A graph-based semi-supervised approach to classification learning in digital geographies

As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday experiences are mediated. As such, increasing interest has emerged in exploring how the content shared through those online platforms comes to...

Full description

Saved in:
Bibliographic Details
Published in:Computers, environment and urban systems Vol. 86; p. 101583
Main Authors: Liu, Pengyuan, De Sabbata, Stefano
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.03.2021
Elsevier Science Ltd
Subjects:
ISSN:0198-9715, 1873-7587
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday experiences are mediated. As such, increasing interest has emerged in exploring how the content shared through those online platforms comes to contribute to the collaborative creation of places in physical space at the urban scale. Exploring digital geographies of social media data using methods such as qualitative coding (i.e., content labelling) is a flexible but complex task, commonly limited to small samples due to its impracticality over large datasets. In this paper, we propose a new tool for studies in digital geographies, bridging qualitative and quantitative approaches, able to learn a set of arbitrary labels (qualitative codes) on a small, manually-created sample and apply the same labels on a larger set. We introduce a semi-supervised, deep neural network approach to classify geo-located social media posts based on their textual and image content, as well as geographical and temporal aspects. Our innovative approach is rooted in our understanding of social media posts as augmentations of the time-space configurations that places are, and it comprises a stacked multi-modal autoencoder neural network to create joint representations of text and images, and a spatio-temporal graph convolution neural network for semi-supervised classification. The results presented in this paper show that our approach performs the classification of social media content with higher accuracy than traditional machine learning models as well as two state-of-art deep learning frameworks. •Bridging quantitative and qualitative approaches in urban digital geographies.•Semi-supervised classification of geo-located social media.•Stacked multi-modal autoencoder to create embeddings from text and image.•Graph convolutional neural network encoding spatio-temporal proximity.•Time geography is key in understanding social media content.
AbstractList As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday experiences are mediated. As such, increasing interest has emerged in exploring how the content shared through those online platforms comes to contribute to the collaborative creation of places in physical space at the urban scale. Exploring digital geographies of social media data using methods such as qualitative coding (i.e., content labelling) is a flexible but complex task, commonly limited to small samples due to its impracticality over large datasets. In this paper, we propose a new tool for studies in digital geographies, bridging qualitative and quantitative approaches, able to learn a set of arbitrary labels (qualitative codes) on a small, manually-created sample and apply the same labels on a larger set. We introduce a semi-supervised, deep neural network approach to classify geo-located social media posts based on their textual and image content, as well as geographical and temporal aspects. Our innovative approach is rooted in our understanding of social media posts as augmentations of the time-space configurations that places are, and it comprises a stacked multi-modal autoencoder neural network to create joint representations of text and images, and a spatio-temporal graph convolution neural network for semi-supervised classification. The results presented in this paper show that our approach performs the classification of social media content with higher accuracy than traditional machine learning models as well as two state-of-art deep learning frameworks. •Bridging quantitative and qualitative approaches in urban digital geographies.•Semi-supervised classification of geo-located social media.•Stacked multi-modal autoencoder to create embeddings from text and image.•Graph convolutional neural network encoding spatio-temporal proximity.•Time geography is key in understanding social media content.
As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday experiences are mediated. As such, increasing interest has emerged in exploring how the content shared through those online platforms comes to contribute to the collaborative creation of places in physical space at the urban scale. Exploring digital geographies of social media data using methods such as qualitative coding (i.e., content labelling) is a flexible but complex task, commonly limited to small samples due to its impracticality over large datasets. In this paper, we propose a new tool for studies in digital geographies, bridging qualitative and quantitative approaches, able to learn a set of arbitrary labels (qualitative codes) on a small, manually-created sample and apply the same labels on a larger set. We introduce a semi-supervised, deep neural network approach to classify geo-located social media posts based on their textual and image content, as well as geographical and temporal aspects. Our innovative approach is rooted in our understanding of social media posts as augmentations of the time-space configurations that places are, and it comprises a stacked multi-modal autoencoder neural network to create joint representations of text and images, and a spatio-temporal graph convolution neural network for semi-supervised classification. The results presented in this paper show that our approach performs the classification of social media content with higher accuracy than traditional machine learning models as well as two state-of-art deep learning frameworks.
ArticleNumber 101583
Author Liu, Pengyuan
De Sabbata, Stefano
Author_xml – sequence: 1
  givenname: Pengyuan
  surname: Liu
  fullname: Liu, Pengyuan
  email: pl164@leicester.ac.uk
– sequence: 2
  givenname: Stefano
  surname: De Sabbata
  fullname: De Sabbata, Stefano
BookMark eNqNkMtqwzAQRUVJoUnafzBk7VSPyHLoKoT0AYFuWuhOyNLYkXEkV3IC-fvaSTftKisx6M6ZmTNBI-cdIDQjeE4wyR7rufb7FtzxEIp4inOK6fmH5-wGjUkuWCp4LkZojMkyT5eC8Ds0ibHGGNPFIh-jr1VSBdXu0kJFMEmEvU3joYVwtEOt2jZ4pXdJ5xPdqBhtabXqrHdJAyo466rEusTYynaqSSrwZ5qFeI9uS9VEePh9p-jzefOxfk237y9v69U21YzzLhUqy4yg2GSiKPGSMUMUXpSYFRlmHKgxRIMWnBXEaL7kRmDThykvGVGloWyKZhduv-j3AWIna38Irh8pKcdZRheYij61uqR08DEGKKXuFx7u6IKyjSRYDkJlLf8IlYNQeRHaM57-Mdpg9yqcruzeXLqhl3G0EGTUFpwGYwPoThpvr-L8ACz4nsA
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2023_07_018
crossref_primary_10_1016_j_landurbplan_2024_105171
crossref_primary_10_1007_s10707_021_00454_x
crossref_primary_10_1007_s42001_021_00143_7
crossref_primary_10_1080_13658816_2023_2254382
crossref_primary_10_1002_acm2_13746
crossref_primary_10_1016_j_scs_2023_104480
crossref_primary_10_1111_tgis_12957
crossref_primary_10_1016_j_jprocont_2022_11_004
crossref_primary_10_1080_13658816_2024_2347316
crossref_primary_10_1016_j_jag_2022_102936
crossref_primary_10_1177_23998083231204689
crossref_primary_10_1016_j_ins_2022_10_112
Cites_doi 10.1177/0309132516664800
10.1016/j.asej.2014.04.011
10.1111/anti.12312
10.1068/b3311
10.1007/s11036-016-0789-2
10.1007/s10708-014-9602-6
10.1016/j.apgeog.2016.03.001
10.1371/journal.pone.0097807
10.1080/15230406.2013.799738
10.1016/j.chb.2018.08.039
10.1080/10630732.2017.1335153
10.1080/10095020.2017.1371903
10.1111/tgis.12122
10.1068/a3698
10.1080/15230406.2013.777137
10.1145/3308560.3316752
10.1371/journal.pone.0181701
10.1111/j.1475-5661.2012.00543.x
10.1016/j.engappai.2014.06.019
10.1001/jamaophthalmol.2016.2287
10.1007/s11069-016-2329-6
10.1080/00330124.2011.583586
10.1109/ACCESS.2019.2935200
10.1016/j.geoforum.2014.01.006
10.1007/s11390-017-1753-8
10.1007/s11280-011-0120-x
10.1016/j.compenvurbsys.2015.09.001
10.1111/j.1475-5661.2012.00539.x
10.1111/tgis.12101
10.1177/2053951716645828
10.1080/13658816.2015.1089441
10.1023/A:1022627411411
10.1016/j.compenvurbsys.2018.11.001
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Mar 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Mar 2021
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compenvurbsys.2020.101583
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sociology & Social History
Environmental Sciences
EISSN 1873-7587
ExternalDocumentID 10_1016_j_compenvurbsys_2020_101583
S0198971520303161
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFYP
ABLST
ABMAC
ABMMH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LG9
M3Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSJ
SSO
SSS
SSV
SSZ
T5K
UHS
WUQ
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AGCQF
AGRNS
BNPGV
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c355t-7a66d720d67bf0933d1a04f03b6035e2dd1cec753b1dc595d70d0d625f31afd23
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640614100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0198-9715
IngestDate Fri Jul 25 07:24:24 EDT 2025
Tue Nov 18 22:23:30 EST 2025
Sat Nov 29 07:17:56 EST 2025
Fri Feb 23 02:43:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graph convolutional network
Neural network
Digital geographies
Social media
Multi-modal autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c355t-7a66d720d67bf0933d1a04f03b6035e2dd1cec753b1dc595d70d0d625f31afd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2506624027
PQPubID 2047569
ParticipantIDs proquest_journals_2506624027
crossref_citationtrail_10_1016_j_compenvurbsys_2020_101583
crossref_primary_10_1016_j_compenvurbsys_2020_101583
elsevier_sciencedirect_doi_10_1016_j_compenvurbsys_2020_101583
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers, environment and urban systems
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Lee, Yang, Chien, Wen (bb0205) 2011
Tsou, Yang, Lusher, Han, Spitzberg, Gawron, An (bb0310) 2013; 40
Kipf, Welling (bb0195) 2016; abs/1609.02907
Mouzannar, Rizk, Awad (bb0260) 2018
Mao, Shen, Yang (bb0230) 2016
Xu, Liu, Zhang, Luo, Mei, Hu (bb0345) 2017; 22
Zahra, Ostermann, Purves (bb0360) 2017; 20
Dodge, Kitchin (bb0100) 2004; 36
Huang (bb0175) 2018
Frias-Martinez, Frias-Martinez (bb0115) 2014; 4
Agnew (bb0015) 2011
Ash, Kitchin, Leszczynski (bb0025) 2018; 42
Liu, De Sabbata (bb0215) 2019
Felt (bb0110) 2016; 3
Zhu, Ghahramani (bb0365) 2002
You, Luo, Jin, Yang (bb0355) 2015
Chandar, Khapra, Larochelle, Ravindran (bb0065) 2016; 28(2)
Mishra, Pappu, Bhamidipati (bb0255) 2019
Sechelea, Do Huu, Zimos, Deligiannis (bb0290) 2016
Abrol, Khan, Thuraisingham (bb0010) 2012
Panteras, Wise, Lu, Croitoru, Crooks, Stefanidis (bb0270) 2015; 19
Abernathy (bb0005) 2016
Dan, Cui, Zhu, Yang (bb0095) 2014
Le, Mikolov (bb0200) 2014
Poorthuis, Zook (bb0275) 2017; 24
Cheng, Wicks (bb0080) 2014; 9
Xie, Girshick, Farhadi (bb0335) 2016
Yang, Leskovec (bb0350) 2011
Resch, Summa, Sagl, Zeile, Exner (bb0285) 2015
Wang, Ye, Tsou (bb0325) 2016; 83
Ghani, Hamid, Hashem, Ahmed (bb0130) 2019; 101
Graham, De Sabbata, Zook (bb0140) 2015; 2
Wakamiya, Lee, Sumiya (bb0320) 2011
Gross, Yellen (bb0150) 1999
Lee, Wakamiya, Sumiya (bb0210) 2011; 14
Luo, Cao, Mulligan, Li (bb0225) 2016; 70
Cortes, Vapnik (bb0085) 1995; 20
Chen, Zhang, Yu, Liu (bb0075) 2017; 32
Gao, Zhao, Yang, Chua (bb0125) 2015
Martín, Li, Cutter (bb0240) 2017; 12
Ballatore, De Sabbata (bb0045) 2018
Gomide, Veloso, Meira Jr, Almeida, Benevenuto, Ferraz, Teixeira (bb0135) 2011
Qi, Procter, Zhang, Guo (bb0280) 2019; 7
Huang (bb0180) 2018
Xu, Cetintas, Lee, Li (bb0340) 2014; abs/1411.5731
Boscoe, Henry, Zdeb (bb0055) 2012; 64
Guo, Chen (bb0155) 2014; 18
Ifrim, Shi, Brigadir (bb0185) 2014
Chang, Kim, Kim, Kim (bb0070) 2007
Medhat, Hassan, Korashy (bb0245) 2014; 5
Martí, Serrano-Estrada, Nolasco-Cirugeda (bb0235) 2019; 74
Gajarla, Gupta (bb0120) 2015
Crampton, Graham, Poorthuis, Shelton, Stephens, Wilson, Zook (bb0090) 2013; 40
Elwood, Leszczynski (bb0105) 2013; 38
Cai, Xia (bb0060) 2015
Graham, Zook, Boulton (bb0145) 2013; 38
Sommer (bb0305) 2016; 134
Awcock (bb0040) 2018
Zhu, Goldberg (bb0370) 2009
Borth, Chen, Ji, Chang (bb0050) 2013
Zook, Graham (bb0375) 2007; 34
Wadawadagi, Pagi (bb0315) 2020
Shelton, Poorthuis, Graham, Zook (bb0300) 2014; 52
Ballatore, De Sabbata (bb0035) 2020
Hamid, Johnson, Batta, Bobick, Isbell, Coleman (bb0160) 2005; 1
Liu, De Sabbata (bb0030) 2019
Hollenstein, Purves (bb0165) 2010; 2010
Longley, Adnan (bb0220) 2016; 30
Hu, Gao, Janowicz, Yu, Li, Prasad (bb0170) 2015; 54
Weller, Bruns, Burgess, Mahrt, Puschmann (bb0330) 2014; 89
Andrew, Arora, Bilmes, Livescu (bb0020) 2013
Kingma, Ba (bb0190) 2015
Shaw, Graham (bb0295) 2017; 49
Miller, Goodchild (bb0250) 2015; 2480
O’Sullivan, Unwin (bb0265) 2014
Panteras (10.1016/j.compenvurbsys.2020.101583_bb0270) 2015; 19
Zhu (10.1016/j.compenvurbsys.2020.101583_bb0370) 2009
Ash (10.1016/j.compenvurbsys.2020.101583_bb0025) 2018; 42
Shelton (10.1016/j.compenvurbsys.2020.101583_bb0300) 2014; 52
Ballatore (10.1016/j.compenvurbsys.2020.101583_bb0045) 2018
Zahra (10.1016/j.compenvurbsys.2020.101583_bb0360) 2017; 20
Sechelea (10.1016/j.compenvurbsys.2020.101583_bb0290) 2016
Wang (10.1016/j.compenvurbsys.2020.101583_bb0325) 2016; 83
Elwood (10.1016/j.compenvurbsys.2020.101583_bb0105) 2013; 38
Mouzannar (10.1016/j.compenvurbsys.2020.101583_bb0260) 2018
Ghani (10.1016/j.compenvurbsys.2020.101583_bb0130) 2019; 101
Dan (10.1016/j.compenvurbsys.2020.101583_bb0095) 2014
Huang (10.1016/j.compenvurbsys.2020.101583_bb0180) 2018
Luo (10.1016/j.compenvurbsys.2020.101583_bb0225) 2016; 70
Felt (10.1016/j.compenvurbsys.2020.101583_bb0110) 2016; 3
Agnew (10.1016/j.compenvurbsys.2020.101583_bb0015) 2011
Xie (10.1016/j.compenvurbsys.2020.101583_bb0335) 2016
Boscoe (10.1016/j.compenvurbsys.2020.101583_bb0055) 2012; 64
Hu (10.1016/j.compenvurbsys.2020.101583_bb0170) 2015; 54
Kingma (10.1016/j.compenvurbsys.2020.101583_bb0190) 2015
Cai (10.1016/j.compenvurbsys.2020.101583_bb0060) 2015
Wakamiya (10.1016/j.compenvurbsys.2020.101583_bb0320) 2011
Wadawadagi (10.1016/j.compenvurbsys.2020.101583_bb0315) 2020
Liu (10.1016/j.compenvurbsys.2020.101583_bb0215) 2019
Mao (10.1016/j.compenvurbsys.2020.101583_bb0230) 2016
Xu (10.1016/j.compenvurbsys.2020.101583_bb0340) 2014; abs/1411.5731
Mishra (10.1016/j.compenvurbsys.2020.101583_bb0255) 2019
Medhat (10.1016/j.compenvurbsys.2020.101583_bb0245) 2014; 5
Abernathy (10.1016/j.compenvurbsys.2020.101583_bb0005) 2016
Borth (10.1016/j.compenvurbsys.2020.101583_bb0050) 2013
Zhu (10.1016/j.compenvurbsys.2020.101583_bb0365) 2002
Guo (10.1016/j.compenvurbsys.2020.101583_bb0155) 2014; 18
Martí (10.1016/j.compenvurbsys.2020.101583_bb0235) 2019; 74
O’Sullivan (10.1016/j.compenvurbsys.2020.101583_bb0265) 2014
Andrew (10.1016/j.compenvurbsys.2020.101583_bb0020) 2013
Abrol (10.1016/j.compenvurbsys.2020.101583_bb0010) 2012
Frias-Martinez (10.1016/j.compenvurbsys.2020.101583_bb0115) 2014; 4
Longley (10.1016/j.compenvurbsys.2020.101583_bb0220) 2016; 30
Xu (10.1016/j.compenvurbsys.2020.101583_bb0345) 2017; 22
You (10.1016/j.compenvurbsys.2020.101583_bb0355) 2015
Tsou (10.1016/j.compenvurbsys.2020.101583_bb0310) 2013; 40
Chang (10.1016/j.compenvurbsys.2020.101583_bb0070) 2007
Hamid (10.1016/j.compenvurbsys.2020.101583_bb0160) 2005; 1
Huang (10.1016/j.compenvurbsys.2020.101583_bb0175) 2018
Kipf (10.1016/j.compenvurbsys.2020.101583_bb0195) 2016; abs/1609.02907
Sommer (10.1016/j.compenvurbsys.2020.101583_bb0305) 2016; 134
Ifrim (10.1016/j.compenvurbsys.2020.101583_bb0185) 2014
Resch (10.1016/j.compenvurbsys.2020.101583_bb0285) 2015
Awcock (10.1016/j.compenvurbsys.2020.101583_bb0040) 2018
Gao (10.1016/j.compenvurbsys.2020.101583_bb0125) 2015
Martín (10.1016/j.compenvurbsys.2020.101583_bb0240) 2017; 12
Gross (10.1016/j.compenvurbsys.2020.101583_bb0150) 1999
Lee (10.1016/j.compenvurbsys.2020.101583_bb0210) 2011; 14
Dodge (10.1016/j.compenvurbsys.2020.101583_bb0100) 2004; 36
Miller (10.1016/j.compenvurbsys.2020.101583_bb0250) 2015; 2480
Liu (10.1016/j.compenvurbsys.2020.101583_bb0030) 2019
Le (10.1016/j.compenvurbsys.2020.101583_bb0200) 2014
Lee (10.1016/j.compenvurbsys.2020.101583_bb0205) 2011
Ballatore (10.1016/j.compenvurbsys.2020.101583_bb0035) 2020
Chandar (10.1016/j.compenvurbsys.2020.101583_bb0065) 2016; 28(2)
Graham (10.1016/j.compenvurbsys.2020.101583_bb0145) 2013; 38
Cortes (10.1016/j.compenvurbsys.2020.101583_bb0085) 1995; 20
Poorthuis (10.1016/j.compenvurbsys.2020.101583_bb0275) 2017; 24
Qi (10.1016/j.compenvurbsys.2020.101583_bb0280) 2019; 7
Weller (10.1016/j.compenvurbsys.2020.101583_bb0330) 2014; 89
Yang (10.1016/j.compenvurbsys.2020.101583_bb0350) 2011
Chen (10.1016/j.compenvurbsys.2020.101583_bb0075) 2017; 32
Crampton (10.1016/j.compenvurbsys.2020.101583_bb0090) 2013; 40
Cheng (10.1016/j.compenvurbsys.2020.101583_bb0080) 2014; 9
Hollenstein (10.1016/j.compenvurbsys.2020.101583_bb0165) 2010; 2010
Gomide (10.1016/j.compenvurbsys.2020.101583_bb0135) 2011
Graham (10.1016/j.compenvurbsys.2020.101583_bb0140) 2015; 2
Zook (10.1016/j.compenvurbsys.2020.101583_bb0375) 2007; 34
Shaw (10.1016/j.compenvurbsys.2020.101583_bb0295) 2017; 49
Gajarla (10.1016/j.compenvurbsys.2020.101583_bb0120) 2015
References_xml – volume: 64
  start-page: 188
  year: 2012
  end-page: 196
  ident: bb0055
  article-title: A nationwide comparison of driving distance versus straight-line distance to hospitals
  publication-title: The Professional Geographer
– volume: 9
  year: 2014
  ident: bb0080
  article-title: Event detection using Twitter: A spatio-temporal approach
  publication-title: PLoS One
– start-page: 514
  year: 2012
  end-page: 523
  ident: bb0010
  article-title: Tweecalization: efficient and intelligent location mining in Twitter using semi-supervised learning
  publication-title: 8th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom)
– start-page: 254
  year: 2011
  end-page: 259
  ident: bb0205
  article-title: A novel approach for event detection by mining spatio- temporal information on microblogs
  publication-title: 2011 International conference on advances in social networks analysis and mining
– volume: 14
  start-page: 321
  year: 2011
  end-page: 349
  ident: bb0210
  article-title: Discovery of unusual re- gional social activities using geo-tagged microblogs
  publication-title: World Wide Web
– volume: 52
  start-page: 167
  year: 2014
  end-page: 179
  ident: bb0300
  article-title: Mapping the data shadows of Hurricane Sandy: Uncovering the sociospatial dimensions of “big data”
  publication-title: Geoforum
– start-page: 1165
  year: 2007
  end-page: 1178
  ident: bb0070
  article-title: Spatio-temporal similarity measure algorithm for moving objects on spatial networks
  publication-title: International conference on computational science and its applications
– start-page: 1
  year: 2016
  end-page: 5
  ident: bb0290
  article-title: Twitter data clustering and visualization
  publication-title: 2016 23rd international conference on telecommunications (ICT)
– start-page: 1
  year: 2018
  end-page: 17
  ident: bb0180
  article-title: A visual–textual fused approach to automated tagging of flood- related tweets during a flood event
  publication-title: International Journal of Digital Earth
– volume: 30
  start-page: 369
  year: 2016
  end-page: 389
  ident: bb0220
  article-title: Geo-temporal twitter demographics
  publication-title: International Journal of Geographical Information Science
– start-page: 1
  year: 2009
  end-page: 130
  ident: bb0370
  article-title: Introduction to semi-supervised learning
  publication-title: Synthesis lectures on artificial intelligence and machine learning 3.1
– start-page: 1188
  year: 2014
  end-page: 1196
  ident: bb0200
  article-title: Distributed representations of sentences and docu- ments
– volume: 22
  start-page: 218
  year: 2017
  end-page: 227
  ident: bb0345
  article-title: Building the multi-modal storytelling of urban emergency events based on crowdsensing of social media analytics
  publication-title: Mobile Networks and Applications
– volume: abs/1411.5731
  year: 2014
  ident: bb0340
  article-title: Visual sentiment prediction with deep convolutional neural networks
  publication-title: Computing Research Repository(CoRR)
– year: 2015
  ident: bb0190
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd International Conference on Learning Representations, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
– start-page: 880
  year: 2020
  end-page: 902
  ident: bb0035
  article-title: Los Angeles as a digital place: The geographies of user-generated content
  publication-title: Transactions in GIS 24.4
– volume: 2010
  start-page: 21
  year: 2010
  end-page: 48
  ident: bb0165
  article-title: Exploring place through user-generated content: Using Flickr tags to describe city cores
  publication-title: Journal of Spatial Information Science
– start-page: 459
  year: 2013
  end-page: 460
  ident: bb0050
  article-title: Sentibank: large-scale ontology and classifiers for detecting sentiment and emotions in visual content
  publication-title: Proceedings of the 21st ACM international conference on multimedia
– volume: 101
  start-page: 417
  year: 2019
  end-page: 428
  ident: bb0130
  article-title: Social media big data analytics: A survey
  publication-title: Computers in Human Behavior
– volume: 134
  start-page: 1030
  year: 2016
  end-page: 1031
  ident: bb0305
  article-title: The utility of “big data” and social media for anticipating, preventing, and treating disease
  publication-title: JAMA Ophthalmology
– volume: 40
  start-page: 337
  year: 2013
  end-page: 348
  ident: bb0310
  article-title: Mapping social activities and concepts with social media (Twitter) and web search engines (Yahoo and Bing): A case study in 2012 US Presidential Election
  publication-title: Cartography and Geographic Information Science
– start-page: 1224
  year: 2019
  end-page: 1231
  ident: bb0255
  article-title: Inferring advertiser sen- timent in online articles using wikipedia footnotes
  publication-title: Companion Proceedings of The 2019 World Wide Web Conference
– year: 2016
  ident: bb0005
  article-title: Using geodata and geolocation in the social sciences: Mapping our connected world
– volume: abs/1609.02907
  year: 2016
  ident: bb0195
  article-title: Semi-supervised classification with graph convolutional networks
– year: 1999
  ident: bb0150
  article-title: Graph theory and its applications
– start-page: 508
  year: 2020
  end-page: 527
  ident: bb0315
  article-title: Sentiment analysis on social media: Recent trends in machine learning”. Handbook of research on emerging trends and applications of machine learning
  publication-title: IGI Global
– volume: 34
  start-page: 466
  year: 2007
  end-page: 482
  ident: bb0375
  article-title: Mapping DigiPlace: Geocoded internet data and the representation of place
  publication-title: Environment and Planning. B, Planning & Design
– volume: 24
  start-page: 115
  year: 2017
  end-page: 135
  ident: bb0275
  article-title: Making big data small: Strategies to expand urban and geographical research using social media
  publication-title: Journal of Urban Technology
– volume: 2480
  start-page: 449
  year: 2015
  end-page: 461
  ident: bb0250
  article-title: Data-driven geography
  publication-title: GeoJournal
– volume: 5
  start-page: 1093
  year: 2014
  end-page: 1113
  ident: bb0245
  article-title: Sentiment analysis algorithms and applications: A survey
  publication-title: Ain Shams Engineering Journal
– volume: 49
  start-page: 907
  year: 2017
  end-page: 927
  ident: bb0295
  article-title: An informational right to the city? Code, content, control, and the urbanization of information
  publication-title: Antipode
– start-page: 316
  year: 2011
  end-page: 330
  ident: bb0015
  article-title: Space and place
  publication-title: The SAGE handbook of geographical knowledge
– volume: 1
  start-page: 1031
  year: 2005
  end-page: 1038
  ident: bb0160
  article-title: Detection and explanation of anomalous activities: Representing activities as bags of event n-grams
  publication-title: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05)
– start-page: 199
  year: 2015
  end-page: 212
  ident: bb0285
  article-title: Urban emotions—Geo-semantic emotion extraction from technical sensors, human sensors and crowdsourced data
– start-page: 381
  year: 2015
  end-page: 388
  ident: bb0355
  article-title: Robust image sentiment analysis using progressively trained and domain transferred deep networks
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bb0085
  article-title: Support-vector networks
  publication-title: Machine Learning
– year: 2014
  ident: bb0265
  article-title: Geographic information analysis
– start-page: 1
  year: 2014
  end-page: 6
  ident: bb0095
  article-title: Find you from your friends: Graph-based residence location prediction for users in social media
  publication-title: IEEE international conference on multimedia expo
– volume: 36
  start-page: 195
  year: 2004
  end-page: 211
  ident: bb0100
  article-title: Flying through code/space: The real virtuality of air travel
  publication-title: Environment and Planning A
– volume: 2
  start-page: 88
  year: 2015
  end-page: 105
  ident: bb0140
  article-title: Towards a study of infor- mation geographies: (im)mutable augmentations and a mapping of the geographies of information
  publication-title: Geo: Geography and Environment
– start-page: 269
  year: 2015
  end-page: 281
  ident: bb0125
  article-title: Multimedia social event detection in microblog
  publication-title: International conference on multimedia modeling
– start-page: 478
  year: 2016
  end-page: 487
  ident: bb0335
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: International conference on machine learning
– start-page: 1247
  year: 2013
  end-page: 1255
  ident: bb0020
  article-title: Deep canonical correlation analysis
  publication-title: International conference on machine learning
– volume: 4
  start-page: 237
  year: 2014
  end-page: 245
  ident: bb0115
  article-title: Spectral clustering for sensing urban land use using twitter activity
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 70
  start-page: 11
  year: 2016
  end-page: 25
  ident: bb0225
  article-title: Explore spatiotemporal and demographic characteristics of human mobility via twitter: A case study of Chicago
  publication-title: Applied Geography
– year: 2002
  ident: bb0365
  article-title: Learning from labeled and unlabeled data with label propagation
  publication-title: Tech. rep. Citeseer
– year: 2019
  ident: bb0215
  article-title: Learning digital geographies through a graph-based semi-supervised approach
  publication-title: The 15th international conference on geo-computation. Queenstown, New Zealanda
– volume: 74
  start-page: 161
  year: 2019
  end-page: 174
  ident: bb0235
  article-title: Social media data: Challenges, opportunities and limitations in urban studies
  publication-title: Computers, Environment and Urban Systems
– start-page: 450
  year: 2018
  end-page: 457
  ident: bb0175
  article-title: Multimodal filtering of social media for temporal monitoring and event analysis
  publication-title: Proceedings of the 2018 ACM on international conference on multimedia retrieval
– volume: 20
  start-page: 231
  year: 2017
  end-page: 240
  ident: bb0360
  article-title: Geographic variability of twitter usage characteristics during disaster events
  publication-title: Geo-spatial information science
– volume: 38
  start-page: 464
  year: 2013
  end-page: 479
  ident: bb0145
  article-title: Augmented reality in urban places: contested content and the duplicity of code
  publication-title: Transactions of the Institute of British Geographers
– volume: 40
  start-page: 130
  year: 2013
  end-page: 139
  ident: bb0090
  article-title: Beyond the geotag: Situating “big data”and leverag- ing the potential of the geoweb
  publication-title: Cartography and Geographic Information Science
– volume: 28(2)
  start-page: 257
  year: 2016
  end-page: 285
  ident: bb0065
  article-title: Correlational neural networks
– start-page: 33
  year: 2014
  end-page: 40
  ident: bb0185
  article-title: Event detection in Twitter using aggressive filtering and hierarchical tweet clustering
– volume: 89
  year: 2014
  ident: bb0330
  article-title: Twitter and society
– volume: 3
  year: 2016
  ident: bb0110
  article-title: Social media and the social sciences: How researchers employ Big Data analytics
  publication-title: Big Data & Society
– volume: 19
  start-page: 694
  year: 2015
  end-page: 715
  ident: bb0270
  article-title: Triangulating social multimedia content for event localization using Flickr and Twitter
  publication-title: Transactions in GIS
– start-page: 108
  year: 2011
  end-page: 123
  ident: bb0320
  article-title: Urban area characterization based on semantics of crowd activities in twitter
  publication-title: International conference on geospatial sematics
– volume: 42
  start-page: 25
  year: 2018
  end-page: 43
  ident: bb0025
  article-title: Digital turn, digital geographies?
  publication-title: Progress in Human Geography
– year: 2018
  ident: bb0040
  article-title: Contesting the capital: space, place, and protest in London, 1780–2010
– start-page: 149
  year: 2018
  end-page: 168
  ident: bb0045
  article-title: Charting the geographies of crowd- sourced information in greater London
  publication-title: Geospatial technologies for all
– volume: 12
  year: 2017
  ident: bb0240
  article-title: Leveraging twitter to gauge evacuation compliance: Spatiotemporal analysis of hurricane Matthew
  publication-title: PLoS One
– year: 2015
  ident: bb0120
  article-title: Emotion detection and sentiment analysis of Im- ages
– start-page: 159
  year: 2015
  end-page: 167
  ident: bb0060
  article-title: Convolutional neural networks for multimedia sentiment analysis
  publication-title: Natural language processing and chinese computing
– volume: 7
  start-page: 113726
  year: 2019
  end-page: 113739
  ident: bb0280
  article-title: Mapping consumer sentiment toward wireless services using geospatial twitter data
  publication-title: IEEE Access
– start-page: 177
  year: 2011
  end-page: 186
  ident: bb0350
  article-title: Patterns of temporal variation in online media
  publication-title: Proceedings of the fourth ACM international conference on Web search and data mining
– year: 2019
  ident: bb0030
  article-title: Learning digital geographies through a multi-modal autoencoder
  publication-title: GISRUK 2019, the 27th annual GIScience Research UK conference. Newcastle, UK
– volume: 54
  start-page: 240
  year: 2015
  end-page: 254
  ident: bb0170
  article-title: Extracting and understanding urban areas of interest using geo- tagged photos
  publication-title: Computers, Environment and Urban Systems
– volume: 83
  start-page: 523
  year: 2016
  end-page: 540
  ident: bb0325
  article-title: Spatial, temporal, and content analysis of Twitter for wildfire hazards
  publication-title: Natural Hazards
– year: 2016
  ident: bb0230
  article-title: Image restoration using convolutional auto-encoders with symmetric skip connections
– volume: 32
  start-page: 714
  year: 2017
  end-page: 725
  ident: bb0075
  article-title: Weighted co-training for cross-domain image sentiment classification
  publication-title: Journal of Computer Science and Technology
– start-page: 3
  year: 2011
  ident: bb0135
  article-title: Dengue surveillance based on a computational model of spatio-temporal locality of twitter
  publication-title: Proceedings of the 3rd international web science conference
– volume: 38
  start-page: 544
  year: 2013
  end-page: 559
  ident: bb0105
  article-title: New spatial media, new knowledge politics
  publication-title: Transactions of the Institute of British Geographers
– volume: 18
  start-page: 370
  year: 2014
  end-page: 384
  ident: bb0155
  article-title: Detecting non-personal and spam users on geo- tagged twitter network
  publication-title: Transactions in GIS
– year: 2018
  ident: bb0260
  article-title: Damage identification in social media posts using multimodal deep learning
– volume: 89
  year: 2014
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0330
– volume: 42
  start-page: 25
  issue: 1
  year: 2018
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0025
  article-title: Digital turn, digital geographies?
  publication-title: Progress in Human Geography
  doi: 10.1177/0309132516664800
– start-page: 33
  year: 2014
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0185
– year: 2015
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0190
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd International Conference on Learning Representations, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
– year: 2016
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0005
– year: 2019
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0030
  article-title: Learning digital geographies through a multi-modal autoencoder
– volume: 5
  start-page: 1093
  issue: 4
  year: 2014
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0245
  article-title: Sentiment analysis algorithms and applications: A survey
  publication-title: Ain Shams Engineering Journal
  doi: 10.1016/j.asej.2014.04.011
– volume: 49
  start-page: 907
  issue: 4
  year: 2017
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0295
  article-title: An informational right to the city? Code, content, control, and the urbanization of information
  publication-title: Antipode
  doi: 10.1111/anti.12312
– start-page: 254
  year: 2011
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0205
  article-title: A novel approach for event detection by mining spatio- temporal information on microblogs
– volume: 34
  start-page: 466
  issue: 3
  year: 2007
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0375
  article-title: Mapping DigiPlace: Geocoded internet data and the representation of place
  publication-title: Environment and Planning. B, Planning & Design
  doi: 10.1068/b3311
– volume: 22
  start-page: 218
  issue: 2
  year: 2017
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0345
  article-title: Building the multi-modal storytelling of urban emergency events based on crowdsensing of social media analytics
  publication-title: Mobile Networks and Applications
  doi: 10.1007/s11036-016-0789-2
– start-page: 459
  year: 2013
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0050
  article-title: Sentibank: large-scale ontology and classifiers for detecting sentiment and emotions in visual content
– volume: 2480
  start-page: 449
  issue: 4
  year: 2015
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0250
  article-title: Data-driven geography
  publication-title: GeoJournal
  doi: 10.1007/s10708-014-9602-6
– year: 2014
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0265
– start-page: 3
  year: 2011
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0135
  article-title: Dengue surveillance based on a computational model of spatio-temporal locality of twitter
– start-page: 880
  year: 2020
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0035
  article-title: Los Angeles as a digital place: The geographies of user-generated content
– year: 2019
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0215
  article-title: Learning digital geographies through a graph-based semi-supervised approach
– start-page: 1
  year: 2018
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0180
  article-title: A visual–textual fused approach to automated tagging of flood- related tweets during a flood event
  publication-title: International Journal of Digital Earth
– start-page: 159
  year: 2015
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0060
  article-title: Convolutional neural networks for multimedia sentiment analysis
– start-page: 177
  year: 2011
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0350
  article-title: Patterns of temporal variation in online media
– start-page: 478
  year: 2016
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0335
  article-title: Unsupervised deep embedding for clustering analysis
– year: 2015
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0120
– volume: 70
  start-page: 11
  year: 2016
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0225
  article-title: Explore spatiotemporal and demographic characteristics of human mobility via twitter: A case study of Chicago
  publication-title: Applied Geography
  doi: 10.1016/j.apgeog.2016.03.001
– volume: abs/1411.5731
  year: 2014
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0340
  article-title: Visual sentiment prediction with deep convolutional neural networks
  publication-title: Computing Research Repository(CoRR)
– year: 2016
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0230
– volume: 9
  issue: 6
  year: 2014
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0080
  article-title: Event detection using Twitter: A spatio-temporal approach
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0097807
– start-page: 149
  year: 2018
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0045
  article-title: Charting the geographies of crowd- sourced information in greater London
– start-page: 508
  year: 2020
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0315
  article-title: Sentiment analysis on social media: Recent trends in machine learning”. Handbook of research on emerging trends and applications of machine learning
  publication-title: IGI Global
– volume: 40
  start-page: 337
  issue: 4
  year: 2013
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0310
  article-title: Mapping social activities and concepts with social media (Twitter) and web search engines (Yahoo and Bing): A case study in 2012 US Presidential Election
  publication-title: Cartography and Geographic Information Science
  doi: 10.1080/15230406.2013.799738
– volume: 101
  start-page: 417
  year: 2019
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0130
  article-title: Social media big data analytics: A survey
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2018.08.039
– volume: 2010
  start-page: 21
  issue: 1
  year: 2010
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0165
  article-title: Exploring place through user-generated content: Using Flickr tags to describe city cores
  publication-title: Journal of Spatial Information Science
– start-page: 1
  year: 2016
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0290
  article-title: Twitter data clustering and visualization
– volume: 24
  start-page: 115
  issue: 4
  year: 2017
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0275
  article-title: Making big data small: Strategies to expand urban and geographical research using social media
  publication-title: Journal of Urban Technology
  doi: 10.1080/10630732.2017.1335153
– volume: 20
  start-page: 231
  issue: 3
  year: 2017
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0360
  article-title: Geographic variability of twitter usage characteristics during disaster events
  publication-title: Geo-spatial information science
  doi: 10.1080/10095020.2017.1371903
– year: 2018
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0040
– year: 1999
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0150
– start-page: 316
  year: 2011
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0015
  article-title: Space and place
– start-page: 514
  year: 2012
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0010
  article-title: Tweecalization: efficient and intelligent location mining in Twitter using semi-supervised learning
  publication-title: 8th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom)
– volume: 19
  start-page: 694
  issue: 5
  year: 2015
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0270
  article-title: Triangulating social multimedia content for event localization using Flickr and Twitter
  publication-title: Transactions in GIS
  doi: 10.1111/tgis.12122
– volume: 36
  start-page: 195
  issue: 2
  year: 2004
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0100
  article-title: Flying through code/space: The real virtuality of air travel
  publication-title: Environment and Planning A
  doi: 10.1068/a3698
– volume: 40
  start-page: 130
  issue: 2
  year: 2013
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0090
  article-title: Beyond the geotag: Situating “big data”and leverag- ing the potential of the geoweb
  publication-title: Cartography and Geographic Information Science
  doi: 10.1080/15230406.2013.777137
– start-page: 1224
  year: 2019
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0255
  article-title: Inferring advertiser sen- timent in online articles using wikipedia footnotes
  publication-title: Companion Proceedings of The 2019 World Wide Web Conference
  doi: 10.1145/3308560.3316752
– start-page: 1165
  year: 2007
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0070
  article-title: Spatio-temporal similarity measure algorithm for moving objects on spatial networks
– volume: 12
  issue: 7
  year: 2017
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0240
  article-title: Leveraging twitter to gauge evacuation compliance: Spatiotemporal analysis of hurricane Matthew
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0181701
– start-page: 1247
  year: 2013
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0020
  article-title: Deep canonical correlation analysis
– volume: 38
  start-page: 544
  issue: 4
  year: 2013
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0105
  article-title: New spatial media, new knowledge politics
  publication-title: Transactions of the Institute of British Geographers
  doi: 10.1111/j.1475-5661.2012.00543.x
– volume: 4
  start-page: 237
  year: 2014
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0115
  article-title: Spectral clustering for sensing urban land use using twitter activity
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2014.06.019
– year: 2018
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0260
– volume: 2
  start-page: 88
  issue: 1
  year: 2015
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0140
  article-title: Towards a study of infor- mation geographies: (im)mutable augmentations and a mapping of the geographies of information
  publication-title: Geo: Geography and Environment
– volume: 1
  start-page: 1031
  year: 2005
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0160
  article-title: Detection and explanation of anomalous activities: Representing activities as bags of event n-grams
– volume: 134
  start-page: 1030
  issue: 9
  year: 2016
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0305
  article-title: The utility of “big data” and social media for anticipating, preventing, and treating disease
  publication-title: JAMA Ophthalmology
  doi: 10.1001/jamaophthalmol.2016.2287
– volume: 83
  start-page: 523
  issue: 1
  year: 2016
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0325
  article-title: Spatial, temporal, and content analysis of Twitter for wildfire hazards
  publication-title: Natural Hazards
  doi: 10.1007/s11069-016-2329-6
– start-page: 1
  year: 2014
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0095
  article-title: Find you from your friends: Graph-based residence location prediction for users in social media
– volume: 64
  start-page: 188
  issue: 2
  year: 2012
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0055
  article-title: A nationwide comparison of driving distance versus straight-line distance to hospitals
  publication-title: The Professional Geographer
  doi: 10.1080/00330124.2011.583586
– volume: 7
  start-page: 113726
  year: 2019
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0280
  article-title: Mapping consumer sentiment toward wireless services using geospatial twitter data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2935200
– start-page: 199
  year: 2015
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0285
– volume: 52
  start-page: 167
  year: 2014
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0300
  article-title: Mapping the data shadows of Hurricane Sandy: Uncovering the sociospatial dimensions of “big data”
  publication-title: Geoforum
  doi: 10.1016/j.geoforum.2014.01.006
– start-page: 269
  year: 2015
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0125
  article-title: Multimedia social event detection in microblog
– volume: abs/1609.02907
  year: 2016
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0195
– volume: 32
  start-page: 714
  issue: 4
  year: 2017
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0075
  article-title: Weighted co-training for cross-domain image sentiment classification
  publication-title: Journal of Computer Science and Technology
  doi: 10.1007/s11390-017-1753-8
– volume: 28(2)
  start-page: 257
  year: 2016
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0065
  article-title: Correlational neural networks
– start-page: 108
  year: 2011
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0320
  article-title: Urban area characterization based on semantics of crowd activities in twitter
– start-page: 450
  year: 2018
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0175
  article-title: Multimodal filtering of social media for temporal monitoring and event analysis
– volume: 14
  start-page: 321
  issue: 4
  year: 2011
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0210
  article-title: Discovery of unusual re- gional social activities using geo-tagged microblogs
  publication-title: World Wide Web
  doi: 10.1007/s11280-011-0120-x
– start-page: 1188
  year: 2014
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0200
– volume: 54
  start-page: 240
  year: 2015
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0170
  article-title: Extracting and understanding urban areas of interest using geo- tagged photos
  publication-title: Computers, Environment and Urban Systems
  doi: 10.1016/j.compenvurbsys.2015.09.001
– volume: 38
  start-page: 464
  issue: 3
  year: 2013
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0145
  article-title: Augmented reality in urban places: contested content and the duplicity of code
  publication-title: Transactions of the Institute of British Geographers
  doi: 10.1111/j.1475-5661.2012.00539.x
– volume: 18
  start-page: 370
  issue: 3
  year: 2014
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0155
  article-title: Detecting non-personal and spam users on geo- tagged twitter network
  publication-title: Transactions in GIS
  doi: 10.1111/tgis.12101
– volume: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0110
  article-title: Social media and the social sciences: How researchers employ Big Data analytics
  publication-title: Big Data & Society
  doi: 10.1177/2053951716645828
– volume: 30
  start-page: 369
  issue: 2
  year: 2016
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0220
  article-title: Geo-temporal twitter demographics
  publication-title: International Journal of Geographical Information Science
  doi: 10.1080/13658816.2015.1089441
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0085
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1023/A:1022627411411
– volume: 74
  start-page: 161
  year: 2019
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0235
  article-title: Social media data: Challenges, opportunities and limitations in urban studies
  publication-title: Computers, Environment and Urban Systems
  doi: 10.1016/j.compenvurbsys.2018.11.001
– year: 2002
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0365
  article-title: Learning from labeled and unlabeled data with label propagation
– start-page: 381
  year: 2015
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0355
– start-page: 1
  year: 2009
  ident: 10.1016/j.compenvurbsys.2020.101583_bb0370
  article-title: Introduction to semi-supervised learning
SSID ssj0002448
Score 2.4027884
Snippet As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101583
SubjectTerms Artificial neural networks
Convolution
Digital geographies
Digital media
Graph convolutional network
Image classification
Labels
Machine learning
Model accuracy
Multi-modal autoencoder
Neural network
Neural networks
Qualitative analysis
Social media
Social networks
Title A graph-based semi-supervised approach to classification learning in digital geographies
URI https://dx.doi.org/10.1016/j.compenvurbsys.2020.101583
https://www.proquest.com/docview/2506624027
Volume 86
WOSCitedRecordID wos000640614100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7587
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002448
  issn: 0198-9715
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKhhAXBIOJjYEsgXapjPLLscMBqYJOgKqCtE7qLYpju3QqaWmTaTvxr_Mcx206MVQOXKI2btIm39fnzy_vB0JvQHN7WRBJwmNPkSjMOMliLkikaZzIKFG-rpEesOGQj8fJt07nl8uFuZqxouDX18niv0IN-wBskzr7D3CvTwo74DWADluAHbY7Ad_r1kWoiZmfZHelfkzJqloYk2DeuxriRnPmRjmbUCFLgpnzkpgA2enEdBPpTmyP9O8u1NDVNGh6QdQkaOXK1Y8iqqUAo7FqlUI3AT_TyoYDF5ObasPIj6p7ngmRWQ17XiqdFfO2JyJohWJZ95hLkXFWaROXVHsuE7CszOZuvlXW2nIWEliwsLY55m176v_RyluHw6UBaQHXCJcF1wRr_aAeo7YzznZt7eHX9OxiMEhH_fHodPGTmLZj5vF804PlHtoPGE3ALO73PvfHX9aTOagfbjPu7a9_gF5vQgTv_P67RM6t6b7WMKPH6FGz-MA9S5onqKOKA3TY3-AHg81tXR2g43UyEz7FNo0b26oyN0_RuIdbNMO3aIYdzXA5x9s0w45meFrghma4RbNn6OKsP_rwiTRdOkgOWrUkLItjyQJPxkxo4x-TfuZF2gtF7IVUBVL6ucphVSx8mdOESuZJ-HBAdehnWgbhIdor5oV6jrBWgsUZ1yLiImKh4IJTHuso0dTTNFFH6J27rWnelLA3nVRmqYtVvEy3MEkNJqnF5AhF64MXtpLLboe9d_iljSi1YjMFNu52ghOHetqYCRinpvNC5AXs-O_DL9DDzV_tBO2Vy0q9RPfzq3K6Wr5q2PobqIHA0w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph-based+semi-supervised+approach+to+classification+learning+in+digital+geographies&rft.jtitle=Computers%2C+environment+and+urban+systems&rft.au=Liu%2C+Pengyuan&rft.au=De+Sabbata%2C+Stefano&rft.date=2021-03-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0198-9715&rft.eissn=1873-7587&rft.volume=86&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compenvurbsys.2020.101583&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0198-9715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0198-9715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0198-9715&client=summon