Three-Coloring and List Three-Coloring of Graphs Without Induced Paths on Seven Vertices

In this paper we present a polynomial time algorithm that determines if an input graph containing no induced seven-vertex path is 3-colorable. This affirmatively answers a question posed by Randerath, Schiermeyer and Tewes in 2002. Our algorithm also solves the list-coloring version of the 3-colorin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Combinatorica (Budapest. 1981) Ročník 38; číslo 4; s. 779 - 801
Hlavní autoři: Bonomo, Flavia, Chudnovsky, Maria, Maceli, Peter, Schaudt, Oliver, Stein, Maya, Zhong, Mingxian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2018
Springer
Springer Nature B.V
Témata:
ISSN:0209-9683, 1439-6912
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we present a polynomial time algorithm that determines if an input graph containing no induced seven-vertex path is 3-colorable. This affirmatively answers a question posed by Randerath, Schiermeyer and Tewes in 2002. Our algorithm also solves the list-coloring version of the 3-coloring problem, where every vertex is assigned a list of colors that is a subset of {1,2,3}, and gives an explicit coloring if one exists.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0209-9683
1439-6912
DOI:10.1007/s00493-017-3553-8