Influence of Hydrogen Peroxide on the Composition and Porosity of Oxide-Ceramic Coatings on Alloys of the Al–Si–Cu and Al–Cu–Mg Systems

We study the influence of hydrogen peroxide on the phase composition, thickness, and porosity of oxide-ceramic coatings obtained by plasma electrolytic oxidation on Al–Si–Cu and Al–Cu–Mg aluminum alloys. For these two systems, it is shown that the presence of H 2 O 2 , with a concentration of 5 g/li...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Materials science (New York, N.Y.) Ročník 57; číslo 6; s. 894 - 899
Hlavní autoři: Posuvailo, V. M., Kovalchuk, I. V., Ivasenko, I. B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2022
Springer
Springer Nature B.V
Témata:
ISSN:1068-820X, 1573-885X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study the influence of hydrogen peroxide on the phase composition, thickness, and porosity of oxide-ceramic coatings obtained by plasma electrolytic oxidation on Al–Si–Cu and Al–Cu–Mg aluminum alloys. For these two systems, it is shown that the presence of H 2 O 2 , with a concentration of 5 g/liter, makes it possible to get a twofold increase in the thickness of the oxide-ceramic coating as compared with the original electrolyte. A subsequent increase in the concentration of hydrogen peroxide leads to a decrease in the thickness of oxide-ceramic coatings. The maximum content of corundum is obtained for hydrogen-peroxide concentrations of 5 g/liter for the Al–Cu–Mg system and 7 g/liter for the Al–Si–Cu system. The presence of silicon in the composition alloy results in the formation of sillimanite and quartz in oxide-ceramic coatings, which is accompanied by an increase in the volume of oxide-ceramic coatings. As the concentration of hydrogen peroxide in the electrolyte increases, the porosity of the Al–Si–Cu system decreases, whereas the porosity of the Al–Cu–Mg system does not change.
AbstractList We study the influence of hydrogen peroxide on the phase composition, thickness, and porosity of oxide-ceramic coatings obtained by plasma electrolytic oxidation on Al–Si–Cu and Al–Cu–Mg aluminum alloys. For these two systems, it is shown that the presence of H2O2, with a concentration of 5 g/liter, makes it possible to get a twofold increase in the thickness of the oxide-ceramic coating as compared with the original electrolyte. A subsequent increase in the concentration of hydrogen peroxide leads to a decrease in the thickness of oxide-ceramic coatings. The maximum content of corundum is obtained for hydrogen-peroxide concentrations of 5 g/liter for the Al–Cu–Mg system and 7 g/liter for the Al–Si–Cu system. The presence of silicon in the composition alloy results in the formation of sillimanite and quartz in oxide-ceramic coatings, which is accompanied by an increase in the volume of oxide-ceramic coatings. As the concentration of hydrogen peroxide in the electrolyte increases, the porosity of the Al–Si–Cu system decreases, whereas the porosity of the Al–Cu–Mg system does not change.
We study the influence of hydrogen peroxide on the phase composition, thickness, and porosity of oxide-ceramic coatings obtained by plasma electrolytic oxidation on Al-Si-Cu and Al-Cu-Mg aluminum alloys. For these two systems, it is shown that the presence of H.sub.2O.sub.2, with a concentration of 5 g/liter, makes it possible to get a twofold increase in the thickness of the oxide-ceramic coating as compared with the original electrolyte. A subsequent increase in the concentration of hydrogen peroxide leads to a decrease in the thickness of oxide-ceramic coatings. The maximum content of corundum is obtained for hydrogen-peroxide concentrations of 5 g/liter for the Al-Cu-Mg system and 7 g/liter for the Al-Si-Cu system. The presence of silicon in the composition alloy results in the formation of sillimanite and quartz in oxide-ceramic coatings, which is accompanied by an increase in the volume of oxide-ceramic coatings. As the concentration of hydrogen peroxide in the electrolyte increases, the porosity of the Al-Si-Cu system decreases, whereas the porosity of the Al-Cu-Mg system does not change.
We study the influence of hydrogen peroxide on the phase composition, thickness, and porosity of oxide-ceramic coatings obtained by plasma electrolytic oxidation on Al–Si–Cu and Al–Cu–Mg aluminum alloys. For these two systems, it is shown that the presence of H 2 O 2 , with a concentration of 5 g/liter, makes it possible to get a twofold increase in the thickness of the oxide-ceramic coating as compared with the original electrolyte. A subsequent increase in the concentration of hydrogen peroxide leads to a decrease in the thickness of oxide-ceramic coatings. The maximum content of corundum is obtained for hydrogen-peroxide concentrations of 5 g/liter for the Al–Cu–Mg system and 7 g/liter for the Al–Si–Cu system. The presence of silicon in the composition alloy results in the formation of sillimanite and quartz in oxide-ceramic coatings, which is accompanied by an increase in the volume of oxide-ceramic coatings. As the concentration of hydrogen peroxide in the electrolyte increases, the porosity of the Al–Si–Cu system decreases, whereas the porosity of the Al–Cu–Mg system does not change.
Audience Academic
Author Posuvailo, V. M.
Kovalchuk, I. V.
Ivasenko, I. B.
Author_xml – sequence: 1
  givenname: V. M.
  surname: Posuvailo
  fullname: Posuvailo, V. M.
  email: vposuvailo@gmail.com
  organization: Karpenko Physicomechanical Institute, National Academy of Sciences of Ukraine
– sequence: 2
  givenname: I. V.
  surname: Kovalchuk
  fullname: Kovalchuk, I. V.
  organization: Karpenko Physicomechanical Institute, National Academy of Sciences of Ukraine
– sequence: 3
  givenname: I. B.
  surname: Ivasenko
  fullname: Ivasenko, I. B.
  organization: Karpenko Physicomechanical Institute, National Academy of Sciences of Ukraine
BookMark eNp9kc1q3DAUhUVJoEnaF-jK0FUXTvVj2fJyMG0zkJLQSSE7oZFlV8EjTSUZ4l3fIIu8YZ-k1-NCSBZBcCVdznfE1TlFR847g9AHgs8JxtXnSGBjOaY0x7gkdc7foBPCK5YLwW-P4IxLkQuKb9-i0xjvMEC84ifoYe26YTROm8x32cXUBt8bl12b4O9tC02XpV8ma_xu76NNFu7Ktdm1D_N1mqGrWZg3Jqid1aBUybo-zuRqGPwUZ83ssRr-_nncWCjNeDA5NJoRyvc-20wxmV18h447NUTz_v9-hn5-_XLTXOSXV9_Wzeoy14zzlDOKC4JpjQXGdaWpULimJVGkrEWtSpi2LRjjRVEpti14sdVkW-jWcKYxKblgZ-jj4rsP_vdoYpJ3fgwOnpS0AmswLwtQnS-qXg1GWtf5FJSG1RqYFSLoLPRXFRWUckIpAJ-eAaBJ5j71aoxRrjc_nmvFotXwlzGYTmqb1PzF8IgdJMFyzlYu2UrIVh6ylRxQ-gLdB7tTYXodYgsUQex6E55GfoX6Bwm6uYM
CitedBy_id crossref_primary_10_1007_s11003_022_00638_2
crossref_primary_10_15407_pcmm2025_03_041
crossref_primary_10_1007_s11665_025_11450_9
Cites_doi 10.1007/s11003-021-00463-z
10.1016/j.corsci.2010.11.009
10.1109/ISDEA.2014.15
10.1016/j.surfcoat.2014.11.001
10.1016/j.jmrt.2020.11.102
10.1007/BF02805119
10.1007/s11003-009-9191-6
10.1016/j.ijadhadh.2005.07.001
10.1007/s11003-013-9614-2
10.1016/S1471-5317(02)00003-2
10.2478/afe-2013-0087
10.1007/s11666-007-9104-x
10.1109/UKRCON.2019.8879804
10.1179/1743278211Y.0000000022
10.1007/BF02359992
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2022 Springer
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2022 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1007/s11003-022-00619-5
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-885X
EndPage 899
ExternalDocumentID A728225122
10_1007_s11003_022_00619_5
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D1I
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IGS
IHE
IJ-
IKXTQ
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KB.
KC.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PDBOC
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
XU3
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
CITATION
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c355t-32041029080097c28a09261a16989a6106d4335447a3b454bc1b4cde53c016583
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000885241000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1068-820X
IngestDate Thu Sep 25 00:57:48 EDT 2025
Sat Nov 29 10:37:00 EST 2025
Mon Nov 24 14:34:22 EST 2025
Sat Nov 29 06:15:16 EST 2025
Tue Nov 18 22:22:56 EST 2025
Fri Feb 21 02:44:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords sillimanite
porosity
aluminum oxides
crystal structure
plasma-electrolyte oxidation
oxide ceramic coatings
X-ray diffraction analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-32041029080097c28a09261a16989a6106d4335447a3b454bc1b4cde53c016583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2741010264
PQPubID 2044364
PageCount 6
ParticipantIDs proquest_journals_2741010264
gale_infotracacademiconefile_A728225122
gale_incontextgauss_ISR_A728225122
crossref_citationtrail_10_1007_s11003_022_00619_5
crossref_primary_10_1007_s11003_022_00619_5
springer_journals_10_1007_s11003_022_00619_5
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Heidelberg
PublicationTitle Materials science (New York, N.Y.)
PublicationTitleAbbrev Mater Sci
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References MakhloufеMMGuthyHVThe aluminum-silicon eutectic reaction: mechanisms and crystallographyJ. Light Metals20011419921810.1016/S1471-5317(02)00003-2
I. V. Suminov, P. M. Belkin, A. V. Epelfeld, V. B. Lyudin, B. L. Krit, and A. M. Borisov, Plasma-Electrolytic Modification of the Surface of Metals and Alloys [in Russian], in 2 Vol., 2, Tekhnosphera, Moscow (2011).
MartinJLeonePNominéAVeys-RenauxDHenrionGBelmonteTInfluence of electrolyte ageing on the plasma electrolytic oxidation of aluminiumSurf. Coat. Technol.2015269364610.1016/j.surfcoat.2014.11.001
CritchlowGWYendallKABahraniDQuinnAAndrewsFStrategies for the replacement of chromic acid anodizing for the structural bonding of aluminium alloysInt. J. Adhes. Adhesives200626641945310.1016/j.ijadhadh.2005.07.001
L. F. Mondolfo, Structure and Properties of Aluminum Alloys [in Russian], Metallurgiya, Moscow (1979).
Yu. F. Ivanov, I. V. Lopatin, O. C. Tolkachev, and M. E. Rygina, “Structure and properties of silumin after electron-ion-plasma multicycle modification,” in: 13th Internat. Conf. “Interaction of Radiation with Solids” (September 30–October 3), Minsk (2019).
L. A. Xiao-Cong, “Hybrid SVM-QPSO model based ceramic tube surface defect detection algorithm,” in: 5th Internat. Conf. on Intelligent Systems Design and Eng. Appl., Hunan (2014), pp. 28–31.
KuznetsovYAKulakovKVGoncharenkoVVTechnological features of selection of electrolytes for getting thick-layer ceramic coatingsNew Mater. Technol. Mech. Eng.2011145255
IvasenkoIPosuvailoVKlapkivMVynarVOstap’yukSExpress method for determining the presence of defects of the surface of oxide-ceramic coatingsMater. Sci.200945346046410.1007/s11003-009-9191-6
VolchokIPMityaevOALyutovaOVKrulikovs’kaOOVanyarkhaTVIncreasing the resistance to the destruction of secondary siluminMetallurg. Metalwork.202020954653
D. F. Cherneha, V. S. Bogushev’skyi, Yu. Ya. Gotvyans’kyi, V. S. Tereshchenko, B. M. Boichenko, P. S. Kharlashin, and V. A. Hladkykh, Fundamentals of the Metallurgical Production of Metals and Alloys [in Ukrainian], Vyshcha Shkola (2006).
NykyforchynHMAgarwalaVSKlapkivMDPosuvailoVMSimultaneous reduction of wear and corrosion of titanium, magnesium and zirconium alloys by surface plasma electrolytic oxidation treatmentAdv. Mat. Res.2008382735
J. Rodríguez-Carvajal, Program FullProf.2k. Version 2.20, Laboratoire Léon Brillouin (CEA–CNRS), Grenoble (2002).
I. Ivasenko and V. Chervatyuk, “Detection of rust defects of protective coatings based on HSV color model,” in: IEEE 2nd Ukrain. Conf. on Electric and Computer Engineering (UKRCON) (2019), pp. 1143–1146.
ZinIMKhlopykOPHolovchukMYProtective action of inorganic inhibitors on mechanically activated aluminum surfacesMater. Sci.201349329830310.1007/s11003-013-9614-2
PosuvailoVMKulykVVDuriaginaZAKoval’chuckIVStudentMMVasylivBDThe effect of electrolyte composition on the plasma electrolyte oxidation and phase composition of oxide ceramic coatings formed on 2024 aluminium alloyArchives Mat. Sci. Eng.202010524955
PokhmurskiiVIZinIMVynarVAKhlopykOPBilyLMCorrosive wear of aluminium alloy in presence of phosphateCorr. Eng. Sci. Technol.201247318218710.1179/1743278211Y.0000000022
PokhmurskiiVNykyforchynHStudentMKlapkivMPokhmurskaHWielageBGrundTWankAPlasma electrolytic oxidation of arc-sprayed aluminium coatingsJ. Thermal Spray Technol.2007165–6998100410.1007/s11666-007-9104-x
HutsaylyukVStudentMZadorozhnaKMaruschakPPokhmurskaHImprovement of wear resistance of aluminum alloy by HVOF methodJ. Mat. Res. Technol.202096163671637710.1016/j.jmrt.2020.11.102
KlapkivMDSimulation of synthesis of oxide-ceramic coatings in discharge channels of a metal-electrolyte systemMater. Sci.199935227928310.1007/BF02359992
PokhmurskiiVIZinIMVynarVABilyLMContradictory effect of chromate inhibitor on corrosive wear of aluminium alloyCorr. Sci.201153390490810.1016/j.corsci.2010.11.009
KlapkivMDChuchmarevOSSydorPYPosuvailoVMThermodynamics of the interaction of aluminum, magnesium and zirconium with components of an electrolytic plasmaMater. Sci.2000361667910.1007/BF02805119
VolchokIPGirzhonVVTantsiuraIVIncreasing of microhardness of Al–Si alloys by laser treatmentMetallofiz. Noveish. Tekhnol.201133811111118
MityayevOVolchokIInfluence of intermetallic phases on fracture resistance of siluminsArch. Foundry Eng.2013134838610.2478/afe-2013-0087
StudentMMVeselivskaHHKalakhanOSZadorozhnaKRSirakYYInfluence of the conditions of plasma-electrolytic treatment of D16T aluminum alloy on its corrosion resistance in 3% NaCl solutionMater. Sci.202156455055910.1007/s11003-021-00463-z
619_CR21
VM Posuvailo (619_CR19) 2020; 105
MD Klapkiv (619_CR24) 2000; 36
V Pokhmurskii (619_CR14) 2007; 16
IP Volchok (619_CR9) 2011; 33
MM Student (619_CR20) 2021; 56
VI Pokhmurskii (619_CR7) 2012; 47
V Hutsaylyuk (619_CR10) 2020; 9
J Martin (619_CR17) 2015; 269
YA Kuznetsov (619_CR18) 2011; 14
O Mityayev (619_CR4) 2013; 13
619_CR25
IP Volchok (619_CR5) 2020; 20
619_CR23
MD Klapkiv (619_CR15) 1999; 35
MM Makhloufе (619_CR3) 2001; 1
GW Critchlow (619_CR8) 2006; 26
IM Zin (619_CR12) 2013; 49
I Ivasenko (619_CR22) 2009; 45
HM Nykyforchyn (619_CR16) 2008; 38
VI Pokhmurskii (619_CR6) 2011; 53
619_CR1
619_CR13
619_CR2
619_CR11
References_xml – reference: L. A. Xiao-Cong, “Hybrid SVM-QPSO model based ceramic tube surface defect detection algorithm,” in: 5th Internat. Conf. on Intelligent Systems Design and Eng. Appl., Hunan (2014), pp. 28–31.
– reference: CritchlowGWYendallKABahraniDQuinnAAndrewsFStrategies for the replacement of chromic acid anodizing for the structural bonding of aluminium alloysInt. J. Adhes. Adhesives200626641945310.1016/j.ijadhadh.2005.07.001
– reference: VolchokIPGirzhonVVTantsiuraIVIncreasing of microhardness of Al–Si alloys by laser treatmentMetallofiz. Noveish. Tekhnol.201133811111118
– reference: StudentMMVeselivskaHHKalakhanOSZadorozhnaKRSirakYYInfluence of the conditions of plasma-electrolytic treatment of D16T aluminum alloy on its corrosion resistance in 3% NaCl solutionMater. Sci.202156455055910.1007/s11003-021-00463-z
– reference: HutsaylyukVStudentMZadorozhnaKMaruschakPPokhmurskaHImprovement of wear resistance of aluminum alloy by HVOF methodJ. Mat. Res. Technol.202096163671637710.1016/j.jmrt.2020.11.102
– reference: MityayevOVolchokIInfluence of intermetallic phases on fracture resistance of siluminsArch. Foundry Eng.2013134838610.2478/afe-2013-0087
– reference: PokhmurskiiVIZinIMVynarVAKhlopykOPBilyLMCorrosive wear of aluminium alloy in presence of phosphateCorr. Eng. Sci. Technol.201247318218710.1179/1743278211Y.0000000022
– reference: PokhmurskiiVNykyforchynHStudentMKlapkivMPokhmurskaHWielageBGrundTWankAPlasma electrolytic oxidation of arc-sprayed aluminium coatingsJ. Thermal Spray Technol.2007165–6998100410.1007/s11666-007-9104-x
– reference: MartinJLeonePNominéAVeys-RenauxDHenrionGBelmonteTInfluence of electrolyte ageing on the plasma electrolytic oxidation of aluminiumSurf. Coat. Technol.2015269364610.1016/j.surfcoat.2014.11.001
– reference: I. V. Suminov, P. M. Belkin, A. V. Epelfeld, V. B. Lyudin, B. L. Krit, and A. M. Borisov, Plasma-Electrolytic Modification of the Surface of Metals and Alloys [in Russian], in 2 Vol., 2, Tekhnosphera, Moscow (2011).
– reference: Yu. F. Ivanov, I. V. Lopatin, O. C. Tolkachev, and M. E. Rygina, “Structure and properties of silumin after electron-ion-plasma multicycle modification,” in: 13th Internat. Conf. “Interaction of Radiation with Solids” (September 30–October 3), Minsk (2019).
– reference: NykyforchynHMAgarwalaVSKlapkivMDPosuvailoVMSimultaneous reduction of wear and corrosion of titanium, magnesium and zirconium alloys by surface plasma electrolytic oxidation treatmentAdv. Mat. Res.2008382735
– reference: PokhmurskiiVIZinIMVynarVABilyLMContradictory effect of chromate inhibitor on corrosive wear of aluminium alloyCorr. Sci.201153390490810.1016/j.corsci.2010.11.009
– reference: KlapkivMDSimulation of synthesis of oxide-ceramic coatings in discharge channels of a metal-electrolyte systemMater. Sci.199935227928310.1007/BF02359992
– reference: KuznetsovYAKulakovKVGoncharenkoVVTechnological features of selection of electrolytes for getting thick-layer ceramic coatingsNew Mater. Technol. Mech. Eng.2011145255
– reference: L. F. Mondolfo, Structure and Properties of Aluminum Alloys [in Russian], Metallurgiya, Moscow (1979).
– reference: PosuvailoVMKulykVVDuriaginaZAKoval’chuckIVStudentMMVasylivBDThe effect of electrolyte composition on the plasma electrolyte oxidation and phase composition of oxide ceramic coatings formed on 2024 aluminium alloyArchives Mat. Sci. Eng.202010524955
– reference: J. Rodríguez-Carvajal, Program FullProf.2k. Version 2.20, Laboratoire Léon Brillouin (CEA–CNRS), Grenoble (2002).
– reference: D. F. Cherneha, V. S. Bogushev’skyi, Yu. Ya. Gotvyans’kyi, V. S. Tereshchenko, B. M. Boichenko, P. S. Kharlashin, and V. A. Hladkykh, Fundamentals of the Metallurgical Production of Metals and Alloys [in Ukrainian], Vyshcha Shkola (2006).
– reference: KlapkivMDChuchmarevOSSydorPYPosuvailoVMThermodynamics of the interaction of aluminum, magnesium and zirconium with components of an electrolytic plasmaMater. Sci.2000361667910.1007/BF02805119
– reference: I. Ivasenko and V. Chervatyuk, “Detection of rust defects of protective coatings based on HSV color model,” in: IEEE 2nd Ukrain. Conf. on Electric and Computer Engineering (UKRCON) (2019), pp. 1143–1146.
– reference: ZinIMKhlopykOPHolovchukMYProtective action of inorganic inhibitors on mechanically activated aluminum surfacesMater. Sci.201349329830310.1007/s11003-013-9614-2
– reference: VolchokIPMityaevOALyutovaOVKrulikovs’kaOOVanyarkhaTVIncreasing the resistance to the destruction of secondary siluminMetallurg. Metalwork.202020954653
– reference: MakhloufеMMGuthyHVThe aluminum-silicon eutectic reaction: mechanisms and crystallographyJ. Light Metals20011419921810.1016/S1471-5317(02)00003-2
– reference: IvasenkoIPosuvailoVKlapkivMVynarVOstap’yukSExpress method for determining the presence of defects of the surface of oxide-ceramic coatingsMater. Sci.200945346046410.1007/s11003-009-9191-6
– volume: 33
  start-page: 1111
  issue: 8
  year: 2011
  ident: 619_CR9
  publication-title: Metallofiz. Noveish. Tekhnol.
– volume: 20
  start-page: 46
  issue: 95
  year: 2020
  ident: 619_CR5
  publication-title: Metallurg. Metalwork.
– volume: 56
  start-page: 550
  issue: 4
  year: 2021
  ident: 619_CR20
  publication-title: Mater. Sci.
  doi: 10.1007/s11003-021-00463-z
– ident: 619_CR11
– ident: 619_CR13
– ident: 619_CR2
– volume: 53
  start-page: 904
  issue: 3
  year: 2011
  ident: 619_CR6
  publication-title: Corr. Sci.
  doi: 10.1016/j.corsci.2010.11.009
– ident: 619_CR21
  doi: 10.1109/ISDEA.2014.15
– volume: 269
  start-page: 36
  year: 2015
  ident: 619_CR17
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.11.001
– volume: 9
  start-page: 16367
  issue: 6
  year: 2020
  ident: 619_CR10
  publication-title: J. Mat. Res. Technol.
  doi: 10.1016/j.jmrt.2020.11.102
– volume: 36
  start-page: 66
  issue: 1
  year: 2000
  ident: 619_CR24
  publication-title: Mater. Sci.
  doi: 10.1007/BF02805119
– volume: 45
  start-page: 460
  issue: 3
  year: 2009
  ident: 619_CR22
  publication-title: Mater. Sci.
  doi: 10.1007/s11003-009-9191-6
– volume: 26
  start-page: 419
  issue: 6
  year: 2006
  ident: 619_CR8
  publication-title: Int. J. Adhes. Adhesives
  doi: 10.1016/j.ijadhadh.2005.07.001
– volume: 49
  start-page: 298
  issue: 3
  year: 2013
  ident: 619_CR12
  publication-title: Mater. Sci.
  doi: 10.1007/s11003-013-9614-2
– volume: 38
  start-page: 27
  year: 2008
  ident: 619_CR16
  publication-title: Adv. Mat. Res.
– volume: 1
  start-page: 199
  issue: 4
  year: 2001
  ident: 619_CR3
  publication-title: J. Light Metals
  doi: 10.1016/S1471-5317(02)00003-2
– volume: 13
  start-page: 83
  issue: 4
  year: 2013
  ident: 619_CR4
  publication-title: Arch. Foundry Eng.
  doi: 10.2478/afe-2013-0087
– volume: 105
  start-page: 49
  issue: 2
  year: 2020
  ident: 619_CR19
  publication-title: Archives Mat. Sci. Eng.
– volume: 16
  start-page: 998
  issue: 5–6
  year: 2007
  ident: 619_CR14
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-007-9104-x
– ident: 619_CR1
– ident: 619_CR23
  doi: 10.1109/UKRCON.2019.8879804
– volume: 47
  start-page: 182
  issue: 3
  year: 2012
  ident: 619_CR7
  publication-title: Corr. Eng. Sci. Technol.
  doi: 10.1179/1743278211Y.0000000022
– volume: 14
  start-page: 52
  year: 2011
  ident: 619_CR18
  publication-title: New Mater. Technol. Mech. Eng.
– ident: 619_CR25
– volume: 35
  start-page: 279
  issue: 2
  year: 1999
  ident: 619_CR15
  publication-title: Mater. Sci.
  doi: 10.1007/BF02359992
SSID ssj0007575
Score 2.2319448
Snippet We study the influence of hydrogen peroxide on the phase composition, thickness, and porosity of oxide-ceramic coatings obtained by plasma electrolytic...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 894
SubjectTerms Aluminum alloys
Aluminum base alloys
Aluminum oxide
Ceramic coatings
Ceramic glazes
Ceramic materials
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Coatings
Copper
Corundum
Electrolysis
Electrolytes
Hydrogen peroxide
Magnesium
Materials Science
Oxidation
Phase composition
Porosity
Protective coatings
Silicon
Sillimanite
Solid Mechanics
Structural Materials
Thickness
Title Influence of Hydrogen Peroxide on the Composition and Porosity of Oxide-Ceramic Coatings on Alloys of the Al–Si–Cu and Al–Cu–Mg Systems
URI https://link.springer.com/article/10.1007/s11003-022-00619-5
https://www.proquest.com/docview/2741010264
Volume 57
WOSCitedRecordID wos000885241000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary Journals
  customDbUrl:
  eissn: 1573-885X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007575
  issn: 1068-820X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5B4UAPvFGXFmQhJA5gaRM7TXxcrajaA2XVBbQ3y7HjaqVVgpLdqnvjH3DgH_JLOuM6XcpLgoulJONH7PHMWJ75BuDlcOgS5cuCV6mTXFZC8dKrnCtnhTRlIZzyIdlEfnxczGZqEoPCut7bvb-SDJJ6E-yWhMx3eHgivat4dhNuoboraDueTD9dyd88C_C6eNYpOOq3WQyV-X0b19TRz0L5l9vRoHQO7v3fcO_D3WhkstElVzyAG1X9ELZ_gB58BF-P-uwkrPHscO3aBlmJTaq2OZ87fFkzNA0ZiYvo1sVM7dikaelxTZXeEyEfVy2ltEdKQx7UHdUcLRbNuiMaamO0-P7l23SOxXgVGgkvxiss3p2yCJn-GD4evP0wPuQxOQO3aKIsuUiHEo0TRRanym1amKHC05hJKCOlQaNs30khMilzI0qZydImpbSuyoSlCKpCPIGtuqmrHWDWCuuNQVPVUoR7ahLvrctyb7CnRJUDSPo10jYil1MCjYXeYC7TZGucbB0mW2cDeH1V5_MlbsdfqV_Q0msCxKjJ4-bUrLpOH01P9CgnR1s0i9IBvIpEvsHurYkBDPgThKF1jXKvZyEdRUKnCSeIAPz25QDe9Cyz-fznwT39N_JduJMGriOnzD3YWrar6hnctmfLedc-D1vlAuHhDfw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7BggQceC6isICFkDiApSZ2NvGxqli1YrdU2wX1Zjl2sqpUJShpEb3xDzjwD_klzHidLctLgoulOONH7MnMWJ75BuB5v-8iVeYZL2InuSyE4nmpUq6cFdLkmXCq9Mkm0skkm8_VNASFtZ23e3cl6SX1Ntgt8pnv8PBEelfx5DJckaixyJHvePb-XP6miYfXxbNOxlG_zUOozO_7uKCOfhbKv9yOeqVzcOv_pnsbbgYjkw3OuOIOXCqqu3DjB-jBe_Bl3GUnYXXJRhvX1MhKbFo09aeFw8qKoWnISFwEty5mKsemdUOPG2r0lgj5sGgopT1SGvKgbqnlYLmsNy3RUB-D5bfPX2cLLIZr34mvGK6xODplATJ9F94dvD4ZjnhIzsAtmigrLuK-RONEkcWpUhtnpq_wNGYiykhp0Cjbd1KIRMrUiFwmMrdRLq0rEmEpgioT92GnqqviATBrhS2NQVPVUoR7bKKytC5JS4MjRSrvQdTtkbYBuZwSaCz1FnOZFlvjYmu_2DrpwcvzNh_OcDv-Sv2Mtl4TIEZFHjenZt22ejw71oOUHG3RLIp78CIQlTUOb00IYMCPIAytC5R7HQvpIBJaTThBBOC3L3vwqmOZ7es_T-7hv5E_hWujk6NDfTievHkE12PPgeSguQc7q2ZdPIar9uNq0TZP_G_zHY6jEOA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgIMQe-EaUDbAQEg9grYmdJX6sCtUqoFQUUN8sx46nSlUyJe1E3_gPeNh_uL9kd66zbnxJiBdLcc4fsS--O_nud4S86HZtJF2esSK2gomCS5Y7mTJpDRc6z7iVziebSEejbDqV4wtR_N7bvb2SXMc0IEpTudg7sm5vE_gW-Sx4YEihDJYsuUquCUwahPb65Ov5WZwmHmoX7J6MgaybhrCZ3_dxSTT9fED_clPqBdDg9v9P_Q65FZRP2ltzy11ypSjvke0LkIT3yY9hm7WEVo4erGxdAYvRcVFX32YWKksKKiPFYyS4e1FdWjquanxcYaOPSMj6RY2p7oFSo2d1gy1783m1apAG--jNT7-fTGZQ9Je-E1_RX0Lx4ZAGKPUH5Mvg7ef-AQtJG5gB1WXBeNyFjYglaqIyNXGmuxKsNB1hpkoNytq-FZwnQqSa5yIRuYlyYWyRcIORVRl_SLbKqiweEWoMN05rUGENRr7HOnLO2CR1GkaKZN4hUbtfygREc0ysMVcbLGZcbAWLrfxiq6RDXp23OVrjefyV-jmygUKgjBI9cQ71smnUcPJJ9VJ0wAV1Ke6Ql4HIVTC80SGwAT4CsbUuUe627KTCUdEoxA9CYL990SGvW_bZvP7z5B7_G_kzcmP8ZqDeD0fvdsjN2DMg-m3ukq1FvSyekOvmeDFr6qf-DzoD-usZxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Hydrogen+Peroxide+on+the+Composition+and+Porosity+of+Oxide-Ceramic+Coatings+on+Alloys+of+the+Al%E2%80%93Si%E2%80%93Cu+and+Al%E2%80%93Cu%E2%80%93Mg+Systems&rft.jtitle=Materials+science+%28New+York%2C+N.Y.%29&rft.au=Posuvailo%2C+V.+M.&rft.au=Kovalchuk%2C+I.+V.&rft.au=Ivasenko%2C+I.+B.&rft.date=2022-05-01&rft.pub=Springer+US&rft.issn=1068-820X&rft.eissn=1573-885X&rft.volume=57&rft.issue=6&rft.spage=894&rft.epage=899&rft_id=info:doi/10.1007%2Fs11003-022-00619-5&rft.externalDocID=10_1007_s11003_022_00619_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-820X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-820X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-820X&client=summon