Urban link travel time estimation using large-scale taxi data with partial information

•Uses large scale GPS traces of taxi cabs in New York City.•A model for estimating link travel times is developed using large scale data.•Developed insights into the congestion issues in New York City.•Rigorous numerical results are performed to test the approach. Taxicabs equipped with Global Posit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research. Part C, Emerging technologies Jg. 33; S. 37 - 49
Hauptverfasser: Zhan, Xianyuan, Hasan, Samiul, Ukkusuri, Satish V., Kamga, Camille
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier India Pvt Ltd 01.08.2013
Elsevier
Schlagworte:
ISSN:0968-090X, 1879-2359
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Uses large scale GPS traces of taxi cabs in New York City.•A model for estimating link travel times is developed using large scale data.•Developed insights into the congestion issues in New York City.•Rigorous numerical results are performed to test the approach. Taxicabs equipped with Global Positioning System (GPS) devices can serve as useful probes for monitoring the traffic state in an urban area. This paper presents a new descriptive model for estimating hourly average of urban link travel times using taxicab origin–destination (OD) trip data. The focus of this study is to develop a methodology to estimate link travel times from OD trip data and demonstrate the feasibility of estimating network condition using large-scale geo-location data with partial information. The data, collected from the taxicabs in New York City, provides the locations of origins and destinations, travel times, fares and other information of taxi trips. The new model infers the possible paths for each trip and then estimates the link travel times by minimizing the error between the expected path travel times and the observed path travel times. The model is evaluated using a test network from Midtown Manhattan. Results indicate that the proposed method can efficiently estimate hourly average link travel times. This research provides new possibilities for fully utilizing the partial information obtained from urban taxicab data for estimating network condition, which is not only very useful but also is inexpensive and has much better coverage than traditional sensor data.
AbstractList •Uses large scale GPS traces of taxi cabs in New York City.•A model for estimating link travel times is developed using large scale data.•Developed insights into the congestion issues in New York City.•Rigorous numerical results are performed to test the approach. Taxicabs equipped with Global Positioning System (GPS) devices can serve as useful probes for monitoring the traffic state in an urban area. This paper presents a new descriptive model for estimating hourly average of urban link travel times using taxicab origin–destination (OD) trip data. The focus of this study is to develop a methodology to estimate link travel times from OD trip data and demonstrate the feasibility of estimating network condition using large-scale geo-location data with partial information. The data, collected from the taxicabs in New York City, provides the locations of origins and destinations, travel times, fares and other information of taxi trips. The new model infers the possible paths for each trip and then estimates the link travel times by minimizing the error between the expected path travel times and the observed path travel times. The model is evaluated using a test network from Midtown Manhattan. Results indicate that the proposed method can efficiently estimate hourly average link travel times. This research provides new possibilities for fully utilizing the partial information obtained from urban taxicab data for estimating network condition, which is not only very useful but also is inexpensive and has much better coverage than traditional sensor data.
Author Zhan, Xianyuan
Kamga, Camille
Hasan, Samiul
Ukkusuri, Satish V.
Author_xml – sequence: 1
  givenname: Xianyuan
  surname: Zhan
  fullname: Zhan, Xianyuan
  email: zhanxianyuan@gmail.com
  organization: School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
– sequence: 2
  givenname: Samiul
  surname: Hasan
  fullname: Hasan, Samiul
  email: samiul.hasan@gmail.com
  organization: School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA
– sequence: 3
  givenname: Satish V.
  surname: Ukkusuri
  fullname: Ukkusuri, Satish V.
