A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces

In this paper we present a new regularity condition for the subdifferential sum formula of a convex function with the precomposition of another convex function with a continuous linear mapping. This condition is formulated by using the epigraphs of the conjugates of the functions involved and turns...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis Vol. 64; no. 12; pp. 2787 - 2804
Main Authors: Boţ, Radu Ioan, Wanka, Gert
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 15.06.2006
Elsevier
Subjects:
ISSN:0362-546X, 1873-5215
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we present a new regularity condition for the subdifferential sum formula of a convex function with the precomposition of another convex function with a continuous linear mapping. This condition is formulated by using the epigraphs of the conjugates of the functions involved and turns out to be weaker than the generalized interior-point regularity conditions given so far in the literature. Moreover, it provides a weak sufficient condition for Fenchel duality regarding convex optimization problems in infinite dimensional spaces. As an application, we discuss the strong conical hull intersection property (CHIP) for a finite family of closed convex sets.
AbstractList In this paper we present a new regularity condition for the subdifferential sum formula of a convex function with the precomposition of another convex function with a continuous linear mapping. This condition is formulated by using the epigraphs of the conjugates of the functions involved and turns out to be weaker than the generalized interior-point regularity conditions given so far in the literature. Moreover, it provides a weak sufficient condition for Fenchel duality regarding convex optimization problems in infinite dimensional spaces. As an application, we discuss the strong conical hull intersection property (CHIP) for a finite family of closed convex sets.
Author Boţ, Radu Ioan
Wanka, Gert
Author_xml – sequence: 1
  givenname: Radu Ioan
  surname: Boţ
  fullname: Boţ, Radu Ioan
  email: radu.bot@mathematik.tu-chemnitz.de
– sequence: 2
  givenname: Gert
  surname: Wanka
  fullname: Wanka, Gert
  email: gert.wanka@mathematik.tu-chemnitz.de
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17683391$$DView record in Pascal Francis
BookMark eNp1kU1r3DAQhkVIIZtt7znq0t7s6MOW7d5CaNpAoJcWehOz0ijVVitvJbkh_74yG3ooBAbm8jwvzDuX5DzOEQm54qzljKvrfRuhFYz1LZtaxoczsuHjIJte8P6cbJhUouk79eOCXOa8Z6wiUm3I4YY-IfzCRBM-LgGSL8_UzNH64udI3ZxoXnbWO4cJY_EQqIFglrBkCtHSO4zmJwZqFwir6mMd56MvSK0_YMw1pkr5CAbzW_LGQcj47mVvyfe7T99uvzQPXz_f3948NEb2fWmMGDqHqneCM-Cu26GAcerVTsFgd8gkF3YaB-hATkPHDUhppZmgcyBACiG35MMp95jm3wvmog8-GwwBIs5L1mIa1CjFWMH3LyDkepdLEI3P-pj8AdKz5ismJ145deJMmnNO6LTxBdaKSgIfNGd6_YLe6wh6_YJmk14r3hL2n_gv-3Xl40nB2tAfj0ln42vNaH1CU7Sd_evyX8KfopA
CODEN NOANDD
CitedBy_id crossref_primary_10_1007_s11590_017_1187_9
crossref_primary_10_1080_02331934_2010_505649
crossref_primary_10_3389_fams_2016_00014
crossref_primary_10_1137_050641491
crossref_primary_10_1007_s10255_015_0493_1
crossref_primary_10_1137_080739124
crossref_primary_10_1016_j_insmatheco_2010_05_005
crossref_primary_10_1016_j_jmaa_2007_04_071
crossref_primary_10_1016_j_na_2006_09_006
crossref_primary_10_1007_s10013_017_0265_8
crossref_primary_10_1007_s11228_008_0093_9
crossref_primary_10_1080_02331934_2020_1737864
crossref_primary_10_1137_080734352
crossref_primary_10_1007_s10107_013_0707_3
crossref_primary_10_1007_s10957_020_01679_w
crossref_primary_10_1007_s10107_009_0311_8
crossref_primary_10_1016_j_na_2012_01_023
crossref_primary_10_1016_j_jat_2008_03_002
crossref_primary_10_1016_j_na_2011_12_012
crossref_primary_10_1002_mana_200510662
crossref_primary_10_1155_2009_258756
crossref_primary_10_1007_s10898_013_0100_z
crossref_primary_10_1080_02331934_2017_1338289
crossref_primary_10_1007_s10957_010_9733_y
crossref_primary_10_1109_TAC_2020_2968962
crossref_primary_10_1007_s11228_012_0219_y
crossref_primary_10_1007_s11117_013_0227_7
crossref_primary_10_1137_120901805
crossref_primary_10_1137_100789749
crossref_primary_10_1007_s10957_009_9595_3
crossref_primary_10_1007_s11750_011_0208_6
crossref_primary_10_1007_s11228_017_0462_3
crossref_primary_10_1016_j_jmaa_2012_10_052
crossref_primary_10_1016_j_jmaa_2014_01_033
crossref_primary_10_12677_aam_2025_147364
crossref_primary_10_1080_02331934_2020_1756287
crossref_primary_10_1137_060676982
crossref_primary_10_1137_080716803
crossref_primary_10_1016_j_na_2007_05_021
crossref_primary_10_1080_01630560701190224
crossref_primary_10_1016_j_na_2010_04_020
crossref_primary_10_1080_02331930902945082
crossref_primary_10_1080_02331934_2022_2103416
crossref_primary_10_1137_20M1324259
Cites_doi 10.1137/0328051
10.1215/S0012-7094-66-03312-6
10.1090/S0002-9939-04-07844-X
10.1137/030602332
10.1017/S033427000001095X
10.1023/A:1022610425736
10.1023/A:1022658308898
10.1016/0362-546X(88)90102-2
10.1007/BF01581074
10.1007/s10957-005-6392-5
10.1137/S1052623498337273
10.1080/02331939008843516
10.1007/s101070050083
10.1016/j.na.2003.07.008
10.1006/jath.1996.3082
10.1007/BF01581072
ContentType Journal Article
Copyright 2005 Elsevier Ltd
2006 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier Ltd
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.na.2005.09.017
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1873-5215
EndPage 2804
ExternalDocumentID 17683391
10_1016_j_na_2005_09_017
S0362546X05008266
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
YQT
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c355t-c274fe65f210a1f4be2a8956b6a7dbe0312d987a4a39741ca33d3c9a4fa2a3223
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000237375300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0362-546X
IngestDate Sat Sep 27 23:48:37 EDT 2025
Wed Apr 02 07:47:38 EDT 2025
Tue Nov 18 22:38:09 EST 2025
Sat Nov 29 02:51:01 EST 2025
Fri Feb 23 02:23:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Subdifferential sum formula
90C46
90C25
Strong conical hull intersection property
Fenchel duality
49N15
Regularity condition
Subdifferential
Nonlinear analysis
Regularity
90C46 Regularity condition
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c355t-c274fe65f210a1f4be2a8956b6a7dbe0312d987a4a39741ca33d3c9a4fa2a3223
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29768328
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_29768328
pascalfrancis_primary_17683391
crossref_citationtrail_10_1016_j_na_2005_09_017
crossref_primary_10_1016_j_na_2005_09_017
elsevier_sciencedirect_doi_10_1016_j_na_2005_09_017
PublicationCentury 2000
PublicationDate 2006-06-15
PublicationDateYYYYMMDD 2006-06-15
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-06-15
  day: 15
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Nonlinear analysis
PublicationYear 2006
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Holmes (bib16) 1975
Deutsch, Li, Ward (bib11) 1997; 90
Jeyakumar, Wolkowicz (bib17) 1992; 57
Zãlinescu (bib24) 1999; 40
Deutsch, Li, Ward (bib12) 1999; 10
Fitzpatrick, Simons (bib14) 2001; 8
Ng, Song (bib18) 2003; 25
Rodrigues, Simons (bib22) 1988; 12
Ekeland, Temam (bib13) 1976
Borwein, Lewis (bib4) 1992; 57
Burachik, Jeyakumar (bib8) 2005; 12
Strömberg (bib23) 1996; 352
Bauschke, Borwein, Li (bib3) 1999; 86
Boţ, Wanka (bib7) 2005; 15
Burachik, Jeyakumar (bib9) 2005; 133
Rockafellar (bib20) 1974
R.I. Boţ, G. Wanka, An alternative formulation for a new closed cone constraint qualification, Nonlinear Anal.: Theory, Methods Appl., to appear.
Rockafellar (bib19) 1966; 33
Deutsch, Li, Swetits (bib10) 1999; 102
Zãlinescu (bib25) 2002
Boţ, Kassay, Wanka (bib5) 2005; 127
Attouch, Brézis (bib1) 1986
Bauschke (bib2) 1999; 102
Gowda, Teboulle (bib15) 1990; 28
Rodrigues (bib21) 1990; 21
Jeyakumar (10.1016/j.na.2005.09.017_bib17) 1992; 57
Zãlinescu (10.1016/j.na.2005.09.017_bib25) 2002
Ekeland (10.1016/j.na.2005.09.017_bib13) 1976
Zãlinescu (10.1016/j.na.2005.09.017_bib24) 1999; 40
Fitzpatrick (10.1016/j.na.2005.09.017_bib14) 2001; 8
Gowda (10.1016/j.na.2005.09.017_bib15) 1990; 28
Attouch (10.1016/j.na.2005.09.017_bib1) 1986
Burachik (10.1016/j.na.2005.09.017_bib8) 2005; 12
Deutsch (10.1016/j.na.2005.09.017_bib11) 1997; 90
Rockafellar (10.1016/j.na.2005.09.017_bib19) 1966; 33
Burachik (10.1016/j.na.2005.09.017_bib9) 2005; 133
Boţ (10.1016/j.na.2005.09.017_bib5) 2005; 127
Rodrigues (10.1016/j.na.2005.09.017_bib21) 1990; 21
Borwein (10.1016/j.na.2005.09.017_bib4) 1992; 57
Strömberg (10.1016/j.na.2005.09.017_bib23) 1996; 352
Bauschke (10.1016/j.na.2005.09.017_bib3) 1999; 86
Bauschke (10.1016/j.na.2005.09.017_bib2) 1999; 102
Deutsch (10.1016/j.na.2005.09.017_bib10) 1999; 102
Ng (10.1016/j.na.2005.09.017_bib18) 2003; 25
10.1016/j.na.2005.09.017_bib6
Deutsch (10.1016/j.na.2005.09.017_bib12) 1999; 10
Rockafellar (10.1016/j.na.2005.09.017_bib20) 1974
Holmes (10.1016/j.na.2005.09.017_bib16) 1975
Rodrigues (10.1016/j.na.2005.09.017_bib22) 1988; 12
Boţ (10.1016/j.na.2005.09.017_bib7) 2005; 15
References_xml – volume: 12
  start-page: 279
  year: 2005
  end-page: 290
  ident: bib8
  article-title: A dual condition for the convex subdifferential sum formula with applications
  publication-title: J. Convex Anal.
– volume: 57
  start-page: 85
  year: 1992
  end-page: 102
  ident: bib17
  article-title: Generalizations of Slater's constraint qualification for infinite convex programs
  publication-title: Math. Programming
– year: 2002
  ident: bib25
  article-title: Convex Analysis in General Vector Spaces
– volume: 28
  start-page: 925
  year: 1990
  end-page: 935
  ident: bib15
  article-title: A comparison of constraint qualifications in infinite-dimensional convex programming
  publication-title: SIAM J. Control Optim.
– volume: 352
  year: 1996
  ident: bib23
  article-title: The operation of infimal convolution
  publication-title: Diss. Math.
– volume: 15
  start-page: 540
  year: 2005
  end-page: 554
  ident: bib7
  article-title: Farkas-type results with conjugate functions
  publication-title: SIAM J. Optim.
– volume: 133
  start-page: 1741
  year: 2005
  end-page: 1748
  ident: bib9
  article-title: A simpler closure condition for the normal cone intersection formula
  publication-title: Proc. Amer. Math. Soc.
– year: 1976
  ident: bib13
  article-title: Convex Analysis and Variational Problems
– year: 1975
  ident: bib16
  article-title: Geometric Functional Analysis
– volume: 10
  start-page: 252
  year: 1999
  end-page: 268
  ident: bib12
  article-title: Best approximation from the intersection of a closed convex set and a polyhedron in Hilbert space, weak Slater conditions, and the strong conical hull intersection property
  publication-title: SIAM J. Optim.
– volume: 90
  start-page: 385
  year: 1997
  end-page: 414
  ident: bib11
  article-title: A dual approach to constrained interpolation from a convex subset of Hilbert space
  publication-title: J. Approximation Theory
– year: 1974
  ident: bib20
  article-title: Conjugate duality and optimization, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics 16
– volume: 25
  start-page: 845
  year: 2003
  end-page: 858
  ident: bib18
  article-title: Fenchel duality in infinite-dimensional setting and its applications
  publication-title: Nonlinear Anal.
– volume: 33
  start-page: 81
  year: 1966
  end-page: 89
  ident: bib19
  article-title: Extension of Fenchel's duality theorem for convex functions
  publication-title: Duke Math. J.
– volume: 8
  start-page: 423
  year: 2001
  end-page: 446
  ident: bib14
  article-title: The conjugates, compositions and marginals of convex functions
  publication-title: J. Convex Anal.
– volume: 12
  start-page: 1069
  year: 1988
  end-page: 1078
  ident: bib22
  article-title: Conjugate functions and subdifferentials in nonnormed situations for operators with complete graphs
  publication-title: Nonlinear Anal.
– reference: R.I. Boţ, G. Wanka, An alternative formulation for a new closed cone constraint qualification, Nonlinear Anal.: Theory, Methods Appl., to appear.
– volume: 21
  start-page: 13
  year: 1990
  end-page: 22
  ident: bib21
  article-title: The Fenchel duality theorem in Fréchet spaces
  publication-title: Optimization
– start-page: 125
  year: 1986
  end-page: 133
  ident: bib1
  article-title: Duality for the sum of convex functions in general Banach spaces
  publication-title: Aspects of Mathematics and its Applications
– volume: 57
  start-page: 15
  year: 1992
  end-page: 48
  ident: bib4
  article-title: Partially finite convex programming. I. Quasi relative interiors and duality theory
  publication-title: Math. Programming
– volume: 40
  start-page: 353
  year: 1999
  end-page: 378
  ident: bib24
  article-title: A comparison of constraint qualifications in infinite—dimensional convex programming revisited
  publication-title: J. Aust. Math. Soc., Ser. B
– volume: 102
  start-page: 681
  year: 1999
  end-page: 695
  ident: bib10
  article-title: Fenchel duality and the strong conical hull intersection property
  publication-title: J. Optim. Theory Appl.
– volume: 86
  start-page: 135
  year: 1999
  end-page: 160
  ident: bib3
  article-title: Strong conical hull intersection property, bounded linear regularity, Jameson's property
  publication-title: Math. Programming
– volume: 102
  start-page: 697
  year: 1999
  end-page: 703
  ident: bib2
  article-title: Proof of a conjecture by Deutsch, Li, and Swetits on duality of optimization problems
  publication-title: J. Optim. Theory Appl.
– volume: 127
  start-page: 45
  year: 2005
  end-page: 70
  ident: bib5
  article-title: Strong duality for generalized convex optimization problems
  publication-title: J. Optim. Theory Appl.
– volume: 8
  start-page: 423
  year: 2001
  ident: 10.1016/j.na.2005.09.017_bib14
  article-title: The conjugates, compositions and marginals of convex functions
  publication-title: J. Convex Anal.
– volume: 28
  start-page: 925
  year: 1990
  ident: 10.1016/j.na.2005.09.017_bib15
  article-title: A comparison of constraint qualifications in infinite-dimensional convex programming
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0328051
– year: 1976
  ident: 10.1016/j.na.2005.09.017_bib13
– ident: 10.1016/j.na.2005.09.017_bib6
– volume: 33
  start-page: 81
  year: 1966
  ident: 10.1016/j.na.2005.09.017_bib19
  article-title: Extension of Fenchel's duality theorem for convex functions
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-66-03312-6
– volume: 133
  start-page: 1741
  issue: 6
  year: 2005
  ident: 10.1016/j.na.2005.09.017_bib9
  article-title: A simpler closure condition for the normal cone intersection formula
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-04-07844-X
– volume: 15
  start-page: 540
  issue: 2
  year: 2005
  ident: 10.1016/j.na.2005.09.017_bib7
  article-title: Farkas-type results with conjugate functions
  publication-title: SIAM J. Optim.
  doi: 10.1137/030602332
– volume: 40
  start-page: 353
  year: 1999
  ident: 10.1016/j.na.2005.09.017_bib24
  article-title: A comparison of constraint qualifications in infinite—dimensional convex programming revisited
  publication-title: J. Aust. Math. Soc., Ser. B
  doi: 10.1017/S033427000001095X
– volume: 102
  start-page: 697
  year: 1999
  ident: 10.1016/j.na.2005.09.017_bib2
  article-title: Proof of a conjecture by Deutsch, Li, and Swetits on duality of optimization problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1022610425736
– volume: 102
  start-page: 681
  year: 1999
  ident: 10.1016/j.na.2005.09.017_bib10
  article-title: Fenchel duality and the strong conical hull intersection property
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1022658308898
– volume: 12
  start-page: 1069
  year: 1988
  ident: 10.1016/j.na.2005.09.017_bib22
  article-title: Conjugate functions and subdifferentials in nonnormed situations for operators with complete graphs
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(88)90102-2
– start-page: 125
  year: 1986
  ident: 10.1016/j.na.2005.09.017_bib1
  article-title: Duality for the sum of convex functions in general Banach spaces
– volume: 57
  start-page: 85
  year: 1992
  ident: 10.1016/j.na.2005.09.017_bib17
  article-title: Generalizations of Slater's constraint qualification for infinite convex programs
  publication-title: Math. Programming
  doi: 10.1007/BF01581074
– volume: 127
  start-page: 45
  issue: 1
  year: 2005
  ident: 10.1016/j.na.2005.09.017_bib5
  article-title: Strong duality for generalized convex optimization problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-005-6392-5
– volume: 10
  start-page: 252
  year: 1999
  ident: 10.1016/j.na.2005.09.017_bib12
  article-title: Best approximation from the intersection of a closed convex set and a polyhedron in Hilbert space, weak Slater conditions, and the strong conical hull intersection property
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623498337273
– volume: 12
  start-page: 279
  issue: 2
  year: 2005
  ident: 10.1016/j.na.2005.09.017_bib8
  article-title: A dual condition for the convex subdifferential sum formula with applications
  publication-title: J. Convex Anal.
– volume: 21
  start-page: 13
  year: 1990
  ident: 10.1016/j.na.2005.09.017_bib21
  article-title: The Fenchel duality theorem in Fréchet spaces
  publication-title: Optimization
  doi: 10.1080/02331939008843516
– year: 1974
  ident: 10.1016/j.na.2005.09.017_bib20
– volume: 86
  start-page: 135
  year: 1999
  ident: 10.1016/j.na.2005.09.017_bib3
  article-title: Strong conical hull intersection property, bounded linear regularity, Jameson's property (G), and error bounds in convex optimization
  publication-title: Math. Programming
  doi: 10.1007/s101070050083
– volume: 25
  start-page: 845
  year: 2003
  ident: 10.1016/j.na.2005.09.017_bib18
  article-title: Fenchel duality in infinite-dimensional setting and its applications
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2003.07.008
– volume: 90
  start-page: 385
  year: 1997
  ident: 10.1016/j.na.2005.09.017_bib11
  article-title: A dual approach to constrained interpolation from a convex subset of Hilbert space
  publication-title: J. Approximation Theory
  doi: 10.1006/jath.1996.3082
– year: 2002
  ident: 10.1016/j.na.2005.09.017_bib25
– volume: 57
  start-page: 15
  year: 1992
  ident: 10.1016/j.na.2005.09.017_bib4
  article-title: Partially finite convex programming. I. Quasi relative interiors and duality theory
  publication-title: Math. Programming
  doi: 10.1007/BF01581072
– year: 1975
  ident: 10.1016/j.na.2005.09.017_bib16
– volume: 352
  year: 1996
  ident: 10.1016/j.na.2005.09.017_bib23
  article-title: The operation of infimal convolution
  publication-title: Diss. Math.
SSID ssj0001736
Score 2.0626092
Snippet In this paper we present a new regularity condition for the subdifferential sum formula of a convex function with the precomposition of another convex function...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2787
SubjectTerms Applied sciences
Calculus of variations and optimal control
Exact sciences and technology
Fenchel duality
Mathematical analysis
Mathematical programming
Mathematics
Operational research and scientific management
Operational research. Management science
Regularity condition
Sciences and techniques of general use
Strong conical hull intersection property
Subdifferential sum formula
Title A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces
URI https://dx.doi.org/10.1016/j.na.2005.09.017
https://www.proquest.com/docview/29768328
Volume 64
WOSCitedRecordID wos000237375300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5215
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001736
  issn: 0362-546X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLeg4wBCPAaI8hg-sAOKMhLHie1jNA0xBBWHAb1FjuOIbiOtmgb25_M5dh7btIkduERtlKRJf798b38fQm8B5IgxrX1QT9SnXCh45yg4rlzF4AUlqmjH-Xz_zGYzPp-Lry5jWrfjBFhV8bMzsfqvUMM-ANssnb0B3P1FYQd8BtBhC7DD9p-AT70_Wp7otbdux8yb4XSmtrxY9FWFdZN3c1E2JmAOMJkgoO3WbJ7lpz71isZa6AtTClkujGnqFWYUgG3j4YEkUq7-0Nm2M9t1Q5qqTNvppPf1l7v78W4atXjKovEOlwMpf8jqRNrwvEsUjIIQiW-XYY4WX8W0HUrYC1bbnrwjEBmLSea0rFW5hNsRxJfEuY0sHO9V0kW_xF4QskF1den6CxqtrzPsStiOs0qagZtxFogMrnAbbREWCz5BW-nhwfxTr7uBuUnXcMw8jkts24rA83dxlSFzfyVrwK20c1EuqfjWbjl6hB44hwOnliiP0S1dbaOHzvnATrTX2-jeqDMlfPvSt_Otn6BfKbacwgOncM8pDJzCFziFO05h4BR2nMKOU3hR4Y5TeMQpbDn1FH37cHC0_9F3czp8BdbqxleE0VIncUnCQIYlzTWRHPzuPJGsyDWoDVIIziSVYPzSUMkoKiIlJC0lkaBQomdoUi0r_Rzh0mSVeU4SlTAqFbh_OuDglMe6CHKu-RS97_70TLkm9maWyml2FdRT9K4_Y2UbuFxzbNThmDkD1BqWGRDymrN2zkE-_Ay48lEkwil603EgA-FtMnKy0sumzogwhxD-4gY3-RLdHd7AV2iyWTf6Nbqjfm8W9XrHEfovsT684A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+weaker+regularity+condition+for+subdifferential+calculus+and+Fenchel+duality+in+infinite+dimensional+spaces&rft.jtitle=Nonlinear+analysis&rft.au=Bo%C5%A3%2C+Radu+Ioan&rft.au=Wanka%2C+Gert&rft.date=2006-06-15&rft.issn=0362-546X&rft.volume=64&rft.issue=12&rft.spage=2787&rft.epage=2804&rft_id=info:doi/10.1016%2Fj.na.2005.09.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_na_2005_09_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon