A graph-based semi-supervised approach to classification learning in digital geographies
As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday experiences are mediated. As such, increasing interest has emerged in exploring how the content shared through those online platforms comes to...
Uložené v:
| Vydané v: | Computers, environment and urban systems Ročník 86; s. 101583 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Elsevier Ltd
01.03.2021
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 0198-9715, 1873-7587 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday experiences are mediated. As such, increasing interest has emerged in exploring how the content shared through those online platforms comes to contribute to the collaborative creation of places in physical space at the urban scale. Exploring digital geographies of social media data using methods such as qualitative coding (i.e., content labelling) is a flexible but complex task, commonly limited to small samples due to its impracticality over large datasets. In this paper, we propose a new tool for studies in digital geographies, bridging qualitative and quantitative approaches, able to learn a set of arbitrary labels (qualitative codes) on a small, manually-created sample and apply the same labels on a larger set. We introduce a semi-supervised, deep neural network approach to classify geo-located social media posts based on their textual and image content, as well as geographical and temporal aspects. Our innovative approach is rooted in our understanding of social media posts as augmentations of the time-space configurations that places are, and it comprises a stacked multi-modal autoencoder neural network to create joint representations of text and images, and a spatio-temporal graph convolution neural network for semi-supervised classification. The results presented in this paper show that our approach performs the classification of social media content with higher accuracy than traditional machine learning models as well as two state-of-art deep learning frameworks.
•Bridging quantitative and qualitative approaches in urban digital geographies.•Semi-supervised classification of geo-located social media.•Stacked multi-modal autoencoder to create embeddings from text and image.•Graph convolutional neural network encoding spatio-temporal proximity.•Time geography is key in understanding social media content. |
|---|---|
| AbstractList | As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday experiences are mediated. As such, increasing interest has emerged in exploring how the content shared through those online platforms comes to contribute to the collaborative creation of places in physical space at the urban scale. Exploring digital geographies of social media data using methods such as qualitative coding (i.e., content labelling) is a flexible but complex task, commonly limited to small samples due to its impracticality over large datasets. In this paper, we propose a new tool for studies in digital geographies, bridging qualitative and quantitative approaches, able to learn a set of arbitrary labels (qualitative codes) on a small, manually-created sample and apply the same labels on a larger set. We introduce a semi-supervised, deep neural network approach to classify geo-located social media posts based on their textual and image content, as well as geographical and temporal aspects. Our innovative approach is rooted in our understanding of social media posts as augmentations of the time-space configurations that places are, and it comprises a stacked multi-modal autoencoder neural network to create joint representations of text and images, and a spatio-temporal graph convolution neural network for semi-supervised classification. The results presented in this paper show that our approach performs the classification of social media content with higher accuracy than traditional machine learning models as well as two state-of-art deep learning frameworks.
•Bridging quantitative and qualitative approaches in urban digital geographies.•Semi-supervised classification of geo-located social media.•Stacked multi-modal autoencoder to create embeddings from text and image.•Graph convolutional neural network encoding spatio-temporal proximity.•Time geography is key in understanding social media content. As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday experiences are mediated. As such, increasing interest has emerged in exploring how the content shared through those online platforms comes to contribute to the collaborative creation of places in physical space at the urban scale. Exploring digital geographies of social media data using methods such as qualitative coding (i.e., content labelling) is a flexible but complex task, commonly limited to small samples due to its impracticality over large datasets. In this paper, we propose a new tool for studies in digital geographies, bridging qualitative and quantitative approaches, able to learn a set of arbitrary labels (qualitative codes) on a small, manually-created sample and apply the same labels on a larger set. We introduce a semi-supervised, deep neural network approach to classify geo-located social media posts based on their textual and image content, as well as geographical and temporal aspects. Our innovative approach is rooted in our understanding of social media posts as augmentations of the time-space configurations that places are, and it comprises a stacked multi-modal autoencoder neural network to create joint representations of text and images, and a spatio-temporal graph convolution neural network for semi-supervised classification. The results presented in this paper show that our approach performs the classification of social media content with higher accuracy than traditional machine learning models as well as two state-of-art deep learning frameworks. |
| ArticleNumber | 101583 |
| Author | Liu, Pengyuan De Sabbata, Stefano |
| Author_xml | – sequence: 1 givenname: Pengyuan surname: Liu fullname: Liu, Pengyuan email: pl164@leicester.ac.uk – sequence: 2 givenname: Stefano surname: De Sabbata fullname: De Sabbata, Stefano |
| BookMark | eNqNkMtqwzAQRUVJoUnafzBk7VSPyHLoKoT0AYFuWuhOyNLYkXEkV3IC-fvaSTftKisx6M6ZmTNBI-cdIDQjeE4wyR7rufb7FtzxEIp4inOK6fmH5-wGjUkuWCp4LkZojMkyT5eC8Ds0ibHGGNPFIh-jr1VSBdXu0kJFMEmEvU3joYVwtEOt2jZ4pXdJ5xPdqBhtabXqrHdJAyo466rEusTYynaqSSrwZ5qFeI9uS9VEePh9p-jzefOxfk237y9v69U21YzzLhUqy4yg2GSiKPGSMUMUXpSYFRlmHKgxRIMWnBXEaL7kRmDThykvGVGloWyKZhduv-j3AWIna38Irh8pKcdZRheYij61uqR08DEGKKXuFx7u6IKyjSRYDkJlLf8IlYNQeRHaM57-Mdpg9yqcruzeXLqhl3G0EGTUFpwGYwPoThpvr-L8ACz4nsA |
| CitedBy_id | crossref_primary_10_1016_j_isprsjprs_2023_07_018 crossref_primary_10_1016_j_landurbplan_2024_105171 crossref_primary_10_1007_s10707_021_00454_x crossref_primary_10_1007_s42001_021_00143_7 crossref_primary_10_1080_13658816_2023_2254382 crossref_primary_10_1002_acm2_13746 crossref_primary_10_1016_j_scs_2023_104480 crossref_primary_10_1111_tgis_12957 crossref_primary_10_1016_j_jprocont_2022_11_004 crossref_primary_10_1080_13658816_2024_2347316 crossref_primary_10_1016_j_jag_2022_102936 crossref_primary_10_1177_23998083231204689 crossref_primary_10_1016_j_ins_2022_10_112 |
| Cites_doi | 10.1177/0309132516664800 10.1016/j.asej.2014.04.011 10.1111/anti.12312 10.1068/b3311 10.1007/s11036-016-0789-2 10.1007/s10708-014-9602-6 10.1016/j.apgeog.2016.03.001 10.1371/journal.pone.0097807 10.1080/15230406.2013.799738 10.1016/j.chb.2018.08.039 10.1080/10630732.2017.1335153 10.1080/10095020.2017.1371903 10.1111/tgis.12122 10.1068/a3698 10.1080/15230406.2013.777137 10.1145/3308560.3316752 10.1371/journal.pone.0181701 10.1111/j.1475-5661.2012.00543.x 10.1016/j.engappai.2014.06.019 10.1001/jamaophthalmol.2016.2287 10.1007/s11069-016-2329-6 10.1080/00330124.2011.583586 10.1109/ACCESS.2019.2935200 10.1016/j.geoforum.2014.01.006 10.1007/s11390-017-1753-8 10.1007/s11280-011-0120-x 10.1016/j.compenvurbsys.2015.09.001 10.1111/j.1475-5661.2012.00539.x 10.1111/tgis.12101 10.1177/2053951716645828 10.1080/13658816.2015.1089441 10.1023/A:1022627411411 10.1016/j.compenvurbsys.2018.11.001 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Mar 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Mar 2021 |
| DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.compenvurbsys.2020.101583 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sociology & Social History Environmental Sciences |
| EISSN | 1873-7587 |
| ExternalDocumentID | 10_1016_j_compenvurbsys_2020_101583 S0198971520303161 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9JO AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFYP ABLST ABMAC ABMMH ABXDB ABYKQ ACDAQ ACGFS ACHQT ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMY HVGLF HZ~ IHE J1W KCYFY KOM LG9 M3Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSB SSJ SSO SSS SSV SSZ T5K UHS WUQ ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD AGCQF AGRNS BNPGV FR3 JQ2 KR7 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c355t-7a66d720d67bf0933d1a04f03b6035e2dd1cec753b1dc595d70d0d625f31afd23 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640614100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0198-9715 |
| IngestDate | Fri Jul 25 07:24:24 EDT 2025 Tue Nov 18 22:23:30 EST 2025 Sat Nov 29 07:17:56 EST 2025 Fri Feb 23 02:43:29 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Graph convolutional network Neural network Digital geographies Social media Multi-modal autoencoder |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c355t-7a66d720d67bf0933d1a04f03b6035e2dd1cec753b1dc595d70d0d625f31afd23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2506624027 |
| PQPubID | 2047569 |
| ParticipantIDs | proquest_journals_2506624027 crossref_citationtrail_10_1016_j_compenvurbsys_2020_101583 crossref_primary_10_1016_j_compenvurbsys_2020_101583 elsevier_sciencedirect_doi_10_1016_j_compenvurbsys_2020_101583 |
| PublicationCentury | 2000 |
| PublicationDate | March 2021 2021-03-00 20210301 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computers, environment and urban systems |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Lee, Yang, Chien, Wen (bb0205) 2011 Tsou, Yang, Lusher, Han, Spitzberg, Gawron, An (bb0310) 2013; 40 Kipf, Welling (bb0195) 2016; abs/1609.02907 Mouzannar, Rizk, Awad (bb0260) 2018 Mao, Shen, Yang (bb0230) 2016 Xu, Liu, Zhang, Luo, Mei, Hu (bb0345) 2017; 22 Zahra, Ostermann, Purves (bb0360) 2017; 20 Dodge, Kitchin (bb0100) 2004; 36 Huang (bb0175) 2018 Frias-Martinez, Frias-Martinez (bb0115) 2014; 4 Agnew (bb0015) 2011 Ash, Kitchin, Leszczynski (bb0025) 2018; 42 Liu, De Sabbata (bb0215) 2019 Felt (bb0110) 2016; 3 Zhu, Ghahramani (bb0365) 2002 You, Luo, Jin, Yang (bb0355) 2015 Chandar, Khapra, Larochelle, Ravindran (bb0065) 2016; 28(2) Mishra, Pappu, Bhamidipati (bb0255) 2019 Sechelea, Do Huu, Zimos, Deligiannis (bb0290) 2016 Abrol, Khan, Thuraisingham (bb0010) 2012 Panteras, Wise, Lu, Croitoru, Crooks, Stefanidis (bb0270) 2015; 19 Abernathy (bb0005) 2016 Dan, Cui, Zhu, Yang (bb0095) 2014 Le, Mikolov (bb0200) 2014 Poorthuis, Zook (bb0275) 2017; 24 Cheng, Wicks (bb0080) 2014; 9 Xie, Girshick, Farhadi (bb0335) 2016 Yang, Leskovec (bb0350) 2011 Resch, Summa, Sagl, Zeile, Exner (bb0285) 2015 Wang, Ye, Tsou (bb0325) 2016; 83 Ghani, Hamid, Hashem, Ahmed (bb0130) 2019; 101 Graham, De Sabbata, Zook (bb0140) 2015; 2 Wakamiya, Lee, Sumiya (bb0320) 2011 Gross, Yellen (bb0150) 1999 Lee, Wakamiya, Sumiya (bb0210) 2011; 14 Luo, Cao, Mulligan, Li (bb0225) 2016; 70 Cortes, Vapnik (bb0085) 1995; 20 Chen, Zhang, Yu, Liu (bb0075) 2017; 32 Gao, Zhao, Yang, Chua (bb0125) 2015 Martín, Li, Cutter (bb0240) 2017; 12 Ballatore, De Sabbata (bb0045) 2018 Gomide, Veloso, Meira Jr, Almeida, Benevenuto, Ferraz, Teixeira (bb0135) 2011 Qi, Procter, Zhang, Guo (bb0280) 2019; 7 Huang (bb0180) 2018 Xu, Cetintas, Lee, Li (bb0340) 2014; abs/1411.5731 Boscoe, Henry, Zdeb (bb0055) 2012; 64 Guo, Chen (bb0155) 2014; 18 Ifrim, Shi, Brigadir (bb0185) 2014 Chang, Kim, Kim, Kim (bb0070) 2007 Medhat, Hassan, Korashy (bb0245) 2014; 5 Martí, Serrano-Estrada, Nolasco-Cirugeda (bb0235) 2019; 74 Gajarla, Gupta (bb0120) 2015 Crampton, Graham, Poorthuis, Shelton, Stephens, Wilson, Zook (bb0090) 2013; 40 Elwood, Leszczynski (bb0105) 2013; 38 Cai, Xia (bb0060) 2015 Graham, Zook, Boulton (bb0145) 2013; 38 Sommer (bb0305) 2016; 134 Awcock (bb0040) 2018 Zhu, Goldberg (bb0370) 2009 Borth, Chen, Ji, Chang (bb0050) 2013 Zook, Graham (bb0375) 2007; 34 Wadawadagi, Pagi (bb0315) 2020 Shelton, Poorthuis, Graham, Zook (bb0300) 2014; 52 Ballatore, De Sabbata (bb0035) 2020 Hamid, Johnson, Batta, Bobick, Isbell, Coleman (bb0160) 2005; 1 Liu, De Sabbata (bb0030) 2019 Hollenstein, Purves (bb0165) 2010; 2010 Longley, Adnan (bb0220) 2016; 30 Hu, Gao, Janowicz, Yu, Li, Prasad (bb0170) 2015; 54 Weller, Bruns, Burgess, Mahrt, Puschmann (bb0330) 2014; 89 Andrew, Arora, Bilmes, Livescu (bb0020) 2013 Kingma, Ba (bb0190) 2015 Shaw, Graham (bb0295) 2017; 49 Miller, Goodchild (bb0250) 2015; 2480 O’Sullivan, Unwin (bb0265) 2014 Panteras (10.1016/j.compenvurbsys.2020.101583_bb0270) 2015; 19 Zhu (10.1016/j.compenvurbsys.2020.101583_bb0370) 2009 Ash (10.1016/j.compenvurbsys.2020.101583_bb0025) 2018; 42 Shelton (10.1016/j.compenvurbsys.2020.101583_bb0300) 2014; 52 Ballatore (10.1016/j.compenvurbsys.2020.101583_bb0045) 2018 Zahra (10.1016/j.compenvurbsys.2020.101583_bb0360) 2017; 20 Sechelea (10.1016/j.compenvurbsys.2020.101583_bb0290) 2016 Wang (10.1016/j.compenvurbsys.2020.101583_bb0325) 2016; 83 Elwood (10.1016/j.compenvurbsys.2020.101583_bb0105) 2013; 38 Mouzannar (10.1016/j.compenvurbsys.2020.101583_bb0260) 2018 Ghani (10.1016/j.compenvurbsys.2020.101583_bb0130) 2019; 101 Dan (10.1016/j.compenvurbsys.2020.101583_bb0095) 2014 Huang (10.1016/j.compenvurbsys.2020.101583_bb0180) 2018 Luo (10.1016/j.compenvurbsys.2020.101583_bb0225) 2016; 70 Felt (10.1016/j.compenvurbsys.2020.101583_bb0110) 2016; 3 Agnew (10.1016/j.compenvurbsys.2020.101583_bb0015) 2011 Xie (10.1016/j.compenvurbsys.2020.101583_bb0335) 2016 Boscoe (10.1016/j.compenvurbsys.2020.101583_bb0055) 2012; 64 Hu (10.1016/j.compenvurbsys.2020.101583_bb0170) 2015; 54 Kingma (10.1016/j.compenvurbsys.2020.101583_bb0190) 2015 Cai (10.1016/j.compenvurbsys.2020.101583_bb0060) 2015 Wakamiya (10.1016/j.compenvurbsys.2020.101583_bb0320) 2011 Wadawadagi (10.1016/j.compenvurbsys.2020.101583_bb0315) 2020 Liu (10.1016/j.compenvurbsys.2020.101583_bb0215) 2019 Mao (10.1016/j.compenvurbsys.2020.101583_bb0230) 2016 Xu (10.1016/j.compenvurbsys.2020.101583_bb0340) 2014; abs/1411.5731 Mishra (10.1016/j.compenvurbsys.2020.101583_bb0255) 2019 Medhat (10.1016/j.compenvurbsys.2020.101583_bb0245) 2014; 5 Abernathy (10.1016/j.compenvurbsys.2020.101583_bb0005) 2016 Borth (10.1016/j.compenvurbsys.2020.101583_bb0050) 2013 Zhu (10.1016/j.compenvurbsys.2020.101583_bb0365) 2002 Guo (10.1016/j.compenvurbsys.2020.101583_bb0155) 2014; 18 Martí (10.1016/j.compenvurbsys.2020.101583_bb0235) 2019; 74 O’Sullivan (10.1016/j.compenvurbsys.2020.101583_bb0265) 2014 Andrew (10.1016/j.compenvurbsys.2020.101583_bb0020) 2013 Abrol (10.1016/j.compenvurbsys.2020.101583_bb0010) 2012 Frias-Martinez (10.1016/j.compenvurbsys.2020.101583_bb0115) 2014; 4 Longley (10.1016/j.compenvurbsys.2020.101583_bb0220) 2016; 30 Xu (10.1016/j.compenvurbsys.2020.101583_bb0345) 2017; 22 You (10.1016/j.compenvurbsys.2020.101583_bb0355) 2015 Tsou (10.1016/j.compenvurbsys.2020.101583_bb0310) 2013; 40 Chang (10.1016/j.compenvurbsys.2020.101583_bb0070) 2007 Hamid (10.1016/j.compenvurbsys.2020.101583_bb0160) 2005; 1 Huang (10.1016/j.compenvurbsys.2020.101583_bb0175) 2018 Kipf (10.1016/j.compenvurbsys.2020.101583_bb0195) 2016; abs/1609.02907 Sommer (10.1016/j.compenvurbsys.2020.101583_bb0305) 2016; 134 Ifrim (10.1016/j.compenvurbsys.2020.101583_bb0185) 2014 Resch (10.1016/j.compenvurbsys.2020.101583_bb0285) 2015 Awcock (10.1016/j.compenvurbsys.2020.101583_bb0040) 2018 Gao (10.1016/j.compenvurbsys.2020.101583_bb0125) 2015 Martín (10.1016/j.compenvurbsys.2020.101583_bb0240) 2017; 12 Gross (10.1016/j.compenvurbsys.2020.101583_bb0150) 1999 Lee (10.1016/j.compenvurbsys.2020.101583_bb0210) 2011; 14 Dodge (10.1016/j.compenvurbsys.2020.101583_bb0100) 2004; 36 Miller (10.1016/j.compenvurbsys.2020.101583_bb0250) 2015; 2480 Liu (10.1016/j.compenvurbsys.2020.101583_bb0030) 2019 Le (10.1016/j.compenvurbsys.2020.101583_bb0200) 2014 Lee (10.1016/j.compenvurbsys.2020.101583_bb0205) 2011 Ballatore (10.1016/j.compenvurbsys.2020.101583_bb0035) 2020 Chandar (10.1016/j.compenvurbsys.2020.101583_bb0065) 2016; 28(2) Graham (10.1016/j.compenvurbsys.2020.101583_bb0145) 2013; 38 Cortes (10.1016/j.compenvurbsys.2020.101583_bb0085) 1995; 20 Poorthuis (10.1016/j.compenvurbsys.2020.101583_bb0275) 2017; 24 Qi (10.1016/j.compenvurbsys.2020.101583_bb0280) 2019; 7 Weller (10.1016/j.compenvurbsys.2020.101583_bb0330) 2014; 89 Yang (10.1016/j.compenvurbsys.2020.101583_bb0350) 2011 Chen (10.1016/j.compenvurbsys.2020.101583_bb0075) 2017; 32 Crampton (10.1016/j.compenvurbsys.2020.101583_bb0090) 2013; 40 Cheng (10.1016/j.compenvurbsys.2020.101583_bb0080) 2014; 9 Hollenstein (10.1016/j.compenvurbsys.2020.101583_bb0165) 2010; 2010 Gomide (10.1016/j.compenvurbsys.2020.101583_bb0135) 2011 Graham (10.1016/j.compenvurbsys.2020.101583_bb0140) 2015; 2 Zook (10.1016/j.compenvurbsys.2020.101583_bb0375) 2007; 34 Shaw (10.1016/j.compenvurbsys.2020.101583_bb0295) 2017; 49 Gajarla (10.1016/j.compenvurbsys.2020.101583_bb0120) 2015 |
| References_xml | – volume: 64 start-page: 188 year: 2012 end-page: 196 ident: bb0055 article-title: A nationwide comparison of driving distance versus straight-line distance to hospitals publication-title: The Professional Geographer – volume: 9 year: 2014 ident: bb0080 article-title: Event detection using Twitter: A spatio-temporal approach publication-title: PLoS One – start-page: 514 year: 2012 end-page: 523 ident: bb0010 article-title: Tweecalization: efficient and intelligent location mining in Twitter using semi-supervised learning publication-title: 8th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom) – start-page: 254 year: 2011 end-page: 259 ident: bb0205 article-title: A novel approach for event detection by mining spatio- temporal information on microblogs publication-title: 2011 International conference on advances in social networks analysis and mining – volume: 14 start-page: 321 year: 2011 end-page: 349 ident: bb0210 article-title: Discovery of unusual re- gional social activities using geo-tagged microblogs publication-title: World Wide Web – volume: 52 start-page: 167 year: 2014 end-page: 179 ident: bb0300 article-title: Mapping the data shadows of Hurricane Sandy: Uncovering the sociospatial dimensions of “big data” publication-title: Geoforum – start-page: 1165 year: 2007 end-page: 1178 ident: bb0070 article-title: Spatio-temporal similarity measure algorithm for moving objects on spatial networks publication-title: International conference on computational science and its applications – start-page: 1 year: 2016 end-page: 5 ident: bb0290 article-title: Twitter data clustering and visualization publication-title: 2016 23rd international conference on telecommunications (ICT) – start-page: 1 year: 2018 end-page: 17 ident: bb0180 article-title: A visual–textual fused approach to automated tagging of flood- related tweets during a flood event publication-title: International Journal of Digital Earth – volume: 30 start-page: 369 year: 2016 end-page: 389 ident: bb0220 article-title: Geo-temporal twitter demographics publication-title: International Journal of Geographical Information Science – start-page: 1 year: 2009 end-page: 130 ident: bb0370 article-title: Introduction to semi-supervised learning publication-title: Synthesis lectures on artificial intelligence and machine learning 3.1 – start-page: 1188 year: 2014 end-page: 1196 ident: bb0200 article-title: Distributed representations of sentences and docu- ments – volume: 22 start-page: 218 year: 2017 end-page: 227 ident: bb0345 article-title: Building the multi-modal storytelling of urban emergency events based on crowdsensing of social media analytics publication-title: Mobile Networks and Applications – volume: abs/1411.5731 year: 2014 ident: bb0340 article-title: Visual sentiment prediction with deep convolutional neural networks publication-title: Computing Research Repository(CoRR) – year: 2015 ident: bb0190 article-title: Adam: A method for stochastic optimization publication-title: 3rd International Conference on Learning Representations, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings – start-page: 880 year: 2020 end-page: 902 ident: bb0035 article-title: Los Angeles as a digital place: The geographies of user-generated content publication-title: Transactions in GIS 24.4 – volume: 2010 start-page: 21 year: 2010 end-page: 48 ident: bb0165 article-title: Exploring place through user-generated content: Using Flickr tags to describe city cores publication-title: Journal of Spatial Information Science – start-page: 459 year: 2013 end-page: 460 ident: bb0050 article-title: Sentibank: large-scale ontology and classifiers for detecting sentiment and emotions in visual content publication-title: Proceedings of the 21st ACM international conference on multimedia – volume: 101 start-page: 417 year: 2019 end-page: 428 ident: bb0130 article-title: Social media big data analytics: A survey publication-title: Computers in Human Behavior – volume: 134 start-page: 1030 year: 2016 end-page: 1031 ident: bb0305 article-title: The utility of “big data” and social media for anticipating, preventing, and treating disease publication-title: JAMA Ophthalmology – volume: 40 start-page: 337 year: 2013 end-page: 348 ident: bb0310 article-title: Mapping social activities and concepts with social media (Twitter) and web search engines (Yahoo and Bing): A case study in 2012 US Presidential Election publication-title: Cartography and Geographic Information Science – start-page: 1224 year: 2019 end-page: 1231 ident: bb0255 article-title: Inferring advertiser sen- timent in online articles using wikipedia footnotes publication-title: Companion Proceedings of The 2019 World Wide Web Conference – year: 2016 ident: bb0005 article-title: Using geodata and geolocation in the social sciences: Mapping our connected world – volume: abs/1609.02907 year: 2016 ident: bb0195 article-title: Semi-supervised classification with graph convolutional networks – year: 1999 ident: bb0150 article-title: Graph theory and its applications – start-page: 508 year: 2020 end-page: 527 ident: bb0315 article-title: Sentiment analysis on social media: Recent trends in machine learning”. Handbook of research on emerging trends and applications of machine learning publication-title: IGI Global – volume: 34 start-page: 466 year: 2007 end-page: 482 ident: bb0375 article-title: Mapping DigiPlace: Geocoded internet data and the representation of place publication-title: Environment and Planning. B, Planning & Design – volume: 24 start-page: 115 year: 2017 end-page: 135 ident: bb0275 article-title: Making big data small: Strategies to expand urban and geographical research using social media publication-title: Journal of Urban Technology – volume: 2480 start-page: 449 year: 2015 end-page: 461 ident: bb0250 article-title: Data-driven geography publication-title: GeoJournal – volume: 5 start-page: 1093 year: 2014 end-page: 1113 ident: bb0245 article-title: Sentiment analysis algorithms and applications: A survey publication-title: Ain Shams Engineering Journal – volume: 49 start-page: 907 year: 2017 end-page: 927 ident: bb0295 article-title: An informational right to the city? Code, content, control, and the urbanization of information publication-title: Antipode – start-page: 316 year: 2011 end-page: 330 ident: bb0015 article-title: Space and place publication-title: The SAGE handbook of geographical knowledge – volume: 1 start-page: 1031 year: 2005 end-page: 1038 ident: bb0160 article-title: Detection and explanation of anomalous activities: Representing activities as bags of event n-grams publication-title: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) – start-page: 199 year: 2015 end-page: 212 ident: bb0285 article-title: Urban emotions—Geo-semantic emotion extraction from technical sensors, human sensors and crowdsourced data – start-page: 381 year: 2015 end-page: 388 ident: bb0355 article-title: Robust image sentiment analysis using progressively trained and domain transferred deep networks – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bb0085 article-title: Support-vector networks publication-title: Machine Learning – year: 2014 ident: bb0265 article-title: Geographic information analysis – start-page: 1 year: 2014 end-page: 6 ident: bb0095 article-title: Find you from your friends: Graph-based residence location prediction for users in social media publication-title: IEEE international conference on multimedia expo – volume: 36 start-page: 195 year: 2004 end-page: 211 ident: bb0100 article-title: Flying through code/space: The real virtuality of air travel publication-title: Environment and Planning A – volume: 2 start-page: 88 year: 2015 end-page: 105 ident: bb0140 article-title: Towards a study of infor- mation geographies: (im)mutable augmentations and a mapping of the geographies of information publication-title: Geo: Geography and Environment – start-page: 269 year: 2015 end-page: 281 ident: bb0125 article-title: Multimedia social event detection in microblog publication-title: International conference on multimedia modeling – start-page: 478 year: 2016 end-page: 487 ident: bb0335 article-title: Unsupervised deep embedding for clustering analysis publication-title: International conference on machine learning – start-page: 1247 year: 2013 end-page: 1255 ident: bb0020 article-title: Deep canonical correlation analysis publication-title: International conference on machine learning – volume: 4 start-page: 237 year: 2014 end-page: 245 ident: bb0115 article-title: Spectral clustering for sensing urban land use using twitter activity publication-title: Engineering Applications of Artificial Intelligence – volume: 70 start-page: 11 year: 2016 end-page: 25 ident: bb0225 article-title: Explore spatiotemporal and demographic characteristics of human mobility via twitter: A case study of Chicago publication-title: Applied Geography – year: 2002 ident: bb0365 article-title: Learning from labeled and unlabeled data with label propagation publication-title: Tech. rep. Citeseer – year: 2019 ident: bb0215 article-title: Learning digital geographies through a graph-based semi-supervised approach publication-title: The 15th international conference on geo-computation. Queenstown, New Zealanda – volume: 74 start-page: 161 year: 2019 end-page: 174 ident: bb0235 article-title: Social media data: Challenges, opportunities and limitations in urban studies publication-title: Computers, Environment and Urban Systems – start-page: 450 year: 2018 end-page: 457 ident: bb0175 article-title: Multimodal filtering of social media for temporal monitoring and event analysis publication-title: Proceedings of the 2018 ACM on international conference on multimedia retrieval – volume: 20 start-page: 231 year: 2017 end-page: 240 ident: bb0360 article-title: Geographic variability of twitter usage characteristics during disaster events publication-title: Geo-spatial information science – volume: 38 start-page: 464 year: 2013 end-page: 479 ident: bb0145 article-title: Augmented reality in urban places: contested content and the duplicity of code publication-title: Transactions of the Institute of British Geographers – volume: 40 start-page: 130 year: 2013 end-page: 139 ident: bb0090 article-title: Beyond the geotag: Situating “big data”and leverag- ing the potential of the geoweb publication-title: Cartography and Geographic Information Science – volume: 28(2) start-page: 257 year: 2016 end-page: 285 ident: bb0065 article-title: Correlational neural networks – start-page: 33 year: 2014 end-page: 40 ident: bb0185 article-title: Event detection in Twitter using aggressive filtering and hierarchical tweet clustering – volume: 89 year: 2014 ident: bb0330 article-title: Twitter and society – volume: 3 year: 2016 ident: bb0110 article-title: Social media and the social sciences: How researchers employ Big Data analytics publication-title: Big Data & Society – volume: 19 start-page: 694 year: 2015 end-page: 715 ident: bb0270 article-title: Triangulating social multimedia content for event localization using Flickr and Twitter publication-title: Transactions in GIS – start-page: 108 year: 2011 end-page: 123 ident: bb0320 article-title: Urban area characterization based on semantics of crowd activities in twitter publication-title: International conference on geospatial sematics – volume: 42 start-page: 25 year: 2018 end-page: 43 ident: bb0025 article-title: Digital turn, digital geographies? publication-title: Progress in Human Geography – year: 2018 ident: bb0040 article-title: Contesting the capital: space, place, and protest in London, 1780–2010 – start-page: 149 year: 2018 end-page: 168 ident: bb0045 article-title: Charting the geographies of crowd- sourced information in greater London publication-title: Geospatial technologies for all – volume: 12 year: 2017 ident: bb0240 article-title: Leveraging twitter to gauge evacuation compliance: Spatiotemporal analysis of hurricane Matthew publication-title: PLoS One – year: 2015 ident: bb0120 article-title: Emotion detection and sentiment analysis of Im- ages – start-page: 159 year: 2015 end-page: 167 ident: bb0060 article-title: Convolutional neural networks for multimedia sentiment analysis publication-title: Natural language processing and chinese computing – volume: 7 start-page: 113726 year: 2019 end-page: 113739 ident: bb0280 article-title: Mapping consumer sentiment toward wireless services using geospatial twitter data publication-title: IEEE Access – start-page: 177 year: 2011 end-page: 186 ident: bb0350 article-title: Patterns of temporal variation in online media publication-title: Proceedings of the fourth ACM international conference on Web search and data mining – year: 2019 ident: bb0030 article-title: Learning digital geographies through a multi-modal autoencoder publication-title: GISRUK 2019, the 27th annual GIScience Research UK conference. Newcastle, UK – volume: 54 start-page: 240 year: 2015 end-page: 254 ident: bb0170 article-title: Extracting and understanding urban areas of interest using geo- tagged photos publication-title: Computers, Environment and Urban Systems – volume: 83 start-page: 523 year: 2016 end-page: 540 ident: bb0325 article-title: Spatial, temporal, and content analysis of Twitter for wildfire hazards publication-title: Natural Hazards – year: 2016 ident: bb0230 article-title: Image restoration using convolutional auto-encoders with symmetric skip connections – volume: 32 start-page: 714 year: 2017 end-page: 725 ident: bb0075 article-title: Weighted co-training for cross-domain image sentiment classification publication-title: Journal of Computer Science and Technology – start-page: 3 year: 2011 ident: bb0135 article-title: Dengue surveillance based on a computational model of spatio-temporal locality of twitter publication-title: Proceedings of the 3rd international web science conference – volume: 38 start-page: 544 year: 2013 end-page: 559 ident: bb0105 article-title: New spatial media, new knowledge politics publication-title: Transactions of the Institute of British Geographers – volume: 18 start-page: 370 year: 2014 end-page: 384 ident: bb0155 article-title: Detecting non-personal and spam users on geo- tagged twitter network publication-title: Transactions in GIS – year: 2018 ident: bb0260 article-title: Damage identification in social media posts using multimodal deep learning – volume: 89 year: 2014 ident: 10.1016/j.compenvurbsys.2020.101583_bb0330 – volume: 42 start-page: 25 issue: 1 year: 2018 ident: 10.1016/j.compenvurbsys.2020.101583_bb0025 article-title: Digital turn, digital geographies? publication-title: Progress in Human Geography doi: 10.1177/0309132516664800 – start-page: 33 year: 2014 ident: 10.1016/j.compenvurbsys.2020.101583_bb0185 – year: 2015 ident: 10.1016/j.compenvurbsys.2020.101583_bb0190 article-title: Adam: A method for stochastic optimization publication-title: 3rd International Conference on Learning Representations, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings – year: 2016 ident: 10.1016/j.compenvurbsys.2020.101583_bb0005 – year: 2019 ident: 10.1016/j.compenvurbsys.2020.101583_bb0030 article-title: Learning digital geographies through a multi-modal autoencoder – volume: 5 start-page: 1093 issue: 4 year: 2014 ident: 10.1016/j.compenvurbsys.2020.101583_bb0245 article-title: Sentiment analysis algorithms and applications: A survey publication-title: Ain Shams Engineering Journal doi: 10.1016/j.asej.2014.04.011 – volume: 49 start-page: 907 issue: 4 year: 2017 ident: 10.1016/j.compenvurbsys.2020.101583_bb0295 article-title: An informational right to the city? Code, content, control, and the urbanization of information publication-title: Antipode doi: 10.1111/anti.12312 – start-page: 254 year: 2011 ident: 10.1016/j.compenvurbsys.2020.101583_bb0205 article-title: A novel approach for event detection by mining spatio- temporal information on microblogs – volume: 34 start-page: 466 issue: 3 year: 2007 ident: 10.1016/j.compenvurbsys.2020.101583_bb0375 article-title: Mapping DigiPlace: Geocoded internet data and the representation of place publication-title: Environment and Planning. B, Planning & Design doi: 10.1068/b3311 – volume: 22 start-page: 218 issue: 2 year: 2017 ident: 10.1016/j.compenvurbsys.2020.101583_bb0345 article-title: Building the multi-modal storytelling of urban emergency events based on crowdsensing of social media analytics publication-title: Mobile Networks and Applications doi: 10.1007/s11036-016-0789-2 – start-page: 459 year: 2013 ident: 10.1016/j.compenvurbsys.2020.101583_bb0050 article-title: Sentibank: large-scale ontology and classifiers for detecting sentiment and emotions in visual content – volume: 2480 start-page: 449 issue: 4 year: 2015 ident: 10.1016/j.compenvurbsys.2020.101583_bb0250 article-title: Data-driven geography publication-title: GeoJournal doi: 10.1007/s10708-014-9602-6 – year: 2014 ident: 10.1016/j.compenvurbsys.2020.101583_bb0265 – start-page: 3 year: 2011 ident: 10.1016/j.compenvurbsys.2020.101583_bb0135 article-title: Dengue surveillance based on a computational model of spatio-temporal locality of twitter – start-page: 880 year: 2020 ident: 10.1016/j.compenvurbsys.2020.101583_bb0035 article-title: Los Angeles as a digital place: The geographies of user-generated content – year: 2019 ident: 10.1016/j.compenvurbsys.2020.101583_bb0215 article-title: Learning digital geographies through a graph-based semi-supervised approach – start-page: 1 year: 2018 ident: 10.1016/j.compenvurbsys.2020.101583_bb0180 article-title: A visual–textual fused approach to automated tagging of flood- related tweets during a flood event publication-title: International Journal of Digital Earth – start-page: 159 year: 2015 ident: 10.1016/j.compenvurbsys.2020.101583_bb0060 article-title: Convolutional neural networks for multimedia sentiment analysis – start-page: 177 year: 2011 ident: 10.1016/j.compenvurbsys.2020.101583_bb0350 article-title: Patterns of temporal variation in online media – start-page: 478 year: 2016 ident: 10.1016/j.compenvurbsys.2020.101583_bb0335 article-title: Unsupervised deep embedding for clustering analysis – year: 2015 ident: 10.1016/j.compenvurbsys.2020.101583_bb0120 – volume: 70 start-page: 11 year: 2016 ident: 10.1016/j.compenvurbsys.2020.101583_bb0225 article-title: Explore spatiotemporal and demographic characteristics of human mobility via twitter: A case study of Chicago publication-title: Applied Geography doi: 10.1016/j.apgeog.2016.03.001 – volume: abs/1411.5731 year: 2014 ident: 10.1016/j.compenvurbsys.2020.101583_bb0340 article-title: Visual sentiment prediction with deep convolutional neural networks publication-title: Computing Research Repository(CoRR) – year: 2016 ident: 10.1016/j.compenvurbsys.2020.101583_bb0230 – volume: 9 issue: 6 year: 2014 ident: 10.1016/j.compenvurbsys.2020.101583_bb0080 article-title: Event detection using Twitter: A spatio-temporal approach publication-title: PLoS One doi: 10.1371/journal.pone.0097807 – start-page: 149 year: 2018 ident: 10.1016/j.compenvurbsys.2020.101583_bb0045 article-title: Charting the geographies of crowd- sourced information in greater London – start-page: 508 year: 2020 ident: 10.1016/j.compenvurbsys.2020.101583_bb0315 article-title: Sentiment analysis on social media: Recent trends in machine learning”. Handbook of research on emerging trends and applications of machine learning publication-title: IGI Global – volume: 40 start-page: 337 issue: 4 year: 2013 ident: 10.1016/j.compenvurbsys.2020.101583_bb0310 article-title: Mapping social activities and concepts with social media (Twitter) and web search engines (Yahoo and Bing): A case study in 2012 US Presidential Election publication-title: Cartography and Geographic Information Science doi: 10.1080/15230406.2013.799738 – volume: 101 start-page: 417 year: 2019 ident: 10.1016/j.compenvurbsys.2020.101583_bb0130 article-title: Social media big data analytics: A survey publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2018.08.039 – volume: 2010 start-page: 21 issue: 1 year: 2010 ident: 10.1016/j.compenvurbsys.2020.101583_bb0165 article-title: Exploring place through user-generated content: Using Flickr tags to describe city cores publication-title: Journal of Spatial Information Science – start-page: 1 year: 2016 ident: 10.1016/j.compenvurbsys.2020.101583_bb0290 article-title: Twitter data clustering and visualization – volume: 24 start-page: 115 issue: 4 year: 2017 ident: 10.1016/j.compenvurbsys.2020.101583_bb0275 article-title: Making big data small: Strategies to expand urban and geographical research using social media publication-title: Journal of Urban Technology doi: 10.1080/10630732.2017.1335153 – volume: 20 start-page: 231 issue: 3 year: 2017 ident: 10.1016/j.compenvurbsys.2020.101583_bb0360 article-title: Geographic variability of twitter usage characteristics during disaster events publication-title: Geo-spatial information science doi: 10.1080/10095020.2017.1371903 – year: 2018 ident: 10.1016/j.compenvurbsys.2020.101583_bb0040 – year: 1999 ident: 10.1016/j.compenvurbsys.2020.101583_bb0150 – start-page: 316 year: 2011 ident: 10.1016/j.compenvurbsys.2020.101583_bb0015 article-title: Space and place – start-page: 514 year: 2012 ident: 10.1016/j.compenvurbsys.2020.101583_bb0010 article-title: Tweecalization: efficient and intelligent location mining in Twitter using semi-supervised learning publication-title: 8th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom) – volume: 19 start-page: 694 issue: 5 year: 2015 ident: 10.1016/j.compenvurbsys.2020.101583_bb0270 article-title: Triangulating social multimedia content for event localization using Flickr and Twitter publication-title: Transactions in GIS doi: 10.1111/tgis.12122 – volume: 36 start-page: 195 issue: 2 year: 2004 ident: 10.1016/j.compenvurbsys.2020.101583_bb0100 article-title: Flying through code/space: The real virtuality of air travel publication-title: Environment and Planning A doi: 10.1068/a3698 – volume: 40 start-page: 130 issue: 2 year: 2013 ident: 10.1016/j.compenvurbsys.2020.101583_bb0090 article-title: Beyond the geotag: Situating “big data”and leverag- ing the potential of the geoweb publication-title: Cartography and Geographic Information Science doi: 10.1080/15230406.2013.777137 – start-page: 1224 year: 2019 ident: 10.1016/j.compenvurbsys.2020.101583_bb0255 article-title: Inferring advertiser sen- timent in online articles using wikipedia footnotes publication-title: Companion Proceedings of The 2019 World Wide Web Conference doi: 10.1145/3308560.3316752 – start-page: 1165 year: 2007 ident: 10.1016/j.compenvurbsys.2020.101583_bb0070 article-title: Spatio-temporal similarity measure algorithm for moving objects on spatial networks – volume: 12 issue: 7 year: 2017 ident: 10.1016/j.compenvurbsys.2020.101583_bb0240 article-title: Leveraging twitter to gauge evacuation compliance: Spatiotemporal analysis of hurricane Matthew publication-title: PLoS One doi: 10.1371/journal.pone.0181701 – start-page: 1247 year: 2013 ident: 10.1016/j.compenvurbsys.2020.101583_bb0020 article-title: Deep canonical correlation analysis – volume: 38 start-page: 544 issue: 4 year: 2013 ident: 10.1016/j.compenvurbsys.2020.101583_bb0105 article-title: New spatial media, new knowledge politics publication-title: Transactions of the Institute of British Geographers doi: 10.1111/j.1475-5661.2012.00543.x – volume: 4 start-page: 237 year: 2014 ident: 10.1016/j.compenvurbsys.2020.101583_bb0115 article-title: Spectral clustering for sensing urban land use using twitter activity publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2014.06.019 – year: 2018 ident: 10.1016/j.compenvurbsys.2020.101583_bb0260 – volume: 2 start-page: 88 issue: 1 year: 2015 ident: 10.1016/j.compenvurbsys.2020.101583_bb0140 article-title: Towards a study of infor- mation geographies: (im)mutable augmentations and a mapping of the geographies of information publication-title: Geo: Geography and Environment – volume: 1 start-page: 1031 year: 2005 ident: 10.1016/j.compenvurbsys.2020.101583_bb0160 article-title: Detection and explanation of anomalous activities: Representing activities as bags of event n-grams – volume: 134 start-page: 1030 issue: 9 year: 2016 ident: 10.1016/j.compenvurbsys.2020.101583_bb0305 article-title: The utility of “big data” and social media for anticipating, preventing, and treating disease publication-title: JAMA Ophthalmology doi: 10.1001/jamaophthalmol.2016.2287 – volume: 83 start-page: 523 issue: 1 year: 2016 ident: 10.1016/j.compenvurbsys.2020.101583_bb0325 article-title: Spatial, temporal, and content analysis of Twitter for wildfire hazards publication-title: Natural Hazards doi: 10.1007/s11069-016-2329-6 – start-page: 1 year: 2014 ident: 10.1016/j.compenvurbsys.2020.101583_bb0095 article-title: Find you from your friends: Graph-based residence location prediction for users in social media – volume: 64 start-page: 188 issue: 2 year: 2012 ident: 10.1016/j.compenvurbsys.2020.101583_bb0055 article-title: A nationwide comparison of driving distance versus straight-line distance to hospitals publication-title: The Professional Geographer doi: 10.1080/00330124.2011.583586 – volume: 7 start-page: 113726 year: 2019 ident: 10.1016/j.compenvurbsys.2020.101583_bb0280 article-title: Mapping consumer sentiment toward wireless services using geospatial twitter data publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2935200 – start-page: 199 year: 2015 ident: 10.1016/j.compenvurbsys.2020.101583_bb0285 – volume: 52 start-page: 167 year: 2014 ident: 10.1016/j.compenvurbsys.2020.101583_bb0300 article-title: Mapping the data shadows of Hurricane Sandy: Uncovering the sociospatial dimensions of “big data” publication-title: Geoforum doi: 10.1016/j.geoforum.2014.01.006 – start-page: 269 year: 2015 ident: 10.1016/j.compenvurbsys.2020.101583_bb0125 article-title: Multimedia social event detection in microblog – volume: abs/1609.02907 year: 2016 ident: 10.1016/j.compenvurbsys.2020.101583_bb0195 – volume: 32 start-page: 714 issue: 4 year: 2017 ident: 10.1016/j.compenvurbsys.2020.101583_bb0075 article-title: Weighted co-training for cross-domain image sentiment classification publication-title: Journal of Computer Science and Technology doi: 10.1007/s11390-017-1753-8 – volume: 28(2) start-page: 257 year: 2016 ident: 10.1016/j.compenvurbsys.2020.101583_bb0065 article-title: Correlational neural networks – start-page: 108 year: 2011 ident: 10.1016/j.compenvurbsys.2020.101583_bb0320 article-title: Urban area characterization based on semantics of crowd activities in twitter – start-page: 450 year: 2018 ident: 10.1016/j.compenvurbsys.2020.101583_bb0175 article-title: Multimodal filtering of social media for temporal monitoring and event analysis – volume: 14 start-page: 321 issue: 4 year: 2011 ident: 10.1016/j.compenvurbsys.2020.101583_bb0210 article-title: Discovery of unusual re- gional social activities using geo-tagged microblogs publication-title: World Wide Web doi: 10.1007/s11280-011-0120-x – start-page: 1188 year: 2014 ident: 10.1016/j.compenvurbsys.2020.101583_bb0200 – volume: 54 start-page: 240 year: 2015 ident: 10.1016/j.compenvurbsys.2020.101583_bb0170 article-title: Extracting and understanding urban areas of interest using geo- tagged photos publication-title: Computers, Environment and Urban Systems doi: 10.1016/j.compenvurbsys.2015.09.001 – volume: 38 start-page: 464 issue: 3 year: 2013 ident: 10.1016/j.compenvurbsys.2020.101583_bb0145 article-title: Augmented reality in urban places: contested content and the duplicity of code publication-title: Transactions of the Institute of British Geographers doi: 10.1111/j.1475-5661.2012.00539.x – volume: 18 start-page: 370 issue: 3 year: 2014 ident: 10.1016/j.compenvurbsys.2020.101583_bb0155 article-title: Detecting non-personal and spam users on geo- tagged twitter network publication-title: Transactions in GIS doi: 10.1111/tgis.12101 – volume: 3 issue: 1 year: 2016 ident: 10.1016/j.compenvurbsys.2020.101583_bb0110 article-title: Social media and the social sciences: How researchers employ Big Data analytics publication-title: Big Data & Society doi: 10.1177/2053951716645828 – volume: 30 start-page: 369 issue: 2 year: 2016 ident: 10.1016/j.compenvurbsys.2020.101583_bb0220 article-title: Geo-temporal twitter demographics publication-title: International Journal of Geographical Information Science doi: 10.1080/13658816.2015.1089441 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.compenvurbsys.2020.101583_bb0085 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1023/A:1022627411411 – volume: 74 start-page: 161 year: 2019 ident: 10.1016/j.compenvurbsys.2020.101583_bb0235 article-title: Social media data: Challenges, opportunities and limitations in urban studies publication-title: Computers, Environment and Urban Systems doi: 10.1016/j.compenvurbsys.2018.11.001 – year: 2002 ident: 10.1016/j.compenvurbsys.2020.101583_bb0365 article-title: Learning from labeled and unlabeled data with label propagation – start-page: 381 year: 2015 ident: 10.1016/j.compenvurbsys.2020.101583_bb0355 – start-page: 1 year: 2009 ident: 10.1016/j.compenvurbsys.2020.101583_bb0370 article-title: Introduction to semi-supervised learning |
| SSID | ssj0002448 |
| Score | 2.4027884 |
| Snippet | As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 101583 |
| SubjectTerms | Artificial neural networks Convolution Digital geographies Digital media Graph convolutional network Image classification Labels Machine learning Model accuracy Multi-modal autoencoder Neural network Neural networks Qualitative analysis Social media Social networks |
| Title | A graph-based semi-supervised approach to classification learning in digital geographies |
| URI | https://dx.doi.org/10.1016/j.compenvurbsys.2020.101583 https://www.proquest.com/docview/2506624027 |
| Volume | 86 |
| WOSCitedRecordID | wos000640614100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7587 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002448 issn: 0198-9715 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLaqDSEuCAYTGwNZAnGpjBI7jhMOSBUUAYcJqUPqiciJnZKppFWTTNt_z3McN1nRpCLEJWrjxk76fX1-7_X9QOi1EnEa5jonMg88EnCqSBT4lASRJ0Gb5TxMVdtsQpyfR_N5_G00-uFyYa6Woiyj6-t4_V-hhnMAtkmd_Qu4t5PCCXgNoMMRYIfjXsBPxm0RamL2JzWu9K-CVM3aiATz3tUQNzpnZjRnEypkSbB0XhITIFssTDeR8cL2SP_pQg1dTYOuF0RLgkGuXPtXRLNJQWhUg1LoJuCnaGw4cLm4aXpGftTjmUxTaXXYWa1zWa6Gngg6CMWy7jGXItPHI7UeyxgkqrA5m2-1lbKRYAQMFTEUw7Yi9h8S3ToXLg0ga3geeAS4f7DraTvGbRecnZLZM7OoWZOCCGO-sY4PqeAxSL3DyZfp_Ot2rwblJrIJ9fYm76NXfQTgnUvepcPs7OatinLxCD3sbAs8sZx4jEa6PELH0x4eGOxkeXWETre5SvgNtlna2BaNuXmC5hM8YBHeYRF2LML1Ct9mEXYswkWJOxbhAYueou-fphcfPpOuCQfJQBWtiZBhqAT1VCjS3Li_lC-9IPdYGnqMa6qUn-kMjN7UVxmPuRKegg9TnjNf5oqyY3RQrkr9DGElmYh1xqSKjU4kIi40jVOhMpYxLcQJeue-1iTrKtSbRinLxIUiXia3MEkMJonF5AQF24vXtlDLfpe9d_glnc5pdckECLjfBGcO9aSTAjDOTWOFwKPi9F_nf44e9L-1M3RQbxr9At3Lruqi2rzs-PwbGhm-8Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph-based+semi-supervised+approach+to+classification+learning+in+digital+geographies&rft.jtitle=Computers%2C+environment+and+urban+systems&rft.au=Liu%2C+Pengyuan&rft.au=De+Sabbata%2C+Stefano&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=0198-9715&rft.eissn=1873-7587&rft.volume=86&rft_id=info:doi/10.1016%2Fj.compenvurbsys.2020.101583&rft.externalDocID=S0198971520303161 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0198-9715&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0198-9715&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0198-9715&client=summon |