Stochastic model of siRNA endosomal escape mediated by fusogenic peptides
Gene silencing via small interfering RNA (siRNA) represents a transformative tool in cancer therapy, offering specificity and reduced off-target effects compared to conventional treatments. A crucial step in siRNA-based therapies is endosomal escape, the release of siRNA from endosomes into the cyto...
Saved in:
| Published in: | Mathematical biosciences Vol. 387; p. 109476 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
01.09.2025
|
| Subjects: | |
| ISSN: | 0025-5564, 1879-3134, 1879-3134 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Gene silencing via small interfering RNA (siRNA) represents a transformative tool in cancer therapy, offering specificity and reduced off-target effects compared to conventional treatments. A crucial step in siRNA-based therapies is endosomal escape, the release of siRNA from endosomes into the cytoplasm. Quantifying endosomal escape is challenging due to the dynamic nature of the process and limitations in imaging and analytical techniques. Traditional methods often rely on fluorescence intensity measurements or manual image processing, which are time-intensive and fail to capture continuous dynamics. This paper presents a novel computational framework that integrates automated image processing to analyze time-lapse fluorescent microscopy data of endosomal escape, hierarchical Bayesian inference, and stochastic simulations. Our method employs image segmentation techniques such as binary masks, Gaussian filters, and multichannel color quantification to extract precise spatial and temporal data from microscopy images. Using a hierarchical Bayesian approach, we estimate the parameters of a compartmental model that describes endosomal escape dynamics, accounting for variability over time. These parameters inform a Gillespie stochastic simulation algorithm, ensuring realistic simulations of siRNA release events over time. By combining these techniques, our framework provides a scalable and reproducible method for quantifying endosomal escape. The model captures uncertainty and variability in parameter estimation, and endosomal escape dynamics. Additionally, synthetic data generation allows researchers to validate experimental findings and explore alternative conditions without extensive laboratory work. This integrated approach not only improves the accuracy of endosomal escape quantification but also provides predictive insights for optimizing siRNA delivery systems and advancing gene therapy research.
•Exact quantification of endosomal escape.•Stochastic simulation model of endosomal escape.•Image processing.•Parameter estimation.•Live cell imaging. |
|---|---|
| AbstractList | Gene silencing via small interfering RNA (siRNA) represents a transformative tool in cancer therapy, offering specificity and reduced off-target effects compared to conventional treatments. A crucial step in siRNA-based therapies is endosomal escape, the release of siRNA from endosomes into the cytoplasm. Quantifying endosomal escape is challenging due to the dynamic nature of the process and limitations in imaging and analytical techniques. Traditional methods often rely on fluorescence intensity measurements or manual image processing, which are time-intensive and fail to capture continuous dynamics. This paper presents a novel computational framework that integrates automated image processing to analyze time-lapse fluorescent microscopy data of endosomal escape, hierarchical Bayesian inference, and stochastic simulations. Our method employs image segmentation techniques such as binary masks, Gaussian filters, and multichannel color quantification to extract precise spatial and temporal data from microscopy images. Using a hierarchical Bayesian approach, we estimate the parameters of a compartmental model that describes endosomal escape dynamics, accounting for variability over time. These parameters inform a Gillespie stochastic simulation algorithm, ensuring realistic simulations of siRNA release events over time. By combining these techniques, our framework provides a scalable and reproducible method for quantifying endosomal escape. The model captures uncertainty and variability in parameter estimation, and endosomal escape dynamics. Additionally, synthetic data generation allows researchers to validate experimental findings and explore alternative conditions without extensive laboratory work. This integrated approach not only improves the accuracy of endosomal escape quantification but also provides predictive insights for optimizing siRNA delivery systems and advancing gene therapy research. Gene silencing via small interfering RNA (siRNA) represents a transformative tool in cancer therapy, offering specificity and reduced off-target effects compared to conventional treatments. A crucial step in siRNA-based therapies is endosomal escape, the release of siRNA from endosomes into the cytoplasm. Quantifying endosomal escape is challenging due to the dynamic nature of the process and limitations in imaging and analytical techniques. Traditional methods often rely on fluorescence intensity measurements or manual image processing, which are time-intensive and fail to capture continuous dynamics. This paper presents a novel computational framework that integrates automated image processing to analyze time-lapse fluorescent microscopy data of endosomal escape, hierarchical Bayesian inference, and stochastic simulations. Our method employs image segmentation techniques such as binary masks, Gaussian filters, and multichannel color quantification to extract precise spatial and temporal data from microscopy images. Using a hierarchical Bayesian approach, we estimate the parameters of a compartmental model that describes endosomal escape dynamics, accounting for variability over time. These parameters inform a Gillespie stochastic simulation algorithm, ensuring realistic simulations of siRNA release events over time. By combining these techniques, our framework provides a scalable and reproducible method for quantifying endosomal escape. The model captures uncertainty and variability in parameter estimation, and endosomal escape dynamics. Additionally, synthetic data generation allows researchers to validate experimental findings and explore alternative conditions without extensive laboratory work. This integrated approach not only improves the accuracy of endosomal escape quantification but also provides predictive insights for optimizing siRNA delivery systems and advancing gene therapy research. •Exact quantification of endosomal escape.•Stochastic simulation model of endosomal escape.•Image processing.•Parameter estimation.•Live cell imaging. Gene silencing via small interfering RNA (siRNA) represents a transformative tool in cancer therapy, offering specificity and reduced off-target effects compared to conventional treatments. A crucial step in siRNA-based therapies is endosomal escape, the release of siRNA from endosomes into the cytoplasm. Quantifying endosomal escape is challenging due to the dynamic nature of the process and limitations in imaging and analytical techniques. Traditional methods often rely on fluorescence intensity measurements or manual image processing, which are time-intensive and fail to capture continuous dynamics. This paper presents a novel computational framework that integrates automated image processing to analyze time-lapse fluorescent microscopy data of endosomal escape, hierarchical Bayesian inference, and stochastic simulations. Our method employs image segmentation techniques such as binary masks, Gaussian filters, and multichannel color quantification to extract precise spatial and temporal data from microscopy images. Using a hierarchical Bayesian approach, we estimate the parameters of a compartmental model that describes endosomal escape dynamics, accounting for variability over time. These parameters inform a Gillespie stochastic simulation algorithm, ensuring realistic simulations of siRNA release events over time. By combining these techniques, our framework provides a scalable and reproducible method for quantifying endosomal escape. The model captures uncertainty and variability in parameter estimation, and endosomal escape dynamics. Additionally, synthetic data generation allows researchers to validate experimental findings and explore alternative conditions without extensive laboratory work. This integrated approach not only improves the accuracy of endosomal escape quantification but also provides predictive insights for optimizing siRNA delivery systems and advancing gene therapy research.Gene silencing via small interfering RNA (siRNA) represents a transformative tool in cancer therapy, offering specificity and reduced off-target effects compared to conventional treatments. A crucial step in siRNA-based therapies is endosomal escape, the release of siRNA from endosomes into the cytoplasm. Quantifying endosomal escape is challenging due to the dynamic nature of the process and limitations in imaging and analytical techniques. Traditional methods often rely on fluorescence intensity measurements or manual image processing, which are time-intensive and fail to capture continuous dynamics. This paper presents a novel computational framework that integrates automated image processing to analyze time-lapse fluorescent microscopy data of endosomal escape, hierarchical Bayesian inference, and stochastic simulations. Our method employs image segmentation techniques such as binary masks, Gaussian filters, and multichannel color quantification to extract precise spatial and temporal data from microscopy images. Using a hierarchical Bayesian approach, we estimate the parameters of a compartmental model that describes endosomal escape dynamics, accounting for variability over time. These parameters inform a Gillespie stochastic simulation algorithm, ensuring realistic simulations of siRNA release events over time. By combining these techniques, our framework provides a scalable and reproducible method for quantifying endosomal escape. The model captures uncertainty and variability in parameter estimation, and endosomal escape dynamics. Additionally, synthetic data generation allows researchers to validate experimental findings and explore alternative conditions without extensive laboratory work. This integrated approach not only improves the accuracy of endosomal escape quantification but also provides predictive insights for optimizing siRNA delivery systems and advancing gene therapy research. |
| ArticleNumber | 109476 |
| Author | Boulos, Jessica Cook, Keisha Yadav, Nisha Alexander-Bryant, Angela |
| Author_xml | – sequence: 1 givenname: Nisha surname: Yadav fullname: Yadav, Nisha organization: School of Mathematical and Statistical Sciences, Clemson University, 220 Parkway Drive, Clemson, 29634, SC, USA – sequence: 2 givenname: Jessica surname: Boulos fullname: Boulos, Jessica organization: Department of Bioengineering, Clemson University, 118 Engineering Service Drive, Clemson, 29634, SC, USA – sequence: 3 givenname: Angela surname: Alexander-Bryant fullname: Alexander-Bryant, Angela organization: Department of Bioengineering, Clemson University, 118 Engineering Service Drive, Clemson, 29634, SC, USA – sequence: 4 givenname: Keisha orcidid: 0000-0003-1172-0575 surname: Cook fullname: Cook, Keisha email: kcook@msri.org organization: School of Mathematical and Statistical Sciences, Clemson University, 220 Parkway Drive, Clemson, 29634, SC, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40482915$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1PwzAMhiM0BNvgB3BBPXLpiJsmbcVpmviSEEh8nKM0cSFT25QmQ9q_J2hw4bCTZfl9LPuZkUnveiTkDOgCKIjL9aKr_SKjGY99lRfigEyhLKqUAcsnZErjJOVc5Mdk5v2aUigAxBE5zmleZhXwKbl_CU5_KB-sTjpnsE1ck3j7_LhMsDfOu061CXqtBkw6NFYFNEm9TZqNd-_YR2rAIViD_oQcNqr1ePpb5-Tt5vp1dZc-PN3er5YPqWach7TOUStRAC2zkjPAuqRasKoRTUbrnJYUKC90AXUjjObMKMAsVyxjlVFcG2RzcrHbO4zuc4M-yM56jW2renQbL1kGQlS8YCJGz3-jmzoeL4fRdmrcyr_3Y6DYBfTovB-xkdoGFazrw6hsK4HKH9FyLaNo-SNa7kRHEv6Rf8v3MVc7BqOeL4uj9Npir6PWEXWQxtk99DcK8ZSO |
| CitedBy_id | crossref_primary_10_3390_ijms26146795 |
| Cites_doi | 10.1002/mabi.202200167 10.1109/TSMC.1979.4310076 10.1088/1478-3967/1/3/001 10.1038/nrg2006 10.1016/j.omtn.2022.09.012 10.1016/0021-9991(76)90041-3 10.1016/j.jconrel.2013.07.033 10.1016/j.csbj.2022.12.034 10.1158/1538-7445.AM2023-3979 10.1016/j.nantod.2014.04.011 10.1016/j.ymeth.2013.01.007 10.1021/acschembio.5b00753 10.1186/s12915-022-01372-6 10.1016/j.addr.2016.08.004 10.1038/s41467-020-15300-1 10.1016/j.ijpharm.2006.11.050 10.1093/bioinformatics/bti431 10.1038/nbt.2612 10.1021/j100540a008 10.1021/acs.molpharmaceut.2c00811 10.1007/978-1-62703-050-2_17 10.1021/acschembio.0c00804 10.1016/j.cbpa.2024.102506 10.1016/j.trsl.2019.07.010 10.3389/fcell.2022.824299 10.1039/C6TB02862D 10.1111/0272-4332.00039 10.1016/j.biotechadv.2015.05.005 10.1007/978-3-540-78911-6_2 10.1038/srep32301 10.1088/1478-3975/6/4/046001 10.1021/acs.bioconjchem.8b00778 10.1186/s12859-019-3332-1 10.1016/j.jconrel.2010.01.009 10.1016/j.oraloncology.2017.07.004 10.1093/bioinformatics/btr095 10.18637/jss.v035.i04 10.1038/s42003-021-01728-8 10.1039/D0NA00454E 10.1016/j.addr.2023.115047 10.1038/nbt.3298 10.1002/smll.202400643 10.1021/acs.bioconjchem.8b00732 10.1093/bioinformatics/btu302 10.1016/B978-0-12-374979-6.00007-1 10.1098/rsif.2018.0943 10.1186/1477-3155-12-11 10.1016/B978-0-12-407173-5.00002-9 10.1038/s41467-021-23997-x 10.1021/nn304707b 10.1021/acsanm.8b00338 10.1021/acs.accounts.9b00177 10.1021/acsami.1c18359 10.1371/journal.pone.0073348 10.1038/s41467-023-36752-1 10.3389/fphar.2022.985670 10.1371/journal.pone.0243219 10.1358/dof.2009.34.9.1413267 10.1016/j.addr.2015.01.007 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. Copyright © 2025. Published by Elsevier Inc. |
| Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Copyright © 2025. Published by Elsevier Inc. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.mbs.2025.109476 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Mathematics |
| EISSN | 1879-3134 |
| ExternalDocumentID | 40482915 10_1016_j_mbs_2025_109476 S0025556425001026 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .GJ .~1 0R~ 186 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AAEDT AAEDW AAFTH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABGRD ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV AEBSH AEFWE AEIPS AEKER AENEX AEQOU AETEA AEUPX AFFNX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMJ HVGLF HZ~ H~9 IHE J1W KOM LW9 M26 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- ROL RPZ SAB SDF SDG SDP SES SEW SME SPCBC SSA SSZ T5K TN5 UNMZH WH7 WUQ XOL XSW YQT ZCG ZGI ZXP ZY4 ~G- ~KM 9DU AAYXX ACLOT CITATION ~HD AGRNS BNPGV CGR CUY CVF ECM EIF NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c355t-b4eca6710828531eb80c639f6f20b40801057c71bf6dc53da1e24a3239da5cde3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001510135500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5564 1879-3134 |
| IngestDate | Thu Oct 02 22:36:50 EDT 2025 Sat Aug 09 01:32:28 EDT 2025 Sat Nov 29 07:39:43 EST 2025 Tue Nov 18 21:33:09 EST 2025 Sat Sep 06 17:19:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Parameter estimation Compartmental model Peptides Image processing Stochastic simulation algorithm Endosomal escape Cancer |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c355t-b4eca6710828531eb80c639f6f20b40801057c71bf6dc53da1e24a3239da5cde3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1172-0575 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.mbs.2025.109476 |
| PMID | 40482915 |
| PQID | 3216695736 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3216695736 pubmed_primary_40482915 crossref_citationtrail_10_1016_j_mbs_2025_109476 crossref_primary_10_1016_j_mbs_2025_109476 elsevier_sciencedirect_doi_10_1016_j_mbs_2025_109476 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Mathematical biosciences |
| PublicationTitleAlternate | Math Biosci |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Munson, O’Driscoll, Silva, Lázaro-Ibáñez, Gallud, Wilson, Collén, Esbjörner, Sabirsh (b48) 2021; 4 Gilleron, Querbes, Zeigerer, Borodovsky, Marsico, Schubert, Manygoats, Seifert, Andree, Stöter, Epstein-Barash, Zhang, Ligang, Koteliansky, Fitzgerald, Fava, Bickle, Kalaidzidis, Akinc, Maier, Zerial (b44) 2013; 31 Oliveira, Rooy, Kranenburg, Storm, Schiffelers (b30) 2007; 331 Cantini, Attaway, Butler, Andino, Sokolosky, Jakymiw (b29) 2013; 8 Kim, Kim, Choi, Park, Yang, Shin (b9) 2010; 143 Patil, Huard, Fonnesbeck (b74) 2010; 35 Wittrup, Ai, Liu, Hamar, Trifonova, Charisse, Manoharan, Kirchhausen, Lieberman (b60) 2015; 33 Kim, Rossi (b1) 2007; 8 Alexander-Bryant, Zhang, Attaway, Pugh, Eggart, Sansevere, Andino, Dinh, Cantini, Jakymiw (b6) 2017; 72 Andrian, Riera, Pujals, Albertazzi (b38) 2021; 3 Samec (b17) 2022; 14 Nishimura, Takeda, Ezawa, Ishii, Ogino, Kondo (b34) 2014; 12 Brauer (b62) 2008 Kalogeros (b4) 2023; 83 Dimopoulos, Mayer, Rudolf, Stelling (b53) 2014; 30 Klipp, Burger, Leroux (b41) 2023 Gillespie (b64) 1977; 81 Christopher Frey, Patil (b75) 2002; 22 Degors, Wang, Rehman, Zuhorn (b28) 2019; 52 Hou, Pan, Schlesinger, Wickline (b35) 2015; 33 Hausig-Punke, Richter, Hoernke, Brendel, Traeger (b39) 2022; 22 Peier, Ge, Boyer, Frost, Duggal, Biswas, Edmondson, Hermes, Yan, Zimprich, Sadriddin, Kaan, Chandramohan, Brown, Thean, Lee, Yuen, Ferrer-Gago, Johannes, Lane, Sherborne, Corona, Robers, Sawyer, Partridge (b43) 2021; 16 Meng, Luan, Kang, Feng, Meng, Liu (b36) 2017; 5 Enderle (b61) 2012 Samec, Lora Alatise, Boulos, Gilmore, Hazelton, Coffin, Alexander-Bryant (b18) 2022; 14 Padovani, Mairhörmann, Falter-Braun, Lengefeld, Schmoller (b50) 2022; 20 Warne, Baker, Simpson (b73) 2019; 16 Zou, Sun, Wang, Yan, Liu, Li, Zhang, Zheng, Chung, Shi (b13) 2023 Dixon, Schwinn, Hall, Zimmerman, Otto, Lubben, Butler, Binkowski, Machleidt, Kirkland, Wood, Eggers, Encell, Wood (b42) 2016; 11 Gillespie (b65) 1976; 22 Hattne, Fange, Elf (b68) 2005; 21 Pei, Buyanova (b32) 2019; 30 Otsu (b54) 1979; 9 Erban (b70) 2007; 1 He (b16) 2023 Tai, Gao (b19) 2017; 110–111 Qian, Ge (b67) 2012 Gavrilov, Saltzman (b14) 2012 Du Rietz, Hedlund, Wilhelmson, Nordenfelt, Wittrup (b45) 2020; 11 (b22) 2013; 8 Cummings, Zhang, Jakymiw (b21) 2019; 214 Kamentsky, Jones, Fraser, Bray, Logan, Madden, Ljosa, Rueden, Eliceiri, Carpenter (b47) 2011; 27 Teng, Qu, Li, Zhuang, Qu (b5) 2022; 10 Scherr, Löffler, Böhland, Mikut (b49) 2020; 15 Oliveira, Van Rooy, Kranenburg, Storm, Schiffelers (b20) 2007; 331 Deng, Yang, Zhou (b3) 2022; 14 Long (b52) 2020; 21 Teo, Rennick, Yuen, Al-Wassiti, Johnston, Pouton (b57) 2021; 12 Lonn, Kacsinta, Cui, Hamil, Kaulich, Gogoi, Dowdy (b37) 2016; 6 Gillespie (b72) 1977; 81 Leng, Woodle, Lu, Mixson (b12) 2009; 34 Martens, Remaut, Demeester, De Smedt, Braeckmans (b24) 2014; 9 Zhang, Trame, Lesko, Schmidt (b76) 2015; 4 Smith, Selby, Johnston, Such (b25) 2019; 30 Karagiannis, Alabi, Anderson (b8) 2012; 6 Pei, Buyanova (b27) 2018; 30 Goldberg (b11) 2013; 63 Alexander-Bryant, Vanden Berg-Foels, Wen (b2) 2013; 118 Qin, Chen, Jin, Cheng (b7) 2013; 172 Kongkatigumjorn, Smith, Chen, Fang, Yang, Gillies, Johnston, Such (b40) 2018; 1 Bassingthwaighte, Butterworth, Jardine, Raymond (b63) 2012; 1 Goyal, Chopra, Singh, Dua, Gautam (b15) 2022 Andrews, Bray (b71) 2004; 1 Samec, Boulos, Gilmore, Hazelton, Alexander-Bryant (b26) 2022; 14 Erban, Chapman (b69) 2009; 6 Yadav, Ali, Thanekar, Pogu, Rengan (b23) 2022; 19 Mease (b66) 2018 Grau, Wagner (b56) 2024; 81 Beach, Teo, Chen, Smith, Pouton, Johnston, Such (b55) 2022; 14 Erazo-Oliveras, Muthukrishnan, Baker, Wang, Pellois (b33) 2012; 5 Hedlund, Du Rietz, Johansson, Eriksson, Zedan, Huang, Wallin, Wittrup (b46) 2023; 14 Paramasivam, Franke, Stöter, Höijer, Bartesaghi, Sabirsh, Lindfors, Arteta, Dahlén, Bak, Andersson, Kalaidzidis, Bickle, Zerial (b58) 2021; 221 Ozcan, Ozpolat, Coleman, Sood, Lopez-Berestein (b10) 2015; 87 Samec, Alatise, Boulos, Gilmore, Hazelton, Coffin, Alexander-Bryant (b31) 2022; 30 Hirling, Horvath (b51) 2023; 21 Yazdi, Pöhmerer, Hasanzadeh Kafshgari, Seidl, Grau, Höhn, Vetter, Hoch, Wollenberg, Multhoff, Dezfouli, Wagner (b59) 2024; 20 Kim (10.1016/j.mbs.2025.109476_b9) 2010; 143 Dixon (10.1016/j.mbs.2025.109476_b42) 2016; 11 Kalogeros (10.1016/j.mbs.2025.109476_b4) 2023; 83 Andrian (10.1016/j.mbs.2025.109476_b38) 2021; 3 Padovani (10.1016/j.mbs.2025.109476_b50) 2022; 20 Hattne (10.1016/j.mbs.2025.109476_b68) 2005; 21 Otsu (10.1016/j.mbs.2025.109476_b54) 1979; 9 Long (10.1016/j.mbs.2025.109476_b52) 2020; 21 Lonn (10.1016/j.mbs.2025.109476_b37) 2016; 6 Warne (10.1016/j.mbs.2025.109476_b73) 2019; 16 Gillespie (10.1016/j.mbs.2025.109476_b65) 1976; 22 Erban (10.1016/j.mbs.2025.109476_b70) 2007; 1 Zhang (10.1016/j.mbs.2025.109476_b76) 2015; 4 Karagiannis (10.1016/j.mbs.2025.109476_b8) 2012; 6 (10.1016/j.mbs.2025.109476_b22) 2013; 8 Beach (10.1016/j.mbs.2025.109476_b55) 2022; 14 Smith (10.1016/j.mbs.2025.109476_b25) 2019; 30 Patil (10.1016/j.mbs.2025.109476_b74) 2010; 35 Munson (10.1016/j.mbs.2025.109476_b48) 2021; 4 Erban (10.1016/j.mbs.2025.109476_b69) 2009; 6 Kim (10.1016/j.mbs.2025.109476_b1) 2007; 8 Enderle (10.1016/j.mbs.2025.109476_b61) 2012 Ozcan (10.1016/j.mbs.2025.109476_b10) 2015; 87 Samec (10.1016/j.mbs.2025.109476_b26) 2022; 14 Pei (10.1016/j.mbs.2025.109476_b27) 2018; 30 Degors (10.1016/j.mbs.2025.109476_b28) 2019; 52 Hou (10.1016/j.mbs.2025.109476_b35) 2015; 33 Kongkatigumjorn (10.1016/j.mbs.2025.109476_b40) 2018; 1 Dimopoulos (10.1016/j.mbs.2025.109476_b53) 2014; 30 Brauer (10.1016/j.mbs.2025.109476_b62) 2008 Bassingthwaighte (10.1016/j.mbs.2025.109476_b63) 2012; 1 Teo (10.1016/j.mbs.2025.109476_b57) 2021; 12 Goldberg (10.1016/j.mbs.2025.109476_b11) 2013; 63 Qin (10.1016/j.mbs.2025.109476_b7) 2013; 172 Peier (10.1016/j.mbs.2025.109476_b43) 2021; 16 Scherr (10.1016/j.mbs.2025.109476_b49) 2020; 15 Christopher Frey (10.1016/j.mbs.2025.109476_b75) 2002; 22 Cantini (10.1016/j.mbs.2025.109476_b29) 2013; 8 Kamentsky (10.1016/j.mbs.2025.109476_b47) 2011; 27 Yadav (10.1016/j.mbs.2025.109476_b23) 2022; 19 Nishimura (10.1016/j.mbs.2025.109476_b34) 2014; 12 Zou (10.1016/j.mbs.2025.109476_b13) 2023 Gillespie (10.1016/j.mbs.2025.109476_b72) 1977; 81 Samec (10.1016/j.mbs.2025.109476_b31) 2022; 30 Mease (10.1016/j.mbs.2025.109476_b66) 2018 Hirling (10.1016/j.mbs.2025.109476_b51) 2023; 21 Alexander-Bryant (10.1016/j.mbs.2025.109476_b2) 2013; 118 Erazo-Oliveras (10.1016/j.mbs.2025.109476_b33) 2012; 5 Leng (10.1016/j.mbs.2025.109476_b12) 2009; 34 Samec (10.1016/j.mbs.2025.109476_b17) 2022; 14 Andrews (10.1016/j.mbs.2025.109476_b71) 2004; 1 Meng (10.1016/j.mbs.2025.109476_b36) 2017; 5 Gavrilov (10.1016/j.mbs.2025.109476_b14) 2012 Martens (10.1016/j.mbs.2025.109476_b24) 2014; 9 Gillespie (10.1016/j.mbs.2025.109476_b64) 1977; 81 Wittrup (10.1016/j.mbs.2025.109476_b60) 2015; 33 Klipp (10.1016/j.mbs.2025.109476_b41) 2023 He (10.1016/j.mbs.2025.109476_b16) 2023 Goyal (10.1016/j.mbs.2025.109476_b15) 2022 Oliveira (10.1016/j.mbs.2025.109476_b30) 2007; 331 Yazdi (10.1016/j.mbs.2025.109476_b59) 2024; 20 Hedlund (10.1016/j.mbs.2025.109476_b46) 2023; 14 Oliveira (10.1016/j.mbs.2025.109476_b20) 2007; 331 Hausig-Punke (10.1016/j.mbs.2025.109476_b39) 2022; 22 Grau (10.1016/j.mbs.2025.109476_b56) 2024; 81 Cummings (10.1016/j.mbs.2025.109476_b21) 2019; 214 Paramasivam (10.1016/j.mbs.2025.109476_b58) 2021; 221 Qian (10.1016/j.mbs.2025.109476_b67) 2012 Pei (10.1016/j.mbs.2025.109476_b32) 2019; 30 Samec (10.1016/j.mbs.2025.109476_b18) 2022; 14 Deng (10.1016/j.mbs.2025.109476_b3) 2022; 14 Gilleron (10.1016/j.mbs.2025.109476_b44) 2013; 31 Teng (10.1016/j.mbs.2025.109476_b5) 2022; 10 Du Rietz (10.1016/j.mbs.2025.109476_b45) 2020; 11 Tai (10.1016/j.mbs.2025.109476_b19) 2017; 110–111 Alexander-Bryant (10.1016/j.mbs.2025.109476_b6) 2017; 72 |
| References_xml | – volume: 118 start-page: 1 year: 2013 end-page: 59 ident: b2 article-title: Bioengineering strategies for designing targeted cancer therapies publication-title: Adv. Cancer Res. – start-page: 19 year: 2008 end-page: 79 ident: b62 article-title: Compartmental models in epidemiology publication-title: Math. Epidemiology – volume: 16 start-page: 293 year: 2021 end-page: 309 ident: b43 article-title: NanoClick: a high throughput, target-agnostic peptide cell permeability assay publication-title: ACS Chem. Biol. – volume: 33 start-page: 931 year: 2015 end-page: 940 ident: b35 article-title: A role for peptides in overcoming endosomal entrapment in siRNA delivery — A focus on melittin publication-title: Biotechnol. Adv. – volume: 6 start-page: 8484 year: 2012 end-page: 8487 ident: b8 article-title: Rationally designed tumor-penetrating nanocomplexes publication-title: ACS Nano – volume: 63 start-page: 95 year: 2013 end-page: 100 ident: b11 article-title: siRNA delivery for the treatment of ovarian cancer publication-title: Methods – year: 2022 ident: b15 article-title: Insights on prospects of nano-siRNA based approaches in treatment of cancer publication-title: Front. Pharmacol. – volume: 30 start-page: 95 year: 2022 end-page: 111 ident: b31 article-title: Fusogenic peptide delivery of bioactive siRNAs targeting CSNK2A1 for treatment of ovarian cancer publication-title: Mol. Therapy-Nucleic Acids – volume: 221 year: 2021 ident: b58 article-title: Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale publication-title: J. Cell Biol. – volume: 81 start-page: 2340 year: 1977 end-page: 2361 ident: b72 article-title: Exact stochastic simulation of coupled chemical reactions publication-title: J. Phys. Chem. – volume: 6 year: 2009 ident: b69 article-title: Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions publication-title: Phys. Biol. – volume: 81 start-page: 2340 year: 1977 end-page: 2361 ident: b64 article-title: Exact stochastic simulation of coupled chemical reactions publication-title: J. Phys. Chem. – volume: 9 start-page: 344 year: 2014 end-page: 364 ident: b24 article-title: Intracellular delivery of nanomaterials: how to catch endosomal escape in the act publication-title: Nano Today – volume: 214 start-page: 92 year: 2019 end-page: 104 ident: b21 article-title: Peptide carriers to the rescue: overcoming the barriers to siRNA delivery for cancer treatment publication-title: Transl. Res. – volume: 331 start-page: 211 year: 2007 end-page: 214 ident: b30 article-title: Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes publication-title: Int. J. Pharm. – volume: 331 start-page: 211 year: 2007 end-page: 214 ident: b20 article-title: Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes publication-title: Int. J. Pharm. – volume: 14 year: 2022 ident: b3 article-title: Nanotechnology-based siRNA delivery systems to overcome tumor immune evasion in cancer immunotherapy publication-title: Pharm. – volume: 1 start-page: 36 year: 2007 ident: b70 article-title: STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies publication-title: BMC Syst. Biol. – volume: 4 start-page: 69 year: 2015 end-page: 79 ident: b76 article-title: Sobol sensitivity analysis: a tool to guide the development and evaluation of systems pharmacology models publication-title: CPT: Pharmacometrics Syst. Pharmacol. – volume: 27 start-page: 1179 year: 2011 end-page: 1180 ident: b47 article-title: Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software publication-title: Bioinform. – volume: 172 start-page: 159 year: 2013 end-page: 168 ident: b7 article-title: Development of cholesteryl peptide micelles for siRNA delivery publication-title: J. Control. Release – volume: 143 start-page: 335 year: 2010 end-page: 343 ident: b9 article-title: RNA interference in vitro and in vivo using an arginine peptide/siRNA complex system publication-title: J. Control. Release – volume: 19 start-page: 4506 year: 2022 end-page: 4526 ident: b23 article-title: Recent advancements in the design of nanodelivery systems of siRNA for cancer therapy publication-title: Mol. Pharm. – volume: 11 start-page: 400 year: 2016 end-page: 408 ident: b42 article-title: NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells publication-title: ACS Chem. Biol. – volume: 16 year: 2019 ident: b73 article-title: Simulation and inference algorithms for stochastic biochemical reaction networks: from basic concepts to state-of-the-art publication-title: J. R. Soc. Interface – volume: 8 year: 2013 ident: b29 article-title: Fusogenic-oligoarginine peptide-mediated delivery of siRNAs targeting the CIP2a oncogene into oral cancer cells publication-title: PloS One – volume: 1 start-page: 137 year: 2004 end-page: 151 ident: b71 article-title: Stochastic simulation of chemical reactions with spatial resolution and single molecule detail publication-title: Phys. Biol. – year: 2012 ident: b14 article-title: Therapeutic siRNA: Principles, challenges, and strategies publication-title: Yale J. Biol. Med. – volume: 34 start-page: 721 year: 2009 ident: b12 article-title: Advances in systemic siRNA delivery publication-title: Drugs Future – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: b54 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. – volume: 21 start-page: 742 year: 2023 end-page: 750 ident: b51 article-title: Cell segmentation and representation with shape priors publication-title: Comput. Struct. Biotechnol. J. – volume: 12 start-page: 3721 year: 2021 ident: b57 article-title: Unravelling cytosolic delivery of cell penetrating peptides with a quantitative endosomal escape assay publication-title: Nat. Commun. – volume: 10 year: 2022 ident: b5 article-title: Small interfering RNA for Gliomas treatment: Overcoming hurdles in delivery publication-title: Front. Cell Dev. Biol. – volume: 14 year: 2022 ident: b17 article-title: Peptide-based delivery of therapeutics in cancer treatment publication-title: Mater. Today Bio – volume: 11 year: 2020 ident: b45 article-title: Imaging small molecule-induced endosomal escape of siRNA publication-title: Nat. Commun. – volume: 83 year: 2023 ident: b4 article-title: Tandem peptides targeting HER2 for delivery of CD44 siRNA into HER2+ breast cancer cells in vitro publication-title: Cancer Res. – volume: 1 start-page: 391 year: 2012 end-page: 438 ident: b63 article-title: Compartmental modeling in the analysis of biological systems publication-title: Comput. Toxicol. – volume: 22 start-page: 403 year: 1976 end-page: 434 ident: b65 article-title: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions publication-title: J. Comput. Phys. – year: 2023 ident: b16 article-title: Nanotechnology-Based Approaches for Targeted Delivery of SiRNA Or Chemotherapeutics – volume: 5 start-page: 74 year: 2017 end-page: 84 ident: b36 article-title: Histidine-enriched multifunctional peptide vectors with enhanced cellular uptake and endosomal escape for gene delivery publication-title: J. Mater. Chem. B – volume: 14 year: 2023 ident: b46 article-title: Single-cell quantification and dose–response of cytosolic siRNA delivery publication-title: Nat. Commun. – volume: 15 start-page: 1 year: 2020 end-page: 22 ident: b49 article-title: Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy publication-title: Plos One – volume: 20 year: 2024 ident: b59 article-title: In vivo endothelial cell gene silencing by siRNA-LNPs tuned with lipoamino bundle chemical and ligand targeting publication-title: Small – volume: 6 year: 2016 ident: b37 article-title: Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics publication-title: Sci. Rep. – volume: 52 start-page: 1750 year: 2019 end-page: 1760 ident: b28 article-title: Carriers break barriers in drug delivery: endocytosis and endosomal escape of gene delivery vectors publication-title: Accounts Chem. Res. – volume: 8 start-page: 1 year: 2013 end-page: 11 ident: b22 article-title: Cantini fusogenic-oligoarginine peptide-mediated delivery of siRNAs targeting the CIP2A oncogene into oral cancer cells publication-title: Plos One – volume: 8 start-page: 173 year: 2007 end-page: 184 ident: b1 article-title: Strategies for silencing human disease using RNA interference publication-title: Nature Rev. Genet. – volume: 30 start-page: 263 year: 2019 end-page: 272 ident: b25 article-title: The endosomal escape of nanoparticles: Toward more efficient cellular delivery publication-title: Bioconjugate Chem. – year: 2012 ident: b67 article-title: Stochastic Chemical Reaction Systems in Biology – start-page: 359 year: 2012 end-page: 445 ident: b61 article-title: Chapter 7 - Compartmental modeling publication-title: Introd. Biomed. Eng. (Third Edition) – volume: 35 start-page: 1 year: 2010 ident: b74 article-title: PyMC: Bayesian stochastic modelling in Python publication-title: J. Stat. Softw. – volume: 14 start-page: 3653 year: 2022 end-page: 3661 ident: b55 article-title: Quantifying the endosomal escape of pH-responsive nanoparticles using the split luciferase endosomal escape quantification assay publication-title: ACS Appl. Mater. Interfaces – volume: 14 year: 2022 ident: b26 article-title: Peptide-based delivery of therapeutics in cancer treatment publication-title: Mater. Today Bio – volume: 22 year: 2022 ident: b39 article-title: Tracking the endosomal escape: A closer look at calcein and related reporters publication-title: Macromol. Biosci. – volume: 81 year: 2024 ident: b56 article-title: Strategies and mechanisms for endosomal escape of therapeutic nucleic acids publication-title: Curr. Opin. Chem. Biol. – volume: 12 year: 2014 ident: b34 article-title: A display of pH-sensitive fusogenic GALA peptide facilitates endosomal escape from a bio-nanocapsule via an endocytic uptake pathway publication-title: J. Nanobiotechnology – volume: 21 year: 2020 ident: b52 article-title: Microscopy cell nuclei segmentation with enhanced U-Net publication-title: BMC Bioinform. – volume: 22 start-page: 553 year: 2002 end-page: 578 ident: b75 article-title: Identification and review of sensitivity analysis methods publication-title: Risk Anal. – volume: 33 start-page: 870 year: 2015 end-page: 876 ident: b60 article-title: Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown publication-title: Nat. Biotechnol. – volume: 30 start-page: 273 year: 2018 end-page: 283 ident: b27 article-title: Overcoming endosomal entrapment in drug delivery publication-title: Bioconjugate Chem. – volume: 3 start-page: 10 year: 2021 end-page: 23 ident: b38 article-title: Nanoscopy for endosomal escape quantification publication-title: Nanoscale Adv. – volume: 4 start-page: 211 year: 2021 ident: b48 article-title: A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery publication-title: Commun. Biol. – volume: 1 start-page: 3164 year: 2018 end-page: 3173 ident: b40 article-title: Controlling endosomal escape using pH-responsive nanoparticles with tunable disassembly publication-title: ACS Appl. Nano Mater. – start-page: 69 year: 2018 end-page: 76 ident: b66 article-title: Bringing ipywidgets Support to plotly.py – volume: 30 start-page: 2644 year: 2014 end-page: 2651 ident: b53 article-title: Accurate cell segmentation in microscopy images using membrane patterns publication-title: Bioinform. – volume: 72 start-page: 123 year: 2017 end-page: 131 ident: b6 article-title: Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo publication-title: Oral Oncol. – volume: 5 start-page: 1177 year: 2012 end-page: 1209 ident: b33 article-title: Improving the endosomal escape of cell-penetrating peptides and their cargos: Strategies and challenges publication-title: Pharm. – volume: 110–111 start-page: 157 year: 2017 end-page: 168 ident: b19 article-title: Functional peptides for siRNA delivery publication-title: Adv. Drug Deliv. Rev. – year: 2023 ident: b13 article-title: Single siRNA nanocapsules for effective siRNA brain delivery and glioblastoma treatment publication-title: Adv. Mater. – volume: 30 start-page: 273 year: 2019 end-page: 283 ident: b32 article-title: Overcoming endosomal entrapment in drug delivery publication-title: Bioconjugate Chem. – volume: 14 start-page: 95 year: 2022 end-page: 111 ident: b18 article-title: Fusogenic peptide delivery of bioactive siRNAs targeting CSNK2A1 for treatment of ovarian cancer publication-title: Mol. Therapy-Nucleic Acids – volume: 87 start-page: 108 year: 2015 end-page: 119 ident: b10 article-title: Preclinical and clinical development of siRNA-based therapeutics publication-title: Adv. Drug Deliv. Rev. – volume: 21 start-page: 2923 year: 2005 end-page: 2924 ident: b68 article-title: Stochastic reaction–diffusion simulation with MesoRD publication-title: Bioinform. – volume: 31 start-page: 638 year: 2013 end-page: 646 ident: b44 article-title: Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape publication-title: Nat. Biotechnol. – year: 2023 ident: b41 article-title: Get out or die trying: peptide-and protein-based endosomal escape of RNA therapeutics publication-title: Adv. Drug Deliv. Rev. – volume: 20 year: 2022 ident: b50 article-title: Segmentation, tracking and cell cycle analysis of live-cell imaging data with cell-ACDC publication-title: BMC Biol. – volume: 22 year: 2022 ident: 10.1016/j.mbs.2025.109476_b39 article-title: Tracking the endosomal escape: A closer look at calcein and related reporters publication-title: Macromol. Biosci. doi: 10.1002/mabi.202200167 – volume: 9 start-page: 62 year: 1979 ident: 10.1016/j.mbs.2025.109476_b54 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 1 start-page: 137 year: 2004 ident: 10.1016/j.mbs.2025.109476_b71 article-title: Stochastic simulation of chemical reactions with spatial resolution and single molecule detail publication-title: Phys. Biol. doi: 10.1088/1478-3967/1/3/001 – volume: 8 start-page: 173 issue: 3 year: 2007 ident: 10.1016/j.mbs.2025.109476_b1 article-title: Strategies for silencing human disease using RNA interference publication-title: Nature Rev. Genet. doi: 10.1038/nrg2006 – volume: 14 year: 2022 ident: 10.1016/j.mbs.2025.109476_b26 article-title: Peptide-based delivery of therapeutics in cancer treatment publication-title: Mater. Today Bio – volume: 30 start-page: 95 year: 2022 ident: 10.1016/j.mbs.2025.109476_b31 article-title: Fusogenic peptide delivery of bioactive siRNAs targeting CSNK2A1 for treatment of ovarian cancer publication-title: Mol. Therapy-Nucleic Acids doi: 10.1016/j.omtn.2022.09.012 – volume: 5 start-page: 1177 year: 2012 ident: 10.1016/j.mbs.2025.109476_b33 article-title: Improving the endosomal escape of cell-penetrating peptides and their cargos: Strategies and challenges publication-title: Pharm. – volume: 22 start-page: 403 year: 1976 ident: 10.1016/j.mbs.2025.109476_b65 article-title: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(76)90041-3 – volume: 172 start-page: 159 year: 2013 ident: 10.1016/j.mbs.2025.109476_b7 article-title: Development of cholesteryl peptide micelles for siRNA delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.07.033 – volume: 21 start-page: 742 year: 2023 ident: 10.1016/j.mbs.2025.109476_b51 article-title: Cell segmentation and representation with shape priors publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2022.12.034 – volume: 83 year: 2023 ident: 10.1016/j.mbs.2025.109476_b4 article-title: Tandem peptides targeting HER2 for delivery of CD44 siRNA into HER2+ breast cancer cells in vitro publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2023-3979 – volume: 9 start-page: 344 year: 2014 ident: 10.1016/j.mbs.2025.109476_b24 article-title: Intracellular delivery of nanomaterials: how to catch endosomal escape in the act publication-title: Nano Today doi: 10.1016/j.nantod.2014.04.011 – volume: 63 start-page: 95 year: 2013 ident: 10.1016/j.mbs.2025.109476_b11 article-title: siRNA delivery for the treatment of ovarian cancer publication-title: Methods doi: 10.1016/j.ymeth.2013.01.007 – volume: 11 start-page: 400 year: 2016 ident: 10.1016/j.mbs.2025.109476_b42 article-title: NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00753 – volume: 20 year: 2022 ident: 10.1016/j.mbs.2025.109476_b50 article-title: Segmentation, tracking and cell cycle analysis of live-cell imaging data with cell-ACDC publication-title: BMC Biol. doi: 10.1186/s12915-022-01372-6 – volume: 110–111 start-page: 157 year: 2017 ident: 10.1016/j.mbs.2025.109476_b19 article-title: Functional peptides for siRNA delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2016.08.004 – volume: 11 year: 2020 ident: 10.1016/j.mbs.2025.109476_b45 article-title: Imaging small molecule-induced endosomal escape of siRNA publication-title: Nat. Commun. doi: 10.1038/s41467-020-15300-1 – year: 2012 ident: 10.1016/j.mbs.2025.109476_b67 – volume: 331 start-page: 211 year: 2007 ident: 10.1016/j.mbs.2025.109476_b30 article-title: Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2006.11.050 – volume: 21 start-page: 2923 year: 2005 ident: 10.1016/j.mbs.2025.109476_b68 article-title: Stochastic reaction–diffusion simulation with MesoRD publication-title: Bioinform. doi: 10.1093/bioinformatics/bti431 – volume: 14 year: 2022 ident: 10.1016/j.mbs.2025.109476_b17 article-title: Peptide-based delivery of therapeutics in cancer treatment publication-title: Mater. Today Bio – volume: 31 start-page: 638 year: 2013 ident: 10.1016/j.mbs.2025.109476_b44 article-title: Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2612 – start-page: 69 year: 2018 ident: 10.1016/j.mbs.2025.109476_b66 – volume: 221 year: 2021 ident: 10.1016/j.mbs.2025.109476_b58 article-title: Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale publication-title: J. Cell Biol. – volume: 81 start-page: 2340 year: 1977 ident: 10.1016/j.mbs.2025.109476_b72 article-title: Exact stochastic simulation of coupled chemical reactions publication-title: J. Phys. Chem. doi: 10.1021/j100540a008 – volume: 19 start-page: 4506 year: 2022 ident: 10.1016/j.mbs.2025.109476_b23 article-title: Recent advancements in the design of nanodelivery systems of siRNA for cancer therapy publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.2c00811 – volume: 1 start-page: 391 year: 2012 ident: 10.1016/j.mbs.2025.109476_b63 article-title: Compartmental modeling in the analysis of biological systems publication-title: Comput. Toxicol. doi: 10.1007/978-1-62703-050-2_17 – volume: 4 start-page: 69 year: 2015 ident: 10.1016/j.mbs.2025.109476_b76 article-title: Sobol sensitivity analysis: a tool to guide the development and evaluation of systems pharmacology models publication-title: CPT: Pharmacometrics Syst. Pharmacol. – volume: 16 start-page: 293 year: 2021 ident: 10.1016/j.mbs.2025.109476_b43 article-title: NanoClick: a high throughput, target-agnostic peptide cell permeability assay publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.0c00804 – volume: 81 year: 2024 ident: 10.1016/j.mbs.2025.109476_b56 article-title: Strategies and mechanisms for endosomal escape of therapeutic nucleic acids publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2024.102506 – volume: 14 start-page: 95 year: 2022 ident: 10.1016/j.mbs.2025.109476_b18 article-title: Fusogenic peptide delivery of bioactive siRNAs targeting CSNK2A1 for treatment of ovarian cancer publication-title: Mol. Therapy-Nucleic Acids doi: 10.1016/j.omtn.2022.09.012 – volume: 214 start-page: 92 year: 2019 ident: 10.1016/j.mbs.2025.109476_b21 article-title: Peptide carriers to the rescue: overcoming the barriers to siRNA delivery for cancer treatment publication-title: Transl. Res. doi: 10.1016/j.trsl.2019.07.010 – volume: 10 year: 2022 ident: 10.1016/j.mbs.2025.109476_b5 article-title: Small interfering RNA for Gliomas treatment: Overcoming hurdles in delivery publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2022.824299 – volume: 5 start-page: 74 year: 2017 ident: 10.1016/j.mbs.2025.109476_b36 article-title: Histidine-enriched multifunctional peptide vectors with enhanced cellular uptake and endosomal escape for gene delivery publication-title: J. Mater. Chem. B doi: 10.1039/C6TB02862D – volume: 22 start-page: 553 year: 2002 ident: 10.1016/j.mbs.2025.109476_b75 article-title: Identification and review of sensitivity analysis methods publication-title: Risk Anal. doi: 10.1111/0272-4332.00039 – volume: 33 start-page: 931 year: 2015 ident: 10.1016/j.mbs.2025.109476_b35 article-title: A role for peptides in overcoming endosomal entrapment in siRNA delivery — A focus on melittin publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2015.05.005 – start-page: 19 year: 2008 ident: 10.1016/j.mbs.2025.109476_b62 article-title: Compartmental models in epidemiology publication-title: Math. Epidemiology doi: 10.1007/978-3-540-78911-6_2 – volume: 6 year: 2016 ident: 10.1016/j.mbs.2025.109476_b37 article-title: Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics publication-title: Sci. Rep. doi: 10.1038/srep32301 – volume: 6 year: 2009 ident: 10.1016/j.mbs.2025.109476_b69 article-title: Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions publication-title: Phys. Biol. doi: 10.1088/1478-3975/6/4/046001 – volume: 30 start-page: 273 year: 2019 ident: 10.1016/j.mbs.2025.109476_b32 article-title: Overcoming endosomal entrapment in drug delivery publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.8b00778 – volume: 21 year: 2020 ident: 10.1016/j.mbs.2025.109476_b52 article-title: Microscopy cell nuclei segmentation with enhanced U-Net publication-title: BMC Bioinform. doi: 10.1186/s12859-019-3332-1 – volume: 143 start-page: 335 year: 2010 ident: 10.1016/j.mbs.2025.109476_b9 article-title: RNA interference in vitro and in vivo using an arginine peptide/siRNA complex system publication-title: J. Control. Release doi: 10.1016/j.jconrel.2010.01.009 – volume: 72 start-page: 123 year: 2017 ident: 10.1016/j.mbs.2025.109476_b6 article-title: Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo publication-title: Oral Oncol. doi: 10.1016/j.oraloncology.2017.07.004 – volume: 27 start-page: 1179 year: 2011 ident: 10.1016/j.mbs.2025.109476_b47 article-title: Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software publication-title: Bioinform. doi: 10.1093/bioinformatics/btr095 – volume: 35 start-page: 1 year: 2010 ident: 10.1016/j.mbs.2025.109476_b74 article-title: PyMC: Bayesian stochastic modelling in Python publication-title: J. Stat. Softw. doi: 10.18637/jss.v035.i04 – volume: 30 start-page: 273 year: 2018 ident: 10.1016/j.mbs.2025.109476_b27 article-title: Overcoming endosomal entrapment in drug delivery publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.8b00778 – volume: 4 start-page: 211 year: 2021 ident: 10.1016/j.mbs.2025.109476_b48 article-title: A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery publication-title: Commun. Biol. doi: 10.1038/s42003-021-01728-8 – volume: 8 start-page: 1 year: 2013 ident: 10.1016/j.mbs.2025.109476_b22 article-title: Cantini fusogenic-oligoarginine peptide-mediated delivery of siRNAs targeting the CIP2A oncogene into oral cancer cells publication-title: Plos One – volume: 81 start-page: 2340 year: 1977 ident: 10.1016/j.mbs.2025.109476_b64 article-title: Exact stochastic simulation of coupled chemical reactions publication-title: J. Phys. Chem. doi: 10.1021/j100540a008 – volume: 3 start-page: 10 year: 2021 ident: 10.1016/j.mbs.2025.109476_b38 article-title: Nanoscopy for endosomal escape quantification publication-title: Nanoscale Adv. doi: 10.1039/D0NA00454E – year: 2023 ident: 10.1016/j.mbs.2025.109476_b41 article-title: Get out or die trying: peptide-and protein-based endosomal escape of RNA therapeutics publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2023.115047 – volume: 33 start-page: 870 year: 2015 ident: 10.1016/j.mbs.2025.109476_b60 article-title: Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3298 – volume: 20 year: 2024 ident: 10.1016/j.mbs.2025.109476_b59 article-title: In vivo endothelial cell gene silencing by siRNA-LNPs tuned with lipoamino bundle chemical and ligand targeting publication-title: Small doi: 10.1002/smll.202400643 – year: 2023 ident: 10.1016/j.mbs.2025.109476_b16 – volume: 1 start-page: 36 year: 2007 ident: 10.1016/j.mbs.2025.109476_b70 article-title: STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies publication-title: BMC Syst. Biol. – volume: 30 start-page: 263 year: 2019 ident: 10.1016/j.mbs.2025.109476_b25 article-title: The endosomal escape of nanoparticles: Toward more efficient cellular delivery publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.8b00732 – year: 2012 ident: 10.1016/j.mbs.2025.109476_b14 article-title: Therapeutic siRNA: Principles, challenges, and strategies publication-title: Yale J. Biol. Med. – volume: 30 start-page: 2644 year: 2014 ident: 10.1016/j.mbs.2025.109476_b53 article-title: Accurate cell segmentation in microscopy images using membrane patterns publication-title: Bioinform. doi: 10.1093/bioinformatics/btu302 – start-page: 359 year: 2012 ident: 10.1016/j.mbs.2025.109476_b61 article-title: Chapter 7 - Compartmental modeling publication-title: Introd. Biomed. Eng. (Third Edition) doi: 10.1016/B978-0-12-374979-6.00007-1 – volume: 16 year: 2019 ident: 10.1016/j.mbs.2025.109476_b73 article-title: Simulation and inference algorithms for stochastic biochemical reaction networks: from basic concepts to state-of-the-art publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2018.0943 – volume: 12 year: 2014 ident: 10.1016/j.mbs.2025.109476_b34 article-title: A display of pH-sensitive fusogenic GALA peptide facilitates endosomal escape from a bio-nanocapsule via an endocytic uptake pathway publication-title: J. Nanobiotechnology doi: 10.1186/1477-3155-12-11 – volume: 118 start-page: 1 year: 2013 ident: 10.1016/j.mbs.2025.109476_b2 article-title: Bioengineering strategies for designing targeted cancer therapies publication-title: Adv. Cancer Res. doi: 10.1016/B978-0-12-407173-5.00002-9 – volume: 12 start-page: 3721 year: 2021 ident: 10.1016/j.mbs.2025.109476_b57 article-title: Unravelling cytosolic delivery of cell penetrating peptides with a quantitative endosomal escape assay publication-title: Nat. Commun. doi: 10.1038/s41467-021-23997-x – volume: 6 start-page: 8484 year: 2012 ident: 10.1016/j.mbs.2025.109476_b8 article-title: Rationally designed tumor-penetrating nanocomplexes publication-title: ACS Nano doi: 10.1021/nn304707b – year: 2023 ident: 10.1016/j.mbs.2025.109476_b13 article-title: Single siRNA nanocapsules for effective siRNA brain delivery and glioblastoma treatment publication-title: Adv. Mater. – volume: 14 year: 2022 ident: 10.1016/j.mbs.2025.109476_b3 article-title: Nanotechnology-based siRNA delivery systems to overcome tumor immune evasion in cancer immunotherapy publication-title: Pharm. – volume: 331 start-page: 211 year: 2007 ident: 10.1016/j.mbs.2025.109476_b20 article-title: Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2006.11.050 – volume: 1 start-page: 3164 year: 2018 ident: 10.1016/j.mbs.2025.109476_b40 article-title: Controlling endosomal escape using pH-responsive nanoparticles with tunable disassembly publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b00338 – volume: 52 start-page: 1750 year: 2019 ident: 10.1016/j.mbs.2025.109476_b28 article-title: Carriers break barriers in drug delivery: endocytosis and endosomal escape of gene delivery vectors publication-title: Accounts Chem. Res. doi: 10.1021/acs.accounts.9b00177 – volume: 14 start-page: 3653 year: 2022 ident: 10.1016/j.mbs.2025.109476_b55 article-title: Quantifying the endosomal escape of pH-responsive nanoparticles using the split luciferase endosomal escape quantification assay publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c18359 – volume: 8 year: 2013 ident: 10.1016/j.mbs.2025.109476_b29 article-title: Fusogenic-oligoarginine peptide-mediated delivery of siRNAs targeting the CIP2a oncogene into oral cancer cells publication-title: PloS One doi: 10.1371/journal.pone.0073348 – volume: 14 year: 2023 ident: 10.1016/j.mbs.2025.109476_b46 article-title: Single-cell quantification and dose–response of cytosolic siRNA delivery publication-title: Nat. Commun. doi: 10.1038/s41467-023-36752-1 – year: 2022 ident: 10.1016/j.mbs.2025.109476_b15 article-title: Insights on prospects of nano-siRNA based approaches in treatment of cancer publication-title: Front. Pharmacol. doi: 10.3389/fphar.2022.985670 – volume: 15 start-page: 1 year: 2020 ident: 10.1016/j.mbs.2025.109476_b49 article-title: Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy publication-title: Plos One doi: 10.1371/journal.pone.0243219 – volume: 34 start-page: 721 year: 2009 ident: 10.1016/j.mbs.2025.109476_b12 article-title: Advances in systemic siRNA delivery publication-title: Drugs Future doi: 10.1358/dof.2009.34.9.1413267 – volume: 87 start-page: 108 year: 2015 ident: 10.1016/j.mbs.2025.109476_b10 article-title: Preclinical and clinical development of siRNA-based therapeutics publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.01.007 |
| SSID | ssj0017116 |
| Score | 2.4318836 |
| Snippet | Gene silencing via small interfering RNA (siRNA) represents a transformative tool in cancer therapy, offering specificity and reduced off-target effects... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 109476 |
| SubjectTerms | Bayes Theorem Cancer Compartmental model Computer Simulation Endosomal escape Endosomes - metabolism Humans Image processing Microscopy, Fluorescence Models, Biological Parameter estimation Peptides Peptides - metabolism RNA, Small Interfering - metabolism Stochastic Processes Stochastic simulation algorithm |
| Title | Stochastic model of siRNA endosomal escape mediated by fusogenic peptides |
| URI | https://dx.doi.org/10.1016/j.mbs.2025.109476 https://www.ncbi.nlm.nih.gov/pubmed/40482915 https://www.proquest.com/docview/3216695736 |
| Volume | 387 |
| WOSCitedRecordID | wos001510135500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017116 issn: 0025-5564 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1daxQxFA22VdAH0Wq1VUsEn5Qpm8lkPh5XqViRRbTK-jRk8kG3tDPLZrZ0_31vJpmMVrbYB1-GZUhC2HOS3Ds5916E3sRMKaI1jYiARZ4kXEe5UDrSVJJc2ZxznZrw55dsMsmn0-KrvzE1XTmBrK7zy8ti_l-hhncAtg2dvQXcYVB4Ab8BdHgC7PD8J-C_t4044Tb9sitzY81BM_s2Gb9TtWxMcw6gKGN1Ty5spHU2qF6aBsaEXnMrdJFeW9gXewrZXaF3NfMZMAf94S8u-YVjljkZfPxmedb4gDFjflMFhbCa6P1ixX3qAyuvHXRDYPy7uKEwoP82EbMgvhpiBVjEmMtT3u-31J-wbsck4F-6CjB_bebuu8LpwXll86rH7GBo-2fi7GsHWpAZ9gq20xKGKO0QpRtiA23FGStgI98aHx1OP4d7p4x0xXLDvPt78E4ReG0e6yyZdZ5KZ7EcP0IPvauBx44ij9EdVW-je6746GobPRgwNU_Q0UAb3NEGNxp3tMGBNtjRBve0wdUKB9rgnjZP0Y-Ph8cfPkW-zEYkwNhsoypRgqdgadpkhpSoKh8JsFt1quNRlYBHYUtBi4xUOpWCUcmJihNOY1pIzoRUdAdt1k2tniMMxq2WlGg4BCR43rKgoyKrtBaJVAV4Hrto1P9lpfA56G0plLNyLVS76G3oMncJWG5qnPQ4lH4hOMuwBE7d1O11j1kJu6u9MuO1apampDFJ04JlFNo8c2CGWSRw-MUFYXu3meELdH9YKC_RZrtYqlforrhoZ2axjzayab7vSXkFCS6k-A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+model+of+siRNA+endosomal+escape+mediated+by+fusogenic+peptides&rft.jtitle=Mathematical+biosciences&rft.au=Yadav%2C+Nisha&rft.au=Boulos%2C+Jessica&rft.au=Alexander-Bryant%2C+Angela&rft.au=Cook%2C+Keisha&rft.date=2025-09-01&rft.issn=0025-5564&rft.volume=387&rft.spage=109476&rft_id=info:doi/10.1016%2Fj.mbs.2025.109476&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mbs_2025_109476 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5564&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5564&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5564&client=summon |