1109_TITS_2019_2938762 crossref_primary_10_3390_s22249735 crossref_primary_10_1109_TITS_2016_2521862 crossref_primary_10_1080_15472450_2019_1617141 crossref_primary_10_1080_15472450_2019_1617142 crossref_primary_10_1109_TITS_2022_3200445 crossref_primary_10_3390_aerospace12080721 crossref_primary_10_1016_j_trc_2017_01_020 crossref_primary_10_3390_app8020279 crossref_primary_10_1145_3682058 crossref_primary_10_1109_MITS_2019_2926274 crossref_primary_10_1155_2016_7348705 crossref_primary_10_1109_TITS_2019_2931830 crossref_primary_10_3141_2423_08 crossref_primary_10_1016_j_tranpol_2020_04_001 crossref_primary_10_1109_TITS_2018_2803085 crossref_primary_10_1061__ASCE_TE_1943_5436_0000772 crossref_primary_10_1109_TITS_2017_2650947 crossref_primary_10_1155_2022_1213221 crossref_primary_10_3390_systems12080282 crossref_primary_10_1016_j_trb_2017_01_012 crossref_primary_10_1016_j_physa_2022_127079 crossref_primary_10_1016_j_trb_2015_04_004 crossref_primary_10_1177_03611981231172961 crossref_primary_10_1145_3317663 crossref_primary_10_1287_trsc_2017_0805 crossref_primary_10_3390_math12081255 crossref_primary_10_1016_j_physa_2018_02_064 crossref_primary_10_1007_s10489_023_05139_6 crossref_primary_10_1016_j_trc_2015_10_004 crossref_primary_10_1016_j_jtrangeo_2024_104049 crossref_primary_10_1016_j_trc_2020_102660 crossref_primary_10_1016_j_trd_2019_09_025 crossref_primary_10_1016_j_tra_2017_05_006 crossref_primary_10_1155_2020_7081628 crossref_primary_10_1016_j_trc_2017_03_013 crossref_primary_10_1177_0361198118772956 crossref_primary_10_1016_j_trc_2020_01_023 crossref_primary_10_1109_TITS_2020_3040386 crossref_primary_10_1016_j_simpat_2019_102025 crossref_primary_10_1109_TBDATA_2016_2627224 crossref_primary_10_3390_app12105017 crossref_primary_10_1109_TBDATA_2018_2872450 crossref_primary_10_1155_2021_5530814 crossref_primary_10_3390_su10093003 crossref_primary_10_1016_j_trc_2015_04_022 crossref_primary_10_1016_j_physa_2017_11_114 crossref_primary_10_1007_s11067_022_09582_9 crossref_primary_10_1061__ASCE_CP_1943_5487_0000644 crossref_primary_10_1016_j_matcom_2018_01_006 crossref_primary_10_3390_su17020754 crossref_primary_10_1007_s13177_016_0131_1 crossref_primary_10_1088_1755_1315_502_1_012005 crossref_primary_10_1016_j_tra_2023_103615 crossref_primary_10_1016_j_trpro_2019_09_084 crossref_primary_10_1109_TKDE_2016_2621104 crossref_primary_10_1080_21680566_2018_1540952 crossref_primary_10_1155_2019_8582761 crossref_primary_10_1038_s41598_021_87407_4 crossref_primary_10_1111_cgf_12628 crossref_primary_10_1109_TITS_2018_2877059 crossref_primary_10_1145_3161194 crossref_primary_10_3141_2422_05 crossref_primary_10_1177_0361198118793273 crossref_primary_10_3390_ijerph16010089 crossref_primary_10_1109_TITS_2016_2568759 crossref_primary_10_1007_s00521_019_04364_w crossref_primary_10_3390_su12198070 crossref_primary_10_1287_mnsc_2022_00775 crossref_primary_10_1080_00207543_2015_1064183 crossref_primary_10_1016_j_trc_2019_09_007 crossref_primary_10_1287_opre_2018_1784 crossref_primary_10_1080_15472450_2022_2124867 crossref_primary_10_3390_ijgi6110339 crossref_primary_10_1016_j_trb_2015_02_004 crossref_primary_10_1080_15472450_2018_1518137 crossref_primary_10_1016_j_autcon_2015_12_007 crossref_primary_10_1016_j_trc_2019_09_019 crossref_primary_10_1109_ACCESS_2022_3206384 crossref_primary_10_1109_TITS_2015_2461000 crossref_primary_10_1016_j_trc_2017_03_002 crossref_primary_10_1080_15472450_2014_995760 crossref_primary_10_1016_j_scs_2021_103344 crossref_primary_10_3141_2595_11 crossref_primary_10_1109_TITS_2021_3095408 crossref_primary_10_1177_03611981211018474 crossref_primary_10_1002_atr_1395 crossref_primary_10_1016_j_eswa_2018_02_033 crossref_primary_10_1080_15472450_2016_1154764 crossref_primary_10_1038_s41467_025_57845_z crossref_primary_10_3390_su11164318 crossref_primary_10_1016_j_trc_2014_01_002 crossref_primary_10_1109_TITS_2022_3168865 crossref_primary_10_1016_j_envpol_2019_05_081 crossref_primary_10_1016_j_trc_2014_08_010 crossref_primary_10_1007_s00521_022_07977_w crossref_primary_10_1109_JIOT_2023_3317639 crossref_primary_10_3846_16484142_2017_1347827 crossref_primary_10_1016_j_ins_2021_12_091 crossref_primary_10_1016_j_jpdc_2021_07_002 crossref_primary_10_1109_JIOT_2021_3077007 crossref_primary_10_1016_j_trc_2017_10_012 crossref_primary_10_1016_j_trc_2023_104115 crossref_primary_10_1016_j_jenvman_2018_02_026 crossref_primary_10_1016_j_tre_2024_103839 crossref_primary_10_1155_2018_4276593 crossref_primary_10_1016_j_trc_2018_03_004 |
| Cites_doi | 10.1109/TITS.2004.837813 10.1016/S0965-8564(01)00046-5 10.1016/S0968-090X(03)00026-3 10.3141/2260-01 10.1016/j.trb.2005.11.003 10.1016/j.trc.2012.02.008 10.1016/j.trc.2009.10.006 10.1287/mnsc.17.11.712 10.3141/1617-23 10.1016/j.trb.2007.08.005 10.1016/j.trc.2011.05.014 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.trc.2013.04.001 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering Applied Sciences |
| EISSN | 1879-2359 |
| EndPage | 49 |
| ExternalDocumentID | 27527329 10_1016_j_trc_2013_04_001 S0968090X13000740 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c355t-c77bf608b9267c397568f72dbebf9a74c41f86666011e1baabf2f48209416f2c3 |
| ISICitedReferencesCount | 156 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000322054800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0968-090X |
| IngestDate | Mon Jul 21 09:12:07 EDT 2025 Sat Nov 29 03:00:55 EST 2025 Tue Nov 18 20:12:48 EST 2025 Fri Feb 23 02:16:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Traffic state estimation Probe vehicle GPS-enabled taxicab Large scale data analysis Path inference Urban networks Data analysis Travel time GPS system Forecast model Modeling Urban district network Urban road traffic Taxi Large scale |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c355t-c77bf608b9267c397568f72dbebf9a74c41f86666011e1baabf2f48209416f2c3 |
| PageCount | 13 |
| ParticipantIDs | pascalfrancis_primary_27527329 crossref_primary_10_1016_j_trc_2013_04_001 crossref_citationtrail_10_1016_j_trc_2013_04_001 elsevier_sciencedirect_doi_10_1016_j_trc_2013_04_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-08-01 |
| PublicationDateYYYYMMDD | 2013-08-01 |
| PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Transportation research. Part C, Emerging technologies |
| PublicationYear | 2013 |
| Publisher | Elsevier India Pvt Ltd Elsevier |
| Publisher_xml | – name: Elsevier India Pvt Ltd – name: Elsevier |
| References | Park, RILETT (b0070) 1998; 98 Inrix, Inc. Hunter, T., Herring, R., Abbeel, P., 2009. Path and travel time inference from GPS probe vehicle data. Neural Information Processing Systems Foundation (NIPS), Vancouver, Canada, (December). Fletcher, R., 1971. A Modified Marquardt Subroutine for Nonlinear Least Squares. Rpt. AERE-R 6799, Harwell. Matlab Parallel Computing Toolbox. Mathworks, Inc. Herring, Hofleitner, Abbeel (b0035) 2010 Schaller Consulting, 2006. The New York City Taxicab Fact Book, (March). Fosgerau, Fukuda (b0015) 2012; 24 Coifman (b0005) 2002; 36 Grynbaum, M.M., 2010. Gridlock May Not Be Constant, but Slow Going Is Here to Stay. New York Times. Retrieved July 31, 2012. Wu, Ho, Lee (b0090) 2004; 5 King, David, Peters, J., 2012. Taxicabs for Improved Urban Mobility: Are We Missing an Opportunity? Transportation Research Board 91st Annual Meeting, 19p. Herrera, Work, Ban, Herring, Jacobson, Bayen (b0030) 2010; 18 Yen (b0095) 1971; 17 Zheng, F., Van Zuylen, H., in press. Urban link travel time estimation based on sparse probe vehicle data. Transportation Research Part C: Emerging Technologies 13. Elsevier Ltd. . Yeon, Elefteriadou, Lawphongpanich (b0100) 2008; 42 Zhang, Rice (b0105) 2003; 11 Nocedal, J., Wright, S.J., 2006. Numerical Optimization. second ed. Springer, pp. 258–264. Oh, J.S., Jayakrishnan, R., Recker, W., 2003. Section travel time estimation from point detection data. In: 82nd Annual Meeting of Transportation Research Board, Washington, DC, USA. Li, Rose (b0055) 2011; 19 Sherali, Desai, Rakha (b0080) 2006; 40 Taxicab Rates from New York Taxi & Limousine Commission Hasan, Choudhury, Ben-Akiva, Emmonds (b0025) 2011; 2260 10.1016/j.trc.2013.04.001_b0050 Zhang (10.1016/j.trc.2013.04.001_b0105) 2003; 11 10.1016/j.trc.2013.04.001_b0040 10.1016/j.trc.2013.04.001_b0060 Yeon (10.1016/j.trc.2013.04.001_b0100) 2008; 42 10.1016/j.trc.2013.04.001_b0010 10.1016/j.trc.2013.04.001_b0065 Park (10.1016/j.trc.2013.04.001_b0070) 1998; 98 10.1016/j.trc.2013.04.001_b0110 10.1016/j.trc.2013.04.001_b0085 Fosgerau (10.1016/j.trc.2013.04.001_b0015) 2012; 24 10.1016/j.trc.2013.04.001_b0020 10.1016/j.trc.2013.04.001_b0075 Coifman (10.1016/j.trc.2013.04.001_b0005) 2002; 36 Sherali (10.1016/j.trc.2013.04.001_b0080) 2006; 40 Li (10.1016/j.trc.2013.04.001_b0055) 2011; 19 Wu (10.1016/j.trc.2013.04.001_b0090) 2004; 5 Hasan (10.1016/j.trc.2013.04.001_b0025) 2011; 2260 Herring (10.1016/j.trc.2013.04.001_b0035) 2010 Herrera (10.1016/j.trc.2013.04.001_b0030) 2010; 18 10.1016/j.trc.2013.04.001_b0045 Yen (10.1016/j.trc.2013.04.001_b0095) 1971; 17 |
| References_xml | – volume: 11 start-page: 187 year: 2003 end-page: 210 ident: b0105 article-title: Short-term travel time prediction publication-title: Transportation Research Part C: Emerging Technologies – volume: 36 start-page: 899 year: 2002 end-page: 917 ident: b0005 article-title: Vehicle reidentification and travel time measurement on congested freeways publication-title: Transportation Research Part A: Policy and Practice – volume: 2260 start-page: 1 year: 2011 end-page: 7 ident: b0025 article-title: Modeling of travel time variations on urban links in London publication-title: Transportation Research Record: Journal of the Transportation Research Board – volume: 19 start-page: 1006 year: 2011 end-page: 1018 ident: b0055 article-title: Incorporating uncertainty into short-term travel time predictions publication-title: Transportation Research Part C: Emerging Technologies – volume: 98 start-page: 163 year: 1998 end-page: 170 ident: b0070 article-title: Forecasting multiple-period freeway link travel times using modular neural networks publication-title: Journal of the Transportation Research Board – reference: Hunter, T., Herring, R., Abbeel, P., 2009. Path and travel time inference from GPS probe vehicle data. Neural Information Processing Systems Foundation (NIPS), Vancouver, Canada, (December). – reference: Inrix, Inc. – reference: Grynbaum, M.M., 2010. Gridlock May Not Be Constant, but Slow Going Is Here to Stay. New York Times. Retrieved July 31, 2012. < – volume: 5 start-page: 276 year: 2004 end-page: 281 ident: b0090 article-title: Travel-time prediction with support vector regression publication-title: IEEE Transactions on Intelligent Transportation Systems – reference: Zheng, F., Van Zuylen, H., in press. Urban link travel time estimation based on sparse probe vehicle data. Transportation Research Part C: Emerging Technologies 13. Elsevier Ltd. – reference: >. – reference: Oh, J.S., Jayakrishnan, R., Recker, W., 2003. Section travel time estimation from point detection data. In: 82nd Annual Meeting of Transportation Research Board, Washington, DC, USA. – volume: 42 start-page: 325 year: 2008 end-page: 338 ident: b0100 article-title: Travel time estimation on a freeway using discrete time Markov chains publication-title: Transportation Research Part B: Methodological – volume: 18 start-page: 568 year: 2010 end-page: 583 ident: b0030 article-title: Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment publication-title: Transportation Research Part C: Emerging Technologies – reference: . – reference: Taxicab Rates from New York Taxi & Limousine Commission: < – reference: King, David, Peters, J., 2012. Taxicabs for Improved Urban Mobility: Are We Missing an Opportunity? Transportation Research Board 91st Annual Meeting, 19p. – volume: 40 start-page: 857 year: 2006 end-page: 871 ident: b0080 article-title: A discrete optimization approach for locating automatic vehicle identification readers for the provision of roadway travel times publication-title: Transportation Research Part B: Methodological – start-page: 19 year: 2010 end-page: 22 ident: b0035 article-title: Estimating arterial traffic conditions using sparse probe data publication-title: Proceedings of the ITS – reference: Fletcher, R., 1971. A Modified Marquardt Subroutine for Nonlinear Least Squares. Rpt. AERE-R 6799, Harwell. Matlab Parallel Computing Toolbox. Mathworks, Inc. – volume: 17 start-page: 712 year: 1971 end-page: 716 ident: b0095 article-title: Finding the K shortest loopless paths in a network publication-title: Management Science – volume: 24 start-page: 83 year: 2012 end-page: 101 ident: b0015 article-title: Valuing travel time variability: characteristics of the travel time distribution on an urban road publication-title: Transportation Research Part C: Emerging Technologies – reference: Schaller Consulting, 2006. The New York City Taxicab Fact Book, (March). < – reference: Nocedal, J., Wright, S.J., 2006. Numerical Optimization. second ed. Springer, pp. 258–264. – volume: 5 start-page: 276 issue: 4 year: 2004 ident: 10.1016/j.trc.2013.04.001_b0090 article-title: Travel-time prediction with support vector regression publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2004.837813 – ident: 10.1016/j.trc.2013.04.001_b0085 – volume: 36 start-page: 899 issue: 10 year: 2002 ident: 10.1016/j.trc.2013.04.001_b0005 article-title: Vehicle reidentification and travel time measurement on congested freeways publication-title: Transportation Research Part A: Policy and Practice doi: 10.1016/S0965-8564(01)00046-5 – ident: 10.1016/j.trc.2013.04.001_b0010 – ident: 10.1016/j.trc.2013.04.001_b0060 – volume: 11 start-page: 187 issue: 3–4 year: 2003 ident: 10.1016/j.trc.2013.04.001_b0105 article-title: Short-term travel time prediction publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/S0968-090X(03)00026-3 – volume: 2260 start-page: 1 issue: -1 year: 2011 ident: 10.1016/j.trc.2013.04.001_b0025 article-title: Modeling of travel time variations on urban links in London publication-title: Transportation Research Record: Journal of the Transportation Research Board doi: 10.3141/2260-01 – volume: 40 start-page: 857 issue: 10 year: 2006 ident: 10.1016/j.trc.2013.04.001_b0080 article-title: A discrete optimization approach for locating automatic vehicle identification readers for the provision of roadway travel times publication-title: Transportation Research Part B: Methodological doi: 10.1016/j.trb.2005.11.003 – ident: 10.1016/j.trc.2013.04.001_b0040 – volume: 24 start-page: 83 year: 2012 ident: 10.1016/j.trc.2013.04.001_b0015 article-title: Valuing travel time variability: characteristics of the travel time distribution on an urban road publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2012.02.008 – ident: 10.1016/j.trc.2013.04.001_b0065 – ident: 10.1016/j.trc.2013.04.001_b0050 – ident: 10.1016/j.trc.2013.04.001_b0075 – volume: 18 start-page: 568 year: 2010 ident: 10.1016/j.trc.2013.04.001_b0030 article-title: Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2009.10.006 – start-page: 19 year: 2010 ident: 10.1016/j.trc.2013.04.001_b0035 article-title: Estimating arterial traffic conditions using sparse probe data publication-title: Proceedings of the ITS – volume: 17 start-page: 712 year: 1971 ident: 10.1016/j.trc.2013.04.001_b0095 article-title: Finding the K shortest loopless paths in a network publication-title: Management Science doi: 10.1287/mnsc.17.11.712 – ident: 10.1016/j.trc.2013.04.001_b0045 – volume: 98 start-page: 163 year: 1998 ident: 10.1016/j.trc.2013.04.001_b0070 article-title: Forecasting multiple-period freeway link travel times using modular neural networks publication-title: Journal of the Transportation Research Board doi: 10.3141/1617-23 – volume: 42 start-page: 325 issue: 4 year: 2008 ident: 10.1016/j.trc.2013.04.001_b0100 article-title: Travel time estimation on a freeway using discrete time Markov chains publication-title: Transportation Research Part B: Methodological doi: 10.1016/j.trb.2007.08.005 – ident: 10.1016/j.trc.2013.04.001_b0020 – volume: 19 start-page: 1006 issue: 6 year: 2011 ident: 10.1016/j.trc.2013.04.001_b0055 article-title: Incorporating uncertainty into short-term travel time predictions publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2011.05.014 – ident: 10.1016/j.trc.2013.04.001_b0110 |
| SSID | ssj0001957 |
| Score | 2.4665713 |
| Snippet | •Uses large scale GPS traces of taxi cabs in New York City.•A model for estimating link travel times is developed using large scale data.•Developed insights... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 37 |
| SubjectTerms | Applied sciences Exact sciences and technology GPS-enabled taxicab Ground, air and sea transportation, marine construction Large scale data analysis Path inference Probe vehicle Road transportation and traffic Traffic state estimation Transportation planning, management and economics Urban networks |
| Title | Urban link travel time estimation using large-scale taxi data with partial information |
| URI | https://dx.doi.org/10.1016/j.trc.2013.04.001 |
| Volume | 33 |
| WOSCitedRecordID | wos000322054800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpNCUUto0Jekj6NBTjRdbfsg6hiUl6SEEkg2-GckPmmTjLrv2sv1f_YGdkWSv09LQFnoxxtiy0HzSjEYz3xDyIQmDSvI8coOKxW6oWOmKOC_cQPFCgkpkXiR1sQl-dpakqTgfjb53uTCrGa_rZL0W8_8qangGwsbU2b8Qd98oPIB7EDpcQexw_SPBTxcK5iwezGL9h1U50_XjHWTTMGmKTqv9AzOMAXeXIKPSaeT62sFgUeOXnWOzmo2jz20cGrE9IbppzvIFfRmDObponIleXjGrU2dida77QbAiOqnxpRSg-a3dwPNELq07Vt5dbwIWp7e37bI1GfEXUlMwXY17RSHvjGt4gp4aOxLWi4EVJZKhF6NPrzmtYVo456tmENWkvZUxRml4qVFbZq1OuHBZYAnF7WIeBIPV2NDJWL1umFF_0RjGeXEzbhZIaOkHmvjW9uw-EfcFdgL7gCeAYHl5j8g245GAtXT76PQ4_dxbAL4wDLNdp7vTdB1X-NOPfmcPPZtLREBlyqsMbJ7LF-S53azQIwOyl2RU1rvkSZfLvtwlTwd0lq_IlYYeRehRAz2K0KMb6FENPTqAHkXoUYQeRehRCz06gN4emX46vpycuLZuh5uD9dq4Oeeqir1ECRbzHAzeKE4qzgpVqkpIHuahXyWwbY5Bt5S-klJVrArBFBWwO6hYHrwmW_XXutwn1FeFl0eslAEYysJjSvkxKGTc5vpFFIcHxOtGL8stqT3WVpllXfTiTQYDnuGAZ16IEZwH5GP_ydwwujz0ctiJJLMmqTE1M8DPQ58d3hNf_yPAC-wXmHjzb-2-JTubyfOObDWLtnxPHucrmHuLQwvDH0gYveY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Urban+link+travel+time+estimation+using+large-scale+taxi+data+with+partial+information&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Zhan%2C+Xianyuan&rft.au=Hasan%2C+Samiul&rft.au=Ukkusuri%2C+Satish+V.&rft.au=Kamga%2C+Camille&rft.date=2013-08-01&rft.pub=Elsevier+India+Pvt+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=33&rft.spage=37&rft.epage=49&rft_id=info:doi/10.1016%2Fj.trc.2013.04.001&rft.externalDocID=S0968090X13000740 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |