Asymptotic Behavior of Eigenvalues of a Boundary Value Problem for a Second-Order Elliptic Differential-Operator Equation with Spectral Parameter Quadratically Occurring in the Boundary Condition

The asymptotic behavior of eigenvalues of a boundary value problem for a secondorder differential-operator equation in a separable Hilbert space on a finite interval is studied for the case in which the same spectral parameter occurs linearly in the equation and quadratically in one of the boundary...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Differential equations Ročník 54; číslo 9; s. 1256 - 1260
Hlavní autor: Aliev, B. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.09.2018
Springer
Springer Nature B.V
Témata:
ISSN:0012-2661, 1608-3083
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The asymptotic behavior of eigenvalues of a boundary value problem for a secondorder differential-operator equation in a separable Hilbert space on a finite interval is studied for the case in which the same spectral parameter occurs linearly in the equation and quadratically in one of the boundary conditions. We prove that the problem has a sequence of eigenvalues converging to zero.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266118090124