A hybrid fuzzy goal programming approach with different goal priorities to aggregate production planning

In this study a hybrid (including qualitative and quantitative objectives) fuzzy multi objective nonlinear programming (H-FMONLP) model with different goal priorities will be developed for aggregate production planning (APP) problem in a fuzzy environment. Using an interactive decision making proces...

Full description

Saved in:
Bibliographic Details
Published in:Computers & industrial engineering Vol. 56; no. 4; pp. 1474 - 1486
Main Authors: Jamalnia, Abouzar, Soukhakian, Mohammad Ali
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.05.2009
Pergamon Press Inc
Subjects:
ISSN:0360-8352, 1879-0550
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study a hybrid (including qualitative and quantitative objectives) fuzzy multi objective nonlinear programming (H-FMONLP) model with different goal priorities will be developed for aggregate production planning (APP) problem in a fuzzy environment. Using an interactive decision making process the proposed model tries to minimize total production costs, carrying and back ordering costs and costs of changes in workforce level (quantitative objectives) and maximize total customer satisfaction (qualitative objective) with regarding the inventory level, demand, labor level, machines capacity and warehouse space. A real-world industrial case study demonstrates applicability of proposed model to practical APP decision problems. GENOCOP III (Genetic Algorithm for Numerical Optimization of Constrained Problems) has been used to solve final crisp nonlinear programming problem.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0360-8352
1879-0550
DOI:10.1016/j.cie.2008.09.010