  email: sukkusur@purdue.edu
  organization: School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
– sequence: 4
  givenname: Camille
  surname: Kamga
  fullname: Kamga, Camille
  email: ckamga@utrc2.org
  organization: Civil Engineering, Marshak Hall, Suite 910, 160 Convent Avenue, The City College of New York, New York, NY 10031, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27527329$$DView record in Pascal Francis
BookMark eNp9kD1PwzAQhi1UJFrgB7B5YUywnQ_HYkIVX1IlForYrItjF5fgVLYp8O9xCWJg6C3v8j6nu2eGJm5wGqEzSnJKaH2xzqNXOSO0yEmZE0IP0JQ2XGSsqMQETYmom4wI8nyEZiGsSWqIik_R09K34HBv3SuOHra6x9G-aaxDCoh2cPg9WLfCPfiVzoKCXuMInxZ3EAF_2PiCN-CjhR5bZwY_Qifo0EAf9OlvHqPlzfXj_C5bPNzez68WmSqqKmaK89bUpGkFq7kqBK_qxnDWtbo1AnipSmqaOg2hVNMWoDXMlA0joqS1Yao4Rufj3g3sTjMenLJBbnw63n9JxivGCyZSj4495YcQvDZ_FUrkTqBcyyRQ7gRKUsqkJzH8H6Ns_PkuibL9XvJyJHV6fWu1l0FZ7ZTurNcqym6we-hvFUeNzA
CitedBy_id crossref_primary_10_1007_s11769_018_0982_2
crossref_primary_10_1109_TITS_2019_2899906
crossref_primary_10_1109_ACCESS_2018_2873779
crossref_primary_10_1109_ACCESS_2020_2971008
crossref_primary_10_1016_j_trc_2017_08_002
crossref_primary_10_1016_j_neucom_2020_05_038
crossref_primary_10_1016_j_physa_2019_123759
crossref_primary_10_1111_sjos_12780
crossref_primary_10_1007_s11707_016_0634_8
crossref_primary_10_1080_21680566_2024_2416181
crossref_primary_10_1016_j_neucom_2015_08_100
crossref_primary_10_1109_TITS_2019_2938762
crossref_primary_10_3390_s22249735
crossref_primary_10_1109_TITS_2016_2521862
crossref_primary_10_1080_15472450_2019_1617141
crossref_primary_10_1080_15472450_2019_1617142
crossref_primary_10_1109_TITS_2022_3200445
crossref_primary_10_3390_aerospace12080721
crossref_primary_10_1016_j_trc_2017_01_020
crossref_primary_10_3390_app8020279
crossref_primary_10_1145_3682058
crossref_primary_10_1109_MITS_2019_2926274
crossref_primary_10_1155_2016_7348705
crossref_primary_10_1109_TITS_2019_2931830
crossref_primary_10_3141_2423_08
crossref_primary_10_1016_j_tranpol_2020_04_001
crossref_primary_10_1109_TITS_2018_2803085
crossref_primary_10_1061__ASCE_TE_1943_5436_0000772
crossref_primary_10_1109_TITS_2017_2650947
crossref_primary_10_1155_2022_1213221
crossref_primary_10_3390_systems12080282
crossref_primary_10_1016_j_trb_2017_01_012
crossref_primary_10_1016_j_physa_2022_127079
crossref_primary_10_1016_j_trb_2015_04_004
crossref_primary_10_1177_03611981231172961
crossref_primary_10_1145_3317663
crossref_primary_10_1287_trsc_2017_0805
crossref_primary_10_3390_math12081255
crossref_primary_10_1016_j_physa_2018_02_064
crossref_primary_10_1007_s10489_023_05139_6
crossref_primary_10_1016_j_trc_2015_10_004
crossref_primary_10_1016_j_jtrangeo_2024_104049
crossref_primary_10_1016_j_trc_2020_102660
crossref_primary_10_1016_j_trd_2019_09_025
crossref_primary_10_1016_j_tra_2017_05_006
crossref_primary_10_1155_2020_7081628
crossref_primary_10_1016_j_trc_2017_03_013
crossref_primary_10_1177_0361198118772956
crossref_primary_10_1016_j_trc_2020_01_023
crossref_primary_10_1109_TITS_2020_3040386
crossref_primary_10_1016_j_simpat_2019_102025
crossref_primary_10_1109_TBDATA_2016_2627224
crossref_primary_10_3390_app12105017
crossref_primary_10_1109_TBDATA_2018_2872450
crossref_primary_10_1155_2021_5530814
crossref_primary_10_3390_su10093003
crossref_primary_10_1016_j_trc_2015_04_022
crossref_primary_10_1016_j_physa_2017_11_114
crossref_primary_10_1007_s11067_022_09582_9
crossref_primary_10_1061__ASCE_CP_1943_5487_0000644
crossref_primary_10_1016_j_matcom_2018_01_006
crossref_primary_10_3390_su17020754
crossref_primary_10_1007_s13177_016_0131_1
crossref_primary_10_1088_1755_1315_502_1_012005
crossref_primary_10_1016_j_tra_2023_103615
crossref_primary_10_1016_j_trpro_2019_09_084
crossref_primary_10_1109_TKDE_2016_2621104
crossref_primary_10_1080_21680566_2018_1540952
crossref_primary_10_1155_2019_8582761
crossref_primary_10_1038_s41598_021_87407_4
crossref_primary_10_1111_cgf_12628
crossref_primary_10_1109_TITS_2018_2877059
crossref_primary_10_1145_3161194
crossref_primary_10_3141_2422_05
crossref_primary_10_1177_0361198118793273
crossref_primary_10_3390_ijerph16010089
crossref_primary_10_1109_TITS_2016_2568759
crossref_primary_10_1007_s00521_019_04364_w
crossref_primary_10_3390_su12198070
crossref_primary_10_1287_mnsc_2022_00775
crossref_primary_10_1080_00207543_2015_1064183
crossref_primary_10_1016_j_trc_2019_09_007
crossref_primary_10_1287_opre_2018_1784
crossref_primary_10_1080_15472450_2022_2124867
crossref_primary_10_3390_ijgi6110339
crossref_primary_10_1016_j_trb_2015_02_004
crossref_primary_10_1080_15472450_2018_1518137
crossref_primary_10_1016_j_autcon_2015_12_007
crossref_primary_10_1016_j_trc_2019_09_019
crossref_primary_10_1109_ACCESS_2022_3206384
crossref_primary_10_1109_TITS_2015_2461000
crossref_primary_10_1016_j_trc_2017_03_002
crossref_primary_10_1080_15472450_2014_995760
crossref_primary_10_1016_j_scs_2021_103344
crossref_primary_10_3141_2595_11
crossref_primary_10_1109_TITS_2021_3095408
crossref_primary_10_1177_03611981211018474
crossref_primary_10_1002_atr_1395
crossref_primary_10_1016_j_eswa_2018_02_033
crossref_primary_10_1080_15472450_2016_1154764
crossref_primary_10_1038_s41467_025_57845_z
crossref_primary_10_3390_su11164318
crossref_primary_10_1016_j_trc_2014_01_002
crossref_primary_10_1109_TITS_2022_3168865
crossref_primary_10_1016_j_envpol_2019_05_081
crossref_primary_10_1016_j_trc_2014_08_010
crossref_primary_10_1007_s00521_022_07977_w
crossref_primary_10_1109_JIOT_2023_3317639
crossref_primary_10_3846_16484142_2017_1347827
crossref_primary_10_1016_j_ins_2021_12_091
crossref_primary_10_1016_j_jpdc_2021_07_002
crossref_primary_10_1109_JIOT_2021_3077007
crossref_primary_10_1016_j_trc_2017_10_012
crossref_primary_10_1016_j_trc_2023_104115
crossref_primary_10_1016_j_jenvman_2018_02_026
crossref_primary_10_1016_j_tre_2024_103839
crossref_primary_10_1155_2018_4276593
crossref_primary_10_1016_j_trc_2018_03_004
Cites_doi 10.1109/TITS.2004.837813
10.1016/S0965-8564(01)00046-5
10.1016/S0968-090X(03)00026-3
10.3141/2260-01
10.1016/j.trb.2005.11.003
10.1016/j.trc.2012.02.008
10.1016/j.trc.2009.10.006
10.1287/mnsc.17.11.712
10.3141/1617-23
10.1016/j.trb.2007.08.005
10.1016/j.trc.2011.05.014
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.trc.2013.04.001
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Applied Sciences
EISSN 1879-2359
EndPage 49
ExternalDocumentID 27527329
10_1016_j_trc_2013_04_001
S0968090X13000740
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c355t-c77bf608b9267c397568f72dbebf9a74c41f86666011e1baabf2f48209416f2c3
ISICitedReferencesCount 156
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000322054800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0968-090X
IngestDate Mon Jul 21 09:12:07 EDT 2025
Sat Nov 29 03:00:55 EST 2025
Tue Nov 18 20:12:48 EST 2025
Fri Feb 23 02:16:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Traffic state estimation
Probe vehicle
GPS-enabled taxicab
Large scale data analysis
Path inference
Urban networks
Data analysis
Travel time
GPS system
Forecast model
Modeling
Urban district network
Urban road traffic
Taxi
Large scale
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c355t-c77bf608b9267c397568f72dbebf9a74c41f86666011e1baabf2f48209416f2c3
PageCount 13
ParticipantIDs pascalfrancis_primary_27527329
crossref_primary_10_1016_j_trc_2013_04_001
crossref_citationtrail_10_1016_j_trc_2013_04_001
elsevier_sciencedirect_doi_10_1016_j_trc_2013_04_001
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2013
Publisher Elsevier India Pvt Ltd
Elsevier
Publisher_xml – name: Elsevier India Pvt Ltd
– name: Elsevier
References Park, RILETT (b0070) 1998; 98
Inrix, Inc.
Hunter, T., Herring, R., Abbeel, P., 2009. Path and travel time inference from GPS probe vehicle data. Neural Information Processing Systems Foundation (NIPS), Vancouver, Canada, (December).
Fletcher, R., 1971. A Modified Marquardt Subroutine for Nonlinear Least Squares. Rpt. AERE-R 6799, Harwell. Matlab Parallel Computing Toolbox. Mathworks, Inc.
Herring, Hofleitner, Abbeel (b0035) 2010
Schaller Consulting, 2006. The New York City Taxicab Fact Book, (March).
Fosgerau, Fukuda (b0015) 2012; 24
Coifman (b0005) 2002; 36
Grynbaum, M.M., 2010. Gridlock May Not Be Constant, but Slow Going Is Here to Stay. New York Times. Retrieved July 31, 2012.
Wu, Ho, Lee (b0090) 2004; 5
King, David, Peters, J., 2012. Taxicabs for Improved Urban Mobility: Are We Missing an Opportunity? Transportation Research Board 91st Annual Meeting, 19p.
Herrera, Work, Ban, Herring, Jacobson, Bayen (b0030) 2010; 18
Yen (b0095) 1971; 17
Zheng, F., Van Zuylen, H., in press. Urban link travel time estimation based on sparse probe vehicle data. Transportation Research Part C: Emerging Technologies 13. Elsevier Ltd.
.
Yeon, Elefteriadou, Lawphongpanich (b0100) 2008; 42
Zhang, Rice (b0105) 2003; 11
Nocedal, J., Wright, S.J., 2006. Numerical Optimization. second ed. Springer, pp. 258–264.
Oh, J.S., Jayakrishnan, R., Recker, W., 2003. Section travel time estimation from point detection data. In: 82nd Annual Meeting of Transportation Research Board, Washington, DC, USA.
Li, Rose (b0055) 2011; 19
Sherali, Desai, Rakha (b0080) 2006; 40
Taxicab Rates from New York Taxi & Limousine Commission
Hasan, Choudhury, Ben-Akiva, Emmonds (b0025) 2011; 2260
10.1016/j.trc.2013.04.001_b0050
Zhang (10.1016/j.trc.2013.04.001_b0105) 2003; 11
10.1016/j.trc.2013.04.001_b0040
10.1016/j.trc.2013.04.001_b0060
Yeon (10.1016/j.trc.2013.04.001_b0100) 2008; 42
10.1016/j.trc.2013.04.001_b0010
10.1016/j.trc.2013.04.001_b0065
Park (10.1016/j.trc.2013.04.001_b0070) 1998; 98
10.1016/j.trc.2013.04.001_b0110
10.1016/j.trc.2013.04.001_b0085
Fosgerau (10.1016/j.trc.2013.04.001_b0015) 2012; 24
10.1016/j.trc.2013.04.001_b0020
10.1016/j.trc.2013.04.001_b0075
Coifman (10.1016/j.trc.2013.04.001_b0005) 2002; 36
Sherali (10.1016/j.trc.2013.04.001_b0080) 2006; 40
Li (10.1016/j.trc.2013.04.001_b0055) 2011; 19
Wu (10.1016/j.trc.2013.04.001_b0090) 2004; 5
Hasan (10.1016/j.trc.2013.04.001_b0025) 2011; 2260
Herring (10.1016/j.trc.2013.04.001_b0035) 2010
Herrera (10.1016/j.trc.2013.04.001_b0030) 2010; 18
10.1016/j.trc.2013.04.001_b0045
Yen (10.1016/j.trc.2013.04.001_b0095) 1971; 17
References_xml – volume: 11
  start-page: 187
  year: 2003
  end-page: 210
  ident: b0105
  article-title: Short-term travel time prediction
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 36
  start-page: 899
  year: 2002
  end-page: 917
  ident: b0005
  article-title: Vehicle reidentification and travel time measurement on congested freeways
  publication-title: Transportation Research Part A: Policy and Practice
– volume: 2260
  start-page: 1
  year: 2011
  end-page: 7
  ident: b0025
  article-title: Modeling of travel time variations on urban links in London
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
– volume: 19
  start-page: 1006
  year: 2011
  end-page: 1018
  ident: b0055
  article-title: Incorporating uncertainty into short-term travel time predictions
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 98
  start-page: 163
  year: 1998
  end-page: 170
  ident: b0070
  article-title: Forecasting multiple-period freeway link travel times using modular neural networks
  publication-title: Journal of the Transportation Research Board
– reference: Hunter, T., Herring, R., Abbeel, P., 2009. Path and travel time inference from GPS probe vehicle data. Neural Information Processing Systems Foundation (NIPS), Vancouver, Canada, (December).
– reference: Inrix, Inc.
– reference: Grynbaum, M.M., 2010. Gridlock May Not Be Constant, but Slow Going Is Here to Stay. New York Times. Retrieved July 31, 2012. <
– volume: 5
  start-page: 276
  year: 2004
  end-page: 281
  ident: b0090
  article-title: Travel-time prediction with support vector regression
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: Zheng, F., Van Zuylen, H., in press. Urban link travel time estimation based on sparse probe vehicle data. Transportation Research Part C: Emerging Technologies 13. Elsevier Ltd.
– reference: >.
– reference: Oh, J.S., Jayakrishnan, R., Recker, W., 2003. Section travel time estimation from point detection data. In: 82nd Annual Meeting of Transportation Research Board, Washington, DC, USA.
– volume: 42
  start-page: 325
  year: 2008
  end-page: 338
  ident: b0100
  article-title: Travel time estimation on a freeway using discrete time Markov chains
  publication-title: Transportation Research Part B: Methodological
– volume: 18
  start-page: 568
  year: 2010
  end-page: 583
  ident: b0030
  article-title: Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment
  publication-title: Transportation Research Part C: Emerging Technologies
– reference: .
– reference: Taxicab Rates from New York Taxi & Limousine Commission: <
– reference: King, David, Peters, J., 2012. Taxicabs for Improved Urban Mobility: Are We Missing an Opportunity? Transportation Research Board 91st Annual Meeting, 19p.
– volume: 40
  start-page: 857
  year: 2006
  end-page: 871
  ident: b0080
  article-title: A discrete optimization approach for locating automatic vehicle identification readers for the provision of roadway travel times
  publication-title: Transportation Research Part B: Methodological
– start-page: 19
  year: 2010
  end-page: 22
  ident: b0035
  article-title: Estimating arterial traffic conditions using sparse probe data
  publication-title: Proceedings of the ITS
– reference: Fletcher, R., 1971. A Modified Marquardt Subroutine for Nonlinear Least Squares. Rpt. AERE-R 6799, Harwell. Matlab Parallel Computing Toolbox. Mathworks, Inc.
– volume: 17
  start-page: 712
  year: 1971
  end-page: 716
  ident: b0095
  article-title: Finding the K shortest loopless paths in a network
  publication-title: Management Science
– volume: 24
  start-page: 83
  year: 2012
  end-page: 101
  ident: b0015
  article-title: Valuing travel time variability: characteristics of the travel time distribution on an urban road
  publication-title: Transportation Research Part C: Emerging Technologies
– reference: Schaller Consulting, 2006. The New York City Taxicab Fact Book, (March). <
– reference: Nocedal, J., Wright, S.J., 2006. Numerical Optimization. second ed. Springer, pp. 258–264.
– volume: 5
  start-page: 276
  issue: 4
  year: 2004
  ident: 10.1016/j.trc.2013.04.001_b0090
  article-title: Travel-time prediction with support vector regression
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2004.837813
– ident: 10.1016/j.trc.2013.04.001_b0085
– volume: 36
  start-page: 899
  issue: 10
  year: 2002
  ident: 10.1016/j.trc.2013.04.001_b0005
  article-title: Vehicle reidentification and travel time measurement on congested freeways
  publication-title: Transportation Research Part A: Policy and Practice
  doi: 10.1016/S0965-8564(01)00046-5
– ident: 10.1016/j.trc.2013.04.001_b0010
– ident: 10.1016/j.trc.2013.04.001_b0060
– volume: 11
  start-page: 187
  issue: 3–4
  year: 2003
  ident: 10.1016/j.trc.2013.04.001_b0105
  article-title: Short-term travel time prediction
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/S0968-090X(03)00026-3
– volume: 2260
  start-page: 1
  issue: -1
  year: 2011
  ident: 10.1016/j.trc.2013.04.001_b0025
  article-title: Modeling of travel time variations on urban links in London
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.3141/2260-01
– volume: 40
  start-page: 857
  issue: 10
  year: 2006
  ident: 10.1016/j.trc.2013.04.001_b0080
  article-title: A discrete optimization approach for locating automatic vehicle identification readers for the provision of roadway travel times
  publication-title: Transportation Research Part B: Methodological
  doi: 10.1016/j.trb.2005.11.003
– ident: 10.1016/j.trc.2013.04.001_b0040
– volume: 24
  start-page: 83
  year: 2012
  ident: 10.1016/j.trc.2013.04.001_b0015
  article-title: Valuing travel time variability: characteristics of the travel time distribution on an urban road
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2012.02.008
– ident: 10.1016/j.trc.2013.04.001_b0065
– ident: 10.1016/j.trc.2013.04.001_b0050
– ident: 10.1016/j.trc.2013.04.001_b0075
– volume: 18
  start-page: 568
  year: 2010
  ident: 10.1016/j.trc.2013.04.001_b0030
  article-title: Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2009.10.006
– start-page: 19
  year: 2010
  ident: 10.1016/j.trc.2013.04.001_b0035
