Influence of Hydrogen Peroxide on the Composition and Porosity of Oxide-Ceramic Coatings on Alloys of the Al–Si–Cu and Al–Cu–Mg Systems
We study the influence of hydrogen peroxide on the phase composition, thickness, and porosity of oxide-ceramic coatings obtained by plasma electrolytic oxidation on Al–Si–Cu and Al–Cu–Mg aluminum alloys. For these two systems, it is shown that the presence of H 2 O 2 , with a concentration of 5 g/li...
Uloženo v:
| Vydáno v: | Materials science (New York, N.Y.) Ročník 57; číslo 6; s. 894 - 899 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.05.2022
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 1068-820X, 1573-885X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We study the influence of hydrogen peroxide on the phase composition, thickness, and porosity of oxide-ceramic coatings obtained by plasma electrolytic oxidation on Al–Si–Cu and Al–Cu–Mg aluminum alloys. For these two systems, it is shown that the presence of H
2
O
2
, with a concentration of 5 g/liter, makes it possible to get a twofold increase in the thickness of the oxide-ceramic coating as compared with the original electrolyte. A subsequent increase in the concentration of hydrogen peroxide leads to a decrease in the thickness of oxide-ceramic coatings. The maximum content of corundum is obtained for hydrogen-peroxide concentrations of 5 g/liter for the Al–Cu–Mg system and 7 g/liter for the Al–Si–Cu system. The presence of silicon in the composition alloy results in the formation of sillimanite and quartz in oxide-ceramic coatings, which is accompanied by an increase in the volume of oxide-ceramic coatings. As the concentration of hydrogen peroxide in the electrolyte increases, the porosity of the Al–Si–Cu system decreases, whereas the porosity of the Al–Cu–Mg system does not change. |
|---|---|
| AbstractList | We study the influence of hydrogen peroxide on the phase composition, thickness, and porosity of oxide-ceramic coatings obtained by plasma electrolytic oxidation on Al–Si–Cu and Al–Cu–Mg aluminum alloys. For these two systems, it is shown that the presence of H2O2, with a concentration of 5 g/liter, makes it possible to get a twofold increase in the thickness of the oxide-ceramic coating as compared with the original electrolyte. A subsequent increase in the concentration of hydrogen peroxide leads to a decrease in the thickness of oxide-ceramic coatings. The maximum content of corundum is obtained for hydrogen-peroxide concentrations of 5 g/liter for the Al–Cu–Mg system and 7 g/liter for the Al–Si–Cu system. The presence of silicon in the composition alloy results in the formation of sillimanite and quartz in oxide-ceramic coatings, which is accompanied by an increase in the volume of oxide-ceramic coatings. As the concentration of hydrogen peroxide in the electrolyte increases, the porosity of the Al–Si–Cu system decreases, whereas the porosity of the Al–Cu–Mg system does not change. We study the influence of hydrogen peroxide on the phase composition, thickness, and porosity of oxide-ceramic coatings obtained by plasma electrolytic oxidation on Al-Si-Cu and Al-Cu-Mg aluminum alloys. For these two systems, it is shown that the presence of H.sub.2O.sub.2, with a concentration of 5 g/liter, makes it possible to get a twofold increase in the thickness of the oxide-ceramic coating as compared with the original electrolyte. A subsequent increase in the concentration of hydrogen peroxide leads to a decrease in the thickness of oxide-ceramic coatings. The maximum content of corundum is obtained for hydrogen-peroxide concentrations of 5 g/liter for the Al-Cu-Mg system and 7 g/liter for the Al-Si-Cu system. The presence of silicon in the composition alloy results in the formation of sillimanite and quartz in oxide-ceramic coatings, which is accompanied by an increase in the volume of oxide-ceramic coatings. As the concentration of hydrogen peroxide in the electrolyte increases, the porosity of the Al-Si-Cu system decreases, whereas the porosity of the Al-Cu-Mg system does not change. We study the influence of hydrogen peroxide on the phase composition, thickness, and porosity of oxide-ceramic coatings obtained by plasma electrolytic oxidation on Al–Si–Cu and Al–Cu–Mg aluminum alloys. For these two systems, it is shown that the presence of H 2 O 2 , with a concentration of 5 g/liter, makes it possible to get a twofold increase in the thickness of the oxide-ceramic coating as compared with the original electrolyte. A subsequent increase in the concentration of hydrogen peroxide leads to a decrease in the thickness of oxide-ceramic coatings. The maximum content of corundum is obtained for hydrogen-peroxide concentrations of 5 g/liter for the Al–Cu–Mg system and 7 g/liter for the Al–Si–Cu system. The presence of silicon in the composition alloy results in the formation of sillimanite and quartz in oxide-ceramic coatings, which is accompanied by an increase in the volume of oxide-ceramic coatings. As the concentration of hydrogen peroxide in the electrolyte increases, the porosity of the Al–Si–Cu system decreases, whereas the porosity of the Al–Cu–Mg system does not change. |
| Audience | Academic |
| Author | Posuvailo, V. M. Kovalchuk, I. V. Ivasenko, I. B. |
| Author_xml | – sequence: 1 givenname: V. M. surname: Posuvailo fullname: Posuvailo, V. M. email: vposuvailo@gmail.com organization: Karpenko Physicomechanical Institute, National Academy of Sciences of Ukraine – sequence: 2 givenname: I. V. surname: Kovalchuk fullname: Kovalchuk, I. V. organization: Karpenko Physicomechanical Institute, National Academy of Sciences of Ukraine – sequence: 3 givenname: I. B. surname: Ivasenko fullname: Ivasenko, I. B. organization: Karpenko Physicomechanical Institute, National Academy of Sciences of Ukraine |
| BookMark | eNp9kc1q3DAUhUVJoEnaF-jK0FUXTvVj2fJyMG0zkJLQSSE7oZFlV8EjTSUZ4l3fIIu8YZ-k1-NCSBZBcCVdznfE1TlFR847g9AHgs8JxtXnSGBjOaY0x7gkdc7foBPCK5YLwW-P4IxLkQuKb9-i0xjvMEC84ifoYe26YTROm8x32cXUBt8bl12b4O9tC02XpV8ma_xu76NNFu7Ktdm1D_N1mqGrWZg3Jqid1aBUybo-zuRqGPwUZ83ssRr-_nncWCjNeDA5NJoRyvc-20wxmV18h447NUTz_v9-hn5-_XLTXOSXV9_Wzeoy14zzlDOKC4JpjQXGdaWpULimJVGkrEWtSpi2LRjjRVEpti14sdVkW-jWcKYxKblgZ-jj4rsP_vdoYpJ3fgwOnpS0AmswLwtQnS-qXg1GWtf5FJSG1RqYFSLoLPRXFRWUckIpAJ-eAaBJ5j71aoxRrjc_nmvFotXwlzGYTmqb1PzF8IgdJMFyzlYu2UrIVh6ylRxQ-gLdB7tTYXodYgsUQex6E55GfoX6Bwm6uYM |
| CitedBy_id | crossref_primary_10_1007_s11003_022_00638_2 crossref_primary_10_15407_pcmm2025_03_041 crossref_primary_10_1007_s11665_025_11450_9 |
| Cites_doi | 10.1007/s11003-021-00463-z 10.1016/j.corsci.2010.11.009 10.1109/ISDEA.2014.15 10.1016/j.surfcoat.2014.11.001 10.1016/j.jmrt.2020.11.102 10.1007/BF02805119 10.1007/s11003-009-9191-6 10.1016/j.ijadhadh.2005.07.001 10.1007/s11003-013-9614-2 10.1016/S1471-5317(02)00003-2 10.2478/afe-2013-0087 10.1007/s11666-007-9104-x 10.1109/UKRCON.2019.8879804 10.1179/1743278211Y.0000000022 10.1007/BF02359992 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2022 Springer |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2022 Springer |
| DBID | AAYXX CITATION ISR |
| DOI | 10.1007/s11003-022-00619-5 |
| DatabaseName | CrossRef Gale In Context: Science |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-885X |
| EndPage | 899 |
| ExternalDocumentID | A728225122 10_1007_s11003_022_00619_5 |
| GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP CZ9 D1I DDRTE DL5 DNIVK DPUIP EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IGS IHE IJ- IKXTQ ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KB. KC. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PDBOC PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 XU3 YLTOR Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR CITATION M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c355t-32041029080097c28a09261a16989a6106d4335447a3b454bc1b4cde53c016583 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000885241000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1068-820X |
| IngestDate | Thu Sep 25 00:57:48 EDT 2025 Sat Nov 29 10:37:00 EST 2025 Mon Nov 24 14:34:22 EST 2025 Sat Nov 29 06:15:16 EST 2025 Tue Nov 18 22:22:56 EST 2025 Fri Feb 21 02:44:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | sillimanite porosity aluminum oxides crystal structure plasma-electrolyte oxidation oxide ceramic coatings X-ray diffraction analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c355t-32041029080097c28a09261a16989a6106d4335447a3b454bc1b4cde53c016583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2741010264 |
| PQPubID | 2044364 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_2741010264 gale_infotracacademiconefile_A728225122 gale_incontextgauss_ISR_A728225122 crossref_citationtrail_10_1007_s11003_022_00619_5 crossref_primary_10_1007_s11003_022_00619_5 springer_journals_10_1007_s11003_022_00619_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Heidelberg |
| PublicationTitle | Materials science (New York, N.Y.) |
| PublicationTitleAbbrev | Mater Sci |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | MakhloufеMMGuthyHVThe aluminum-silicon eutectic reaction: mechanisms and crystallographyJ. Light Metals20011419921810.1016/S1471-5317(02)00003-2 I. V. Suminov, P. M. Belkin, A. V. Epelfeld, V. B. Lyudin, B. L. Krit, and A. M. Borisov, Plasma-Electrolytic Modification of the Surface of Metals and Alloys [in Russian], in 2 Vol., 2, Tekhnosphera, Moscow (2011). MartinJLeonePNominéAVeys-RenauxDHenrionGBelmonteTInfluence of electrolyte ageing on the plasma electrolytic oxidation of aluminiumSurf. Coat. Technol.2015269364610.1016/j.surfcoat.2014.11.001 CritchlowGWYendallKABahraniDQuinnAAndrewsFStrategies for the replacement of chromic acid anodizing for the structural bonding of aluminium alloysInt. J. Adhes. Adhesives200626641945310.1016/j.ijadhadh.2005.07.001 L. F. Mondolfo, Structure and Properties of Aluminum Alloys [in Russian], Metallurgiya, Moscow (1979). Yu. F. Ivanov, I. V. Lopatin, O. C. Tolkachev, and M. E. Rygina, “Structure and properties of silumin after electron-ion-plasma multicycle modification,” in: 13th Internat. Conf. “Interaction of Radiation with Solids” (September 30–October 3), Minsk (2019). L. A. Xiao-Cong, “Hybrid SVM-QPSO model based ceramic tube surface defect detection algorithm,” in: 5th Internat. Conf. on Intelligent Systems Design and Eng. Appl., Hunan (2014), pp. 28–31. KuznetsovYAKulakovKVGoncharenkoVVTechnological features of selection of electrolytes for getting thick-layer ceramic coatingsNew Mater. Technol. Mech. Eng.2011145255 IvasenkoIPosuvailoVKlapkivMVynarVOstap’yukSExpress method for determining the presence of defects of the surface of oxide-ceramic coatingsMater. Sci.200945346046410.1007/s11003-009-9191-6 VolchokIPMityaevOALyutovaOVKrulikovs’kaOOVanyarkhaTVIncreasing the resistance to the destruction of secondary siluminMetallurg. Metalwork.202020954653 D. F. Cherneha, V. S. Bogushev’skyi, Yu. Ya. Gotvyans’kyi, V. S. Tereshchenko, B. M. Boichenko, P. S. Kharlashin, and V. A. Hladkykh, Fundamentals of the Metallurgical Production of Metals and Alloys [in Ukrainian], Vyshcha Shkola (2006). NykyforchynHMAgarwalaVSKlapkivMDPosuvailoVMSimultaneous reduction of wear and corrosion of titanium, magnesium and zirconium alloys by surface plasma electrolytic oxidation treatmentAdv. Mat. Res.2008382735 J. Rodríguez-Carvajal, Program FullProf.2k. Version 2.20, Laboratoire Léon Brillouin (CEA–CNRS), Grenoble (2002). I. Ivasenko and V. Chervatyuk, “Detection of rust defects of protective coatings based on HSV color model,” in: IEEE 2nd Ukrain. Conf. on Electric and Computer Engineering (UKRCON) (2019), pp. 1143–1146. ZinIMKhlopykOPHolovchukMYProtective action of inorganic inhibitors on mechanically activated aluminum surfacesMater. Sci.201349329830310.1007/s11003-013-9614-2 PosuvailoVMKulykVVDuriaginaZAKoval’chuckIVStudentMMVasylivBDThe effect of electrolyte composition on the plasma electrolyte oxidation and phase composition of oxide ceramic coatings formed on 2024 aluminium alloyArchives Mat. Sci. Eng.202010524955 PokhmurskiiVIZinIMVynarVAKhlopykOPBilyLMCorrosive wear of aluminium alloy in presence of phosphateCorr. Eng. Sci. Technol.201247318218710.1179/1743278211Y.0000000022 PokhmurskiiVNykyforchynHStudentMKlapkivMPokhmurskaHWielageBGrundTWankAPlasma electrolytic oxidation of arc-sprayed aluminium coatingsJ. Thermal Spray Technol.2007165–6998100410.1007/s11666-007-9104-x HutsaylyukVStudentMZadorozhnaKMaruschakPPokhmurskaHImprovement of wear resistance of aluminum alloy by HVOF methodJ. Mat. Res. Technol.202096163671637710.1016/j.jmrt.2020.11.102 KlapkivMDSimulation of synthesis of oxide-ceramic coatings in discharge channels of a metal-electrolyte systemMater. Sci.199935227928310.1007/BF02359992 PokhmurskiiVIZinIMVynarVABilyLMContradictory effect of chromate inhibitor on corrosive wear of aluminium alloyCorr. Sci.201153390490810.1016/j.corsci.2010.11.009 KlapkivMDChuchmarevOSSydorPYPosuvailoVMThermodynamics of the interaction of aluminum, magnesium and zirconium with components of an electrolytic plasmaMater. Sci.2000361667910.1007/BF02805119 VolchokIPGirzhonVVTantsiuraIVIncreasing of microhardness of Al–Si alloys by laser treatmentMetallofiz. Noveish. Tekhnol.201133811111118 MityayevOVolchokIInfluence of intermetallic phases on fracture resistance of siluminsArch. Foundry Eng.2013134838610.2478/afe-2013-0087 StudentMMVeselivskaHHKalakhanOSZadorozhnaKRSirakYYInfluence of the conditions of plasma-electrolytic treatment of D16T aluminum alloy on its corrosion resistance in 3% NaCl solutionMater. Sci.202156455055910.1007/s11003-021-00463-z 619_CR21 VM Posuvailo (619_CR19) 2020; 105 MD Klapkiv (619_CR24) 2000; 36 V Pokhmurskii (619_CR14) 2007; 16 IP Volchok (619_CR9) 2011; 33 MM Student (619_CR20) 2021; 56 VI Pokhmurskii (619_CR7) 2012; 47 V Hutsaylyuk (619_CR10) 2020; 9 J Martin (619_CR17) 2015; 269 YA Kuznetsov (619_CR18) 2011; 14 O Mityayev (619_CR4) 2013; 13 619_CR25 IP Volchok (619_CR5) 2020; 20 619_CR23 MD Klapkiv (619_CR15) 1999; 35 MM Makhloufе (619_CR3) 2001; 1 GW Critchlow (619_CR8) 2006; 26 IM Zin (619_CR12) 2013; 49 I Ivasenko (619_CR22) 2009; 45 HM Nykyforchyn (619_CR16) 2008; 38 VI Pokhmurskii (619_CR6) 2011; 53 619_CR1 619_CR13 619_CR2 619_CR11 |
| References_xml | – reference: L. A. Xiao-Cong, “Hybrid SVM-QPSO model based ceramic tube surface defect detection algorithm,” in: 5th Internat. Conf. on Intelligent Systems Design and Eng. Appl., Hunan (2014), pp. 28–31. – reference: CritchlowGWYendallKABahraniDQuinnAAndrewsFStrategies for the replacement of chromic acid anodizing for the structural bonding of aluminium alloysInt. J. Adhes. Adhesives200626641945310.1016/j.ijadhadh.2005.07.001 – reference: VolchokIPGirzhonVVTantsiuraIVIncreasing of microhardness of Al–Si alloys by laser treatmentMetallofiz. Noveish. Tekhnol.201133811111118 – reference: StudentMMVeselivskaHHKalakhanOSZadorozhnaKRSirakYYInfluence of the conditions of plasma-electrolytic treatment of D16T aluminum alloy on its corrosion resistance in 3% NaCl solutionMater. Sci.202156455055910.1007/s11003-021-00463-z – reference: HutsaylyukVStudentMZadorozhnaKMaruschakPPokhmurskaHImprovement of wear resistance of aluminum alloy by HVOF methodJ. Mat. Res. Technol.202096163671637710.1016/j.jmrt.2020.11.102 – reference: MityayevOVolchokIInfluence of intermetallic phases on fracture resistance of siluminsArch. Foundry Eng.2013134838610.2478/afe-2013-0087 – reference: PokhmurskiiVIZinIMVynarVAKhlopykOPBilyLMCorrosive wear of aluminium alloy in presence of phosphateCorr. Eng. Sci. Technol.201247318218710.1179/1743278211Y.0000000022 – reference: PokhmurskiiVNykyforchynHStudentMKlapkivMPokhmurskaHWielageBGrundTWankAPlasma electrolytic oxidation of arc-sprayed aluminium coatingsJ. Thermal Spray Technol.2007165–6998100410.1007/s11666-007-9104-x – reference: MartinJLeonePNominéAVeys-RenauxDHenrionGBelmonteTInfluence of electrolyte ageing on the plasma electrolytic oxidation of aluminiumSurf. Coat. Technol.2015269364610.1016/j.surfcoat.2014.11.001 – reference: I. V. Suminov, P. M. Belkin, A. V. Epelfeld, V. B. Lyudin, B. L. Krit, and A. M. Borisov, Plasma-Electrolytic Modification of the Surface of Metals and Alloys [in Russian], in 2 Vol., 2, Tekhnosphera, Moscow (2011). – reference: Yu. F. Ivanov, I. V. Lopatin, O. C. Tolkachev, and M. E. Rygina, “Structure and properties of silumin after electron-ion-plasma multicycle modification,” in: 13th Internat. Conf. “Interaction of Radiation with Solids” (September 30–October 3), Minsk (2019). – reference: NykyforchynHMAgarwalaVSKlapkivMDPosuvailoVMSimultaneous reduction of wear and corrosion of titanium, magnesium and zirconium alloys by surface plasma electrolytic oxidation treatmentAdv. Mat. Res.2008382735 – reference: PokhmurskiiVIZinIMVynarVABilyLMContradictory effect of chromate inhibitor on corrosive wear of aluminium alloyCorr. Sci.201153390490810.1016/j.corsci.2010.11.009 – reference: KlapkivMDSimulation of synthesis of oxide-ceramic coatings in discharge channels of a metal-electrolyte systemMater. Sci.199935227928310.1007/BF02359992 – reference: KuznetsovYAKulakovKVGoncharenkoVVTechnological features of selection of electrolytes for getting thick-layer ceramic coatingsNew Mater. Technol. Mech. Eng.2011145255 – reference: L. F. Mondolfo, Structure and Properties of Aluminum Alloys [in Russian], Metallurgiya, Moscow (1979). – reference: PosuvailoVMKulykVVDuriaginaZAKoval’chuckIVStudentMMVasylivBDThe effect of electrolyte composition on the plasma electrolyte oxidation and phase composition of oxide ceramic coatings formed on 2024 aluminium alloyArchives Mat. Sci. Eng.202010524955 – reference: J. Rodríguez-Carvajal, Program FullProf.2k. Version 2.20, Laboratoire Léon Brillouin (CEA–CNRS), Grenoble (2002). – reference: D. F. Cherneha, V. S. Bogushev’skyi, Yu. Ya. Gotvyans’kyi, V. S. Tereshchenko, B. M. Boichenko, P. S. Kharlashin, and V. A. Hladkykh, Fundamentals of the Metallurgical Production of Metals and Alloys [in Ukrainian], Vyshcha Shkola (2006). – reference: KlapkivMDChuchmarevOSSydorPYPosuvailoVMThermodynamics of the interaction of aluminum, magnesium and zirconium with components of an electrolytic plasmaMater. Sci.2000361667910.1007/BF02805119 – reference: I. Ivasenko and V. Chervatyuk, “Detection of rust defects of protective coatings based on HSV color model,” in: IEEE 2nd Ukrain. Conf. on Electric and Computer Engineering (UKRCON) (2019), pp. 1143–1146. – reference: ZinIMKhlopykOPHolovchukMYProtective action of inorganic inhibitors on mechanically activated aluminum surfacesMater. Sci.201349329830310.1007/s11003-013-9614-2 – reference: VolchokIPMityaevOALyutovaOVKrulikovs’kaOOVanyarkhaTVIncreasing the resistance to the destruction of secondary siluminMetallurg. Metalwork.202020954653 – reference: MakhloufеMMGuthyHVThe aluminum-silicon eutectic reaction: mechanisms and crystallographyJ. Light Metals20011419921810.1016/S1471-5317(02)00003-2 – reference: IvasenkoIPosuvailoVKlapkivMVynarVOstap’yukSExpress method for determining the presence of defects of the surface of oxide-ceramic coatingsMater. Sci.200945346046410.1007/s11003-009-9191-6 – volume: 33 start-page: 1111 issue: 8 year: 2011 ident: 619_CR9 publication-title: Metallofiz. Noveish. Tekhnol. – volume: 20 start-page: 46 issue: 95 year: 2020 ident: 619_CR5 publication-title: Metallurg. Metalwork. – volume: 56 start-page: 550 issue: 4 year: 2021 ident: 619_CR20 publication-title: Mater. Sci. doi: 10.1007/s11003-021-00463-z – ident: 619_CR11 – ident: 619_CR13 – ident: 619_CR2 – volume: 53 start-page: 904 issue: 3 year: 2011 ident: 619_CR6 publication-title: Corr. Sci. doi: 10.1016/j.corsci.2010.11.009 – ident: 619_CR21 doi: 10.1109/ISDEA.2014.15 – volume: 269 start-page: 36 year: 2015 ident: 619_CR17 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.11.001 – volume: 9 start-page: 16367 issue: 6 year: 2020 ident: 619_CR10 publication-title: J. Mat. Res. Technol. doi: 10.1016/j.jmrt.2020.11.102 – volume: 36 start-page: 66 issue: 1 year: 2000 ident: 619_CR24 publication-title: Mater. Sci. doi: 10.1007/BF02805119 – volume: 45 start-page: 460 issue: 3 year: 2009 ident: 619_CR22 publication-title: Mater. Sci. doi: 10.1007/s11003-009-9191-6 – volume: 26 start-page: 419 issue: 6 year: 2006 ident: 619_CR8 publication-title: Int. J. Adhes. Adhesives doi: 10.1016/j.ijadhadh.2005.07.001 – volume: 49 start-page: 298 issue: 3 year: 2013 ident: 619_CR12 publication-title: Mater. Sci. doi: 10.1007/s11003-013-9614-2 – volume: 38 start-page: 27 year: 2008 ident: 619_CR16 publication-title: Adv. Mat. Res. – volume: 1 start-page: 199 issue: 4 year: 2001 ident: 619_CR3 publication-title: J. Light Metals doi: 10.1016/S1471-5317(02)00003-2 – volume: 13 start-page: 83 issue: 4 year: 2013 ident: 619_CR4 publication-title: Arch. Foundry Eng. doi: 10.2478/afe-2013-0087 – volume: 105 start-page: 49 issue: 2 year: 2020 ident: 619_CR19 publication-title: Archives Mat. Sci. Eng. – volume: 16 start-page: 998 issue: 5–6 year: 2007 ident: 619_CR14 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-007-9104-x – ident: 619_CR1 – ident: 619_CR23 doi: 10.1109/UKRCON.2019.8879804 – volume: 47 start-page: 182 issue: 3 year: 2012 ident: 619_CR7 publication-title: Corr. Eng. Sci. Technol. doi: 10.1179/1743278211Y.0000000022 – volume: 14 start-page: 52 year: 2011 ident: 619_CR18 publication-title: New Mater. Technol. Mech. Eng. – ident: 619_CR25 – volume: 35 start-page: 279 issue: 2 year: 1999 ident: 619_CR15 publication-title: Mater. Sci. doi: 10.1007/BF02359992 |
| SSID | ssj0007575 |
| Score | 2.2319448 |
| Snippet | We study the influence of hydrogen peroxide on the phase composition, thickness, and porosity of oxide-ceramic coatings obtained by plasma electrolytic... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 894 |
| SubjectTerms | Aluminum alloys Aluminum base alloys Aluminum oxide Ceramic coatings Ceramic glazes Ceramic materials Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Coatings Copper Corundum Electrolysis Electrolytes Hydrogen peroxide Magnesium Materials Science Oxidation Phase composition Porosity Protective coatings Silicon Sillimanite Solid Mechanics Structural Materials Thickness |
| Title | Influence of Hydrogen Peroxide on the Composition and Porosity of Oxide-Ceramic Coatings on Alloys of the Al–Si–Cu and Al–Cu–Mg Systems |
| URI | https://link.springer.com/article/10.1007/s11003-022-00619-5 https://www.proquest.com/docview/2741010264 |
| Volume | 57 |
| WOSCitedRecordID | wos000885241000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary Journals customDbUrl: eissn: 1573-885X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007575 issn: 1068-820X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5B4UAPvFGXFmQhJA5gaRM7TXxcrajaA2XVBbQ3y7HjaqVVgpLdqnvjH3DgH_JLOuM6XcpLgoulJONH7PHMWJ75BuDlcOgS5cuCV6mTXFZC8dKrnCtnhTRlIZzyIdlEfnxczGZqEoPCut7bvb-SDJJ6E-yWhMx3eHgivat4dhNuoboraDueTD9dyd88C_C6eNYpOOq3WQyV-X0b19TRz0L5l9vRoHQO7v3fcO_D3WhkstElVzyAG1X9ELZ_gB58BF-P-uwkrPHscO3aBlmJTaq2OZ87fFkzNA0ZiYvo1sVM7dikaelxTZXeEyEfVy2ltEdKQx7UHdUcLRbNuiMaamO0-P7l23SOxXgVGgkvxiss3p2yCJn-GD4evP0wPuQxOQO3aKIsuUiHEo0TRRanym1amKHC05hJKCOlQaNs30khMilzI0qZydImpbSuyoSlCKpCPIGtuqmrHWDWCuuNQVPVUoR7ahLvrctyb7CnRJUDSPo10jYil1MCjYXeYC7TZGucbB0mW2cDeH1V5_MlbsdfqV_Q0msCxKjJ4-bUrLpOH01P9CgnR1s0i9IBvIpEvsHurYkBDPgThKF1jXKvZyEdRUKnCSeIAPz25QDe9Cyz-fznwT39N_JduJMGriOnzD3YWrar6hnctmfLedc-D1vlAuHhDfw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7BggQceC6isICFkDiApSZ2NvGxqli1YrdU2wX1Zjl2sqpUJShpEb3xDzjwD_klzHidLctLgoulOONH7MnMWJ75BuB5v-8iVeYZL2InuSyE4nmpUq6cFdLkmXCq9Mkm0skkm8_VNASFtZ23e3cl6SX1Ntgt8pnv8PBEelfx5DJckaixyJHvePb-XP6miYfXxbNOxlG_zUOozO_7uKCOfhbKv9yOeqVzcOv_pnsbbgYjkw3OuOIOXCqqu3DjB-jBe_Bl3GUnYXXJRhvX1MhKbFo09aeFw8qKoWnISFwEty5mKsemdUOPG2r0lgj5sGgopT1SGvKgbqnlYLmsNy3RUB-D5bfPX2cLLIZr34mvGK6xODplATJ9F94dvD4ZjnhIzsAtmigrLuK-RONEkcWpUhtnpq_wNGYiykhp0Cjbd1KIRMrUiFwmMrdRLq0rEmEpgioT92GnqqviATBrhS2NQVPVUoR7bKKytC5JS4MjRSrvQdTtkbYBuZwSaCz1FnOZFlvjYmu_2DrpwcvzNh_OcDv-Sv2Mtl4TIEZFHjenZt22ejw71oOUHG3RLIp78CIQlTUOb00IYMCPIAytC5R7HQvpIBJaTThBBOC3L3vwqmOZ7es_T-7hv5E_hWujk6NDfTievHkE12PPgeSguQc7q2ZdPIar9uNq0TZP_G_zHY6jEOA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgIMQe-EaUDbAQEg9grYmdJX6sCtUqoFQUUN8sx46nSlUyJe1E3_gPeNh_uL9kd66zbnxJiBdLcc4fsS--O_nud4S86HZtJF2esSK2gomCS5Y7mTJpDRc6z7iVziebSEejbDqV4wtR_N7bvb2SXMc0IEpTudg7sm5vE_gW-Sx4YEihDJYsuUquCUwahPb65Ov5WZwmHmoX7J6MgaybhrCZ3_dxSTT9fED_clPqBdDg9v9P_Q65FZRP2ltzy11ypSjvke0LkIT3yY9hm7WEVo4erGxdAYvRcVFX32YWKksKKiPFYyS4e1FdWjquanxcYaOPSMj6RY2p7oFSo2d1gy1783m1apAG--jNT7-fTGZQ9Je-E1_RX0Lx4ZAGKPUH5Mvg7ef-AQtJG5gB1WXBeNyFjYglaqIyNXGmuxKsNB1hpkoNytq-FZwnQqSa5yIRuYlyYWyRcIORVRl_SLbKqiweEWoMN05rUGENRr7HOnLO2CR1GkaKZN4hUbtfygREc0ysMVcbLGZcbAWLrfxiq6RDXp23OVrjefyV-jmygUKgjBI9cQ71smnUcPJJ9VJ0wAV1Ke6Ql4HIVTC80SGwAT4CsbUuUe627KTCUdEoxA9CYL990SGvW_bZvP7z5B7_G_kzcmP8ZqDeD0fvdsjN2DMg-m3ukq1FvSyekOvmeDFr6qf-DzoD-usZxA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Hydrogen+Peroxide+on+the+Composition+and+Porosity+of+Oxide-Ceramic+Coatings+on+Alloys+of+the+Al%E2%80%93Si%E2%80%93Cu+and+Al%E2%80%93Cu%E2%80%93Mg+Systems&rft.jtitle=Materials+science+%28New+York%2C+N.Y.%29&rft.au=Posuvailo%2C+V.+M.&rft.au=Kovalchuk%2C+I.+V.&rft.au=Ivasenko%2C+I.+B.&rft.date=2022-05-01&rft.pub=Springer+US&rft.issn=1068-820X&rft.eissn=1573-885X&rft.volume=57&rft.issue=6&rft.spage=894&rft.epage=899&rft_id=info:doi/10.1007%2Fs11003-022-00619-5&rft.externalDocID=10_1007_s11003_022_00619_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-820X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-820X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-820X&client=summon |