Quadratic convex reformulation for nonconvex binary quadratically constrained quadratic programming via surrogate constraint

We investigate in this paper nonconvex binary quadratically constrained quadratic programming (QCQP) which arises in various real-life fields. We propose a novel approach of getting quadratic convex reformulation (QCR) for this class of optimization problem. Our approach employs quadratic surrogate...

Full description

Saved in:
Bibliographic Details
Published in:Journal of global optimization Vol. 70; no. 4; pp. 719 - 735
Main Authors: Zheng, Xiaojin, Pan, Yutong, Cui, Xueting
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2018
Springer
Springer Nature B.V
Subjects:
ISSN:0925-5001, 1573-2916
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate in this paper nonconvex binary quadratically constrained quadratic programming (QCQP) which arises in various real-life fields. We propose a novel approach of getting quadratic convex reformulation (QCR) for this class of optimization problem. Our approach employs quadratic surrogate functions and convexifies all the quadratic inequality constraints to construct QCR. The price of this approach is the introduction of an extra quadratic inequality. The “best” QCR among the proposed family, in terms that the bound of the corresponding continuous relaxation is best, can be found via solving a semidefinite programming problem. Furthermore, we prove that the bound obtained by continuous relaxation of our best QCR is as tight as Lagrangian bound of binary QCQP. Computational experiment is also conducted to illustrate the solution efficiency improvement of our best QCR when applied in off-the-shell software.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-017-0591-0