  article-title: Estimating arterial traffic conditions using sparse probe data
  publication-title: Proceedings of the ITS
– volume: 17
  start-page: 712
  year: 1971
  ident: 10.1016/j.trc.2013.04.001_b0095
  article-title: Finding the K shortest loopless paths in a network
  publication-title: Management Science
  doi: 10.1287/mnsc.17.11.712
– ident: 10.1016/j.trc.2013.04.001_b0045
– volume: 98
  start-page: 163
  year: 1998
  ident: 10.1016/j.trc.2013.04.001_b0070
  article-title: Forecasting multiple-period freeway link travel times using modular neural networks
  publication-title: Journal of the Transportation Research Board
  doi: 10.3141/1617-23
– volume: 42
  start-page: 325
  issue: 4
  year: 2008
  ident: 10.1016/j.trc.2013.04.001_b0100
  article-title: Travel time estimation on a freeway using discrete time Markov chains
  publication-title: Transportation Research Part B: Methodological
  doi: 10.1016/j.trb.2007.08.005
– ident: 10.1016/j.trc.2013.04.001_b0020
– volume: 19
  start-page: 1006
  issue: 6
  year: 2011
  ident: 10.1016/j.trc.2013.04.001_b0055
  article-title: Incorporating uncertainty into short-term travel time predictions
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2011.05.014
– ident: 10.1016/j.trc.2013.04.001_b0110
SSID ssj0001957
Score 2.466658
Snippet •Uses large scale GPS traces of taxi cabs in New York City.•A model for estimating link travel times is developed using large scale data.•Developed insights...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 37
SubjectTerms Applied sciences
Exact sciences and technology
GPS-enabled taxicab
Ground, air and sea transportation, marine construction
Large scale data analysis
Path inference
Probe vehicle
Road transportation and traffic
Traffic state estimation
Transportation planning, management and economics
Urban networks
Title Urban link travel time estimation using large-scale taxi data with partial information
URI https://dx.doi.org/10.1016/j.trc.2013.04.001
Volume 33
WOSCitedRecordID wos000322054800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWFgkQQlBAlI_KB06ssnI-Nk6O1aqocKiQ6FZ7i2yvLdpuwyqbrJZ_w09lxnayaVEreuASRVHiWHnP9ngy84aQj-N5mHEB5GXzUAdJqlQgMXDNwOqthWRxpIQtNsFPTrLZLP82GPxuc2HWC16W2WaTL_8r1HANwMbU2XvA3TUKF-AcQIcjwA7HfwJ-WkkYs_hjFus_rPXC1o8fopqGS1McNtY_sMAY8GAFGOlhLTbnQwwWdX7ZJTZr1Ti63Ma-EdsJorvmvF7QjxGYo1U9nNjpFbM6bSZW67rvBSuikxpvmgE1fzVbeh6LlXfHiqvzbcDi9PKyWTUuI_67sBJMZ6NuoRBXzjU8QU-N_xLei4EVJbLWi-HdkSmGYbBZf2aO497U6rRh_CLtZE7_mv6dJ-JiVFeoThnGVsXWv-aa1PaNJbALTGxj3i4KaKLAJgqWYNzfA7Ib8XEO8-bu4Zej2ddutQ9zpybb9r_9c25jCG_04zbb5-lSINrGlVLp2Tenz8kzvzGhh45QL8hAl3vkUZu3vtojT3rSlS_JmaUZRZpRRzOKNKNbmlFLM9qjGUWaUaQZRZpRTzPao9krMv18dDo5DnyNjkCBpVoHinNpUpbJPEq5AuN2nGaGR3OppckFT1QSmgy2yLDvD3UohZAmMgmYnTnsBEyk4tdkp_xZ6jeEikgqI5g2nKuExXHGjGYinysTSZZxs09Y-_UK5QXssY7KorgVtX3yqXtk6dRb7ro5aSEpvPnpzMoC6HXXYwfX4OteBHyBvUGUv71PJ96Rx9vh8Z7s1FWjP5CHag2jqzrw5PsDFGK02w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Urban+link+travel+time+estimation+using+large-scale+taxi+data+with+partial+information&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Zhan%2C+Xianyuan&rft.au=Hasan%2C+Samiul&rft.au=Ukkusuri%2C+Satish+V.&rft.au=Kamga%2C+Camille&rft.date=2013-08-01&rft.issn=0968-090X&rft.volume=33&rft.spage=37&rft.epage=49&rft_id=info:doi/10.1016%2Fj.trc.2013.04.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trc_2013_04_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon