Asymptotic Behavior of Eigenvalues of a Boundary Value Problem for a Second-Order Elliptic Differential–Operator Equation with Spectral Parameter in the Equation and a Boundary Condition

In a separable Hilbert space , we study the asymptotic behavior of eigenvalues of a boundary value problem for second-order elliptic differential–operator equations for the case in which the spectral parameter occurs in the equation quadratically and one of the boundary conditions is a quadratic tri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Differential equations Ročník 56; číslo 2; s. 190 - 198
Hlavní autoři: Aliev, B. A., Kerimov, V. Z.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.02.2020
Springer
Springer Nature B.V
Témata:
ISSN:0012-2661, 1608-3083
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In a separable Hilbert space , we study the asymptotic behavior of eigenvalues of a boundary value problem for second-order elliptic differential–operator equations for the case in which the spectral parameter occurs in the equation quadratically and one of the boundary conditions is a quadratic trinomial in the same spectral parameter. We derive asymptotic formulas for the eigenvalues of this boundary value problem. An application of the abstract results obtained here to elliptic boundary value problems is indicated.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266120020056