A new fully polynomial time approximation scheme for the interval subset sum problem

The interval subset sum problem (ISSP) is a generalization of the well-known subset sum problem. Given a set of intervals [ a i , 1 , a i , 2 ] i = 1 n and a target integer T , the ISSP is to find a set of integers, at most one from each interval, such that their sum best approximates the target T b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization Jg. 68; H. 4; S. 749 - 775
Hauptverfasser: Diao, Rui, Liu, Ya-Feng, Dai, Yu-Hong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2017
Springer
Springer Nature B.V
Schlagworte:
ISSN:0925-5001, 1573-2916
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The interval subset sum problem (ISSP) is a generalization of the well-known subset sum problem. Given a set of intervals [ a i , 1 , a i , 2 ] i = 1 n and a target integer T , the ISSP is to find a set of integers, at most one from each interval, such that their sum best approximates the target T but cannot exceed it. In this paper, we first study the computational complexity of the ISSP. We show that the ISSP is relatively easy to solve compared to the 0–1 knapsack problem. We also identify several subclasses of the ISSP which are polynomial time solvable (with high probability), albeit the problem is generally NP-hard. Then, we propose a new fully polynomial time approximation scheme for solving the general ISSP problem. The time and space complexities of the proposed scheme are O n max 1 / ϵ , log n and O n + 1 / ϵ , respectively, where ϵ is the relative approximation error. To the best of our knowledge, the proposed scheme has almost the same time complexity but a significantly lower space complexity compared to the best known scheme. Both the correctness and efficiency of the proposed scheme are validated by numerical simulations. In particular, the proposed scheme successfully solves ISSP instances with n = 100 , 000 and ϵ = 0.1 % within 1 s.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) The interval subset sum problem (ISSP) is a generalization of the well-known subset sum problem. Given a set of intervals ... and a target integer T, the ISSP is to find a set of integers, at most one from each interval, such that their sum best approximates the target T but cannot exceed it. In this paper, we first study the computational complexity of the ISSP. We show that the ISSP is relatively easy to solve compared to the 0-1 knapsack problem. We also identify several subclasses of the ISSP which are polynomial time solvable (with high probability), albeit the problem is generally NP-hard. Then, we propose a new fully polynomial time approximation scheme for solving the general ISSP problem. The time and space complexities of the proposed scheme are ... and ... respectively, where ... is the relative approximation error. To the best of our knowledge, the proposed scheme has almost the same time complexity but a significantly lower space complexity compared to the best known scheme. Both the correctness and efficiency of the proposed scheme are validated by numerical simulations. In particular, the proposed scheme successfully solves ISSP instances with ... and ... within 1 s.
The interval subset sum problem (ISSP) is a generalization of the well-known subset sum problem. Given a set of intervals [Formula omitted] and a target integer T, the ISSP is to find a set of integers, at most one from each interval, such that their sum best approximates the target T but cannot exceed it. In this paper, we first study the computational complexity of the ISSP. We show that the ISSP is relatively easy to solve compared to the 0-1 knapsack problem. We also identify several subclasses of the ISSP which are polynomial time solvable (with high probability), albeit the problem is generally NP-hard. Then, we propose a new fully polynomial time approximation scheme for solving the general ISSP problem. The time and space complexities of the proposed scheme are [Formula omitted] and [Formula omitted] respectively, where [Formula omitted] is the relative approximation error. To the best of our knowledge, the proposed scheme has almost the same time complexity but a significantly lower space complexity compared to the best known scheme. Both the correctness and efficiency of the proposed scheme are validated by numerical simulations. In particular, the proposed scheme successfully solves ISSP instances with [Formula omitted] and [Formula omitted] within 1 s.
The interval subset sum problem (ISSP) is a generalization of the well-known subset sum problem. Given a set of intervals [ a i , 1 , a i , 2 ] i = 1 n and a target integer T , the ISSP is to find a set of integers, at most one from each interval, such that their sum best approximates the target T but cannot exceed it. In this paper, we first study the computational complexity of the ISSP. We show that the ISSP is relatively easy to solve compared to the 0–1 knapsack problem. We also identify several subclasses of the ISSP which are polynomial time solvable (with high probability), albeit the problem is generally NP-hard. Then, we propose a new fully polynomial time approximation scheme for solving the general ISSP problem. The time and space complexities of the proposed scheme are O n max 1 / ϵ , log n and O n + 1 / ϵ , respectively, where ϵ is the relative approximation error. To the best of our knowledge, the proposed scheme has almost the same time complexity but a significantly lower space complexity compared to the best known scheme. Both the correctness and efficiency of the proposed scheme are validated by numerical simulations. In particular, the proposed scheme successfully solves ISSP instances with n = 100 , 000 and ϵ = 0.1 % within 1 s.
Audience Academic
Author Diao, Rui
Dai, Yu-Hong
Liu, Ya-Feng
Author_xml – sequence: 1
  givenname: Rui
  surname: Diao
  fullname: Diao, Rui
  organization: State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
– sequence: 2
  givenname: Ya-Feng
  surname: Liu
  fullname: Liu, Ya-Feng
  email: yafliu@lsec.cc.ac.cn
  organization: State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
– sequence: 3
  givenname: Yu-Hong
  surname: Dai
  fullname: Dai, Yu-Hong
  organization: State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
BookMark eNp9kMFOHSEUQEmjSZ_WD3BH0vXYCwwDLF-MVhOTbuyaMAwoZgaewKu-vy86LpombVjc5OYcCOcEHcUUHULnBC4IgPhWCEglOyCiA076Dj6hDeGCdVSR4QhtQFHecQDyGZ2U8gQASnK6QfdbHN0L9vt5PuBdmg8xLcHMuIbFYbPb5fQaFlNDirjYR9eWPmVcHx0Osbr8q6FlPxZX21hww8fZLV_QsTdzcWcf8xT9vL66v7zp7n58v73c3nWWcV47ykA4BpMHa-Vo6DRwKoVTlhHjueqlYiMw7q0wYpimhrCemFHC0A9A5MRO0df13vbu896Vqp_SPsf2pCaKSKEGSvtGXazUg5mdDtGnmo1tZ3JLsC2jD22_FUT2pO-lbIJYBZtTKdl5bUN9b9DEMGsC-q25Xpvr1ly_NdfQTPKXucstXz7816GrUxobH1z-4xP_lH4DstiVbg
CitedBy_id crossref_primary_10_1016_j_cor_2021_105692
crossref_primary_10_1007_s10898_022_01156_w
crossref_primary_10_1287_ijoc_2023_0263
Cites_doi 10.1109/TPWRS.2006.876672
10.1145/321906.321909
10.1016/S0022-0000(03)00006-0
10.1007/11533719_62
10.1007/s40305-013-0004-0
10.1023/A:1009813105532
10.1145/2455.2461
10.1006/jagm.1999.1034
10.1007/978-1-4684-4730-9_2
10.1007/BF01201999
10.1287/moor.4.4.339
10.1016/0377-2217(81)90175-2
10.1287/opre.28.6.1402
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
COPYRIGHT 2017 Springer
Journal of Global Optimization is a copyright of Springer, 2017.
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: COPYRIGHT 2017 Springer
– notice: Journal of Global Optimization is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-017-0514-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 775
ExternalDocumentID A718414488
10_1007_s10898_017_0514_0
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11301516; 11671419
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (CN)
  grantid: 71331001
– fundername: National Natural Science Foundation of China
  grantid: 11631013
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c355t-2307e30df0cc8ba2d65287e9c31af594893b035fc7a76dd8ba341ab80646018d3
IEDL.DBID K7-
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405722900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5001
IngestDate Tue Nov 04 22:09:41 EST 2025
Sat Nov 29 10:09:46 EST 2025
Sat Nov 29 01:59:33 EST 2025
Tue Nov 18 21:44:02 EST 2025
Fri Feb 21 02:42:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 68Q25
Solution structure
Fully polynomial time approximation scheme
90C59
Interval subset sum problem
Computational complexity
Worst-case performance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-2307e30df0cc8ba2d65287e9c31af594893b035fc7a76dd8ba341ab80646018d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1918796224
PQPubID 29930
PageCount 27
ParticipantIDs proquest_journals_1918796224
gale_infotracacademiconefile_A718414488
crossref_citationtrail_10_1007_s10898_017_0514_0
crossref_primary_10_1007_s10898_017_0514_0
springer_journals_10_1007_s10898_017_0514_0
PublicationCentury 2000
PublicationDate 20170800
2017-8-00
20170801
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 8
  year: 2017
  text: 20170800
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2017
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References SunXLZhengXJLiDRecent advances in mathematical programming with semi-continuous variables and cardinality constraintJ. Oper. Res. Soc. China201311557710.1007/s40305-013-0004-01277.90001
Brickell, E.F.: Solving low density knapsacks. In: Chaum, D. (ed.) Advances in Cryptology, pp. 25–37. Springer (1984)
LawlerELFast approximation algorithms for knapsack problemsMath. Oper. Res.19794433935654912210.1287/moor.4.4.3390425.90064
MichaelRGJohnsonDSComputers and Intractability: A Guide to the Theory of NP-Completeness1979San FranciscoW. H. Freeman & Co.0411.68039
CarriónMArroyoJMA computationally efficient mixed-integer linear formulation for the thermal unit commitment problemIEEE Trans. Power Syst.20062131371137810.1109/TPWRS.2006.876672
CosterMJJouxALaMacchiaBAOdlyzkoAMSchnorrCPSternJImproved low-density subset sum algorithmsComput. Complex.199222111128119082510.1007/BF012019990768.11049
MagazineMJOguzOA fully polynomial approximation algorithm for the 0–1 knapsack problemEur. J. Oper. Res.19818327027363739910.1016/0377-2217(81)90175-20473.90056
Kothari, A., Suri, S., Zhou, Y.H.: Interval subset sum and uniform-price auction clearing. In: Wang, L. (ed.) Computing and Combinatorics, pp. 608–620. Springer (2005)
IbarraOHKimCEFast approximation algorithms for the knapsack and sum of subset problemsJ. ACM197522446346837846310.1145/321906.3219090345.90049
LagariasJCOdlyzkoAMSolving low-density subset sum problemsJ. ACM198532122924683234110.1145/2455.24610632.94007
ChvátalVHard knapsack problemsOper. Res.19802861402141160996710.1287/opre.28.6.14020447.90063
PisingerDLinear time algorithms for knapsack problems with bounded weightsJ. Algorithms1999331114171269010.1006/jagm.1999.10340951.90047
KellererHPferschyUA new fully polynomial time approximation scheme for the knapsack problemJ. Comb. Optim.1999315971170246110.1023/A:10098131055320957.90112
KellererHMansiniRPferschyUSperanzaMGAn efficient fully polynomial approximation scheme for the subset-sum problemJ. Comput. Syst. Sci.2003662349370197601910.1016/S0022-0000(03)00006-01045.68157
EL Lawler (514_CR10) 1979; 4
MJ Coster (514_CR4) 1992; 2
H Kellerer (514_CR6) 2003; 66
M Carrión (514_CR2) 2006; 21
D Pisinger (514_CR13) 1999; 33
514_CR1
MJ Magazine (514_CR11) 1981; 8
H Kellerer (514_CR7) 1999; 3
514_CR8
JC Lagarias (514_CR9) 1985; 32
V Chvátal (514_CR3) 1980; 28
OH Ibarra (514_CR5) 1975; 22
XL Sun (514_CR14) 2013; 1
RG Michael (514_CR12) 1979
References_xml – reference: Brickell, E.F.: Solving low density knapsacks. In: Chaum, D. (ed.) Advances in Cryptology, pp. 25–37. Springer (1984)
– reference: MichaelRGJohnsonDSComputers and Intractability: A Guide to the Theory of NP-Completeness1979San FranciscoW. H. Freeman & Co.0411.68039
– reference: ChvátalVHard knapsack problemsOper. Res.19802861402141160996710.1287/opre.28.6.14020447.90063
– reference: KellererHPferschyUA new fully polynomial time approximation scheme for the knapsack problemJ. Comb. Optim.1999315971170246110.1023/A:10098131055320957.90112
– reference: LagariasJCOdlyzkoAMSolving low-density subset sum problemsJ. ACM198532122924683234110.1145/2455.24610632.94007
– reference: LawlerELFast approximation algorithms for knapsack problemsMath. Oper. Res.19794433935654912210.1287/moor.4.4.3390425.90064
– reference: Kothari, A., Suri, S., Zhou, Y.H.: Interval subset sum and uniform-price auction clearing. In: Wang, L. (ed.) Computing and Combinatorics, pp. 608–620. Springer (2005)
– reference: SunXLZhengXJLiDRecent advances in mathematical programming with semi-continuous variables and cardinality constraintJ. Oper. Res. Soc. China201311557710.1007/s40305-013-0004-01277.90001
– reference: CosterMJJouxALaMacchiaBAOdlyzkoAMSchnorrCPSternJImproved low-density subset sum algorithmsComput. Complex.199222111128119082510.1007/BF012019990768.11049
– reference: CarriónMArroyoJMA computationally efficient mixed-integer linear formulation for the thermal unit commitment problemIEEE Trans. Power Syst.20062131371137810.1109/TPWRS.2006.876672
– reference: KellererHMansiniRPferschyUSperanzaMGAn efficient fully polynomial approximation scheme for the subset-sum problemJ. Comput. Syst. Sci.2003662349370197601910.1016/S0022-0000(03)00006-01045.68157
– reference: MagazineMJOguzOA fully polynomial approximation algorithm for the 0–1 knapsack problemEur. J. Oper. Res.19818327027363739910.1016/0377-2217(81)90175-20473.90056
– reference: PisingerDLinear time algorithms for knapsack problems with bounded weightsJ. Algorithms1999331114171269010.1006/jagm.1999.10340951.90047
– reference: IbarraOHKimCEFast approximation algorithms for the knapsack and sum of subset problemsJ. ACM197522446346837846310.1145/321906.3219090345.90049
– volume: 21
  start-page: 1371
  issue: 3
  year: 2006
  ident: 514_CR2
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.876672
– volume: 22
  start-page: 463
  issue: 4
  year: 1975
  ident: 514_CR5
  publication-title: J. ACM
  doi: 10.1145/321906.321909
– volume: 66
  start-page: 349
  issue: 2
  year: 2003
  ident: 514_CR6
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/S0022-0000(03)00006-0
– ident: 514_CR8
  doi: 10.1007/11533719_62
– volume: 1
  start-page: 55
  issue: 1
  year: 2013
  ident: 514_CR14
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-013-0004-0
– volume: 3
  start-page: 59
  issue: 1
  year: 1999
  ident: 514_CR7
  publication-title: J. Comb. Optim.
  doi: 10.1023/A:1009813105532
– volume: 32
  start-page: 229
  issue: 1
  year: 1985
  ident: 514_CR9
  publication-title: J. ACM
  doi: 10.1145/2455.2461
– volume: 33
  start-page: 1
  issue: 1
  year: 1999
  ident: 514_CR13
  publication-title: J. Algorithms
  doi: 10.1006/jagm.1999.1034
– ident: 514_CR1
  doi: 10.1007/978-1-4684-4730-9_2
– volume: 2
  start-page: 111
  issue: 2
  year: 1992
  ident: 514_CR4
  publication-title: Comput. Complex.
  doi: 10.1007/BF01201999
– volume: 4
  start-page: 339
  issue: 4
  year: 1979
  ident: 514_CR10
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.4.4.339
– volume: 8
  start-page: 270
  issue: 3
  year: 1981
  ident: 514_CR11
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(81)90175-2
– volume: 28
  start-page: 1402
  issue: 6
  year: 1980
  ident: 514_CR3
  publication-title: Oper. Res.
  doi: 10.1287/opre.28.6.1402
– volume-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
  year: 1979
  ident: 514_CR12
SSID ssj0009852
Score 2.172469
Snippet The interval subset sum problem (ISSP) is a generalization of the well-known subset sum problem. Given a set of intervals [ a i , 1 , a i , 2 ] i = 1 n and a...
The interval subset sum problem (ISSP) is a generalization of the well-known subset sum problem. Given a set of intervals [Formula omitted] and a target...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) The interval subset sum problem (ISSP) is a generalization of the well-known subset...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 749
SubjectTerms Approximation
Comparative analysis
Complexity
Computer Science
Computer simulation
Integers
Knapsack problem
Mathematical analysis
Mathematics
Mathematics and Statistics
Numerical analysis
Operations Research/Decision Theory
Optimization
Production scheduling
Real Functions
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EPejBR1WsL_Yg-GJh07w2xyIWDyqiVXpb9hUo1LaYKvrvnU03tj5BTyHJZBN2Z2e-ye58A7AvrVUsDzKqojikkdKMSp5qqmWUNGSgc6PLkb5Ir654p5Nd-zzuotrtXi1JlpZ6KtmNu3QwtKqOs5tinD6H3o672Xhzez9h2uVlmR2WNWIaoxGuljK_a-KDM_pskr-sjZYup7X8r49dgSWPMElzrBKrMGP7NViuqjcQP5lrsDhFRYhnl-_8rUUNVr1UQQ49L_XRGrSbBDE4cT_sX8lw0Ht1Gc34JleenpTc5C_dcSIkwZDZ4kUExARbJd1yYyWKFmim7AgPD8RXslmHu9ZZ-_Sc-qIMVCM0GVG3cdyGzORMa65kwyQxBl0202Egc8f9koWKhXGuU5kmxqAI-kmpOEIfjP24CTdgtj_o200gPI_ywIYqU4gxDGJNg2gqZ1zxgJmYRXVg1egI7RnLXeGMnphwLbtuFtjNwnWzYHU4fn9kOKbr-E34wA25cFMZ29XSZyTg1zlSLNFEvx1hwMl5HXYqrRB-jhcCI12eZglioDqcVFowdfun1279SXobFhqlGjlt2oHZ0eOT3YV5_TzqFo97peq_ATmQ_DU
  priority: 102
  providerName: Springer Nature
Title A new fully polynomial time approximation scheme for the interval subset sum problem
URI https://link.springer.com/article/10.1007/s10898-017-0514-0
https://www.proquest.com/docview/1918796224
Volume 68
WOSCitedRecordID wos000405722900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library (ProQuest)
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: M2O
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxNBEJ8I-CAPKKihgM0-mPiVjXtfvb0nUwnERK0NoCIvm_26pAm0hasG_ntntnsWMfDiyzRpt3uXzOzMb3Z3fgPwXHtvRJ1U3ORFxnNjBdeytNzqvJfqxNbOBk1_KgcDeXxcDeOGWxOvVbY-MThqN7G0R_4W8wpZVj2MOO-m55y6RtHpamyhsQQrSZomZOcfS74g3ZWh446o0oIX6I_bU8156Zyk4jL00cQAzsVfcemmd_7nmDREn_2H__vej2At4k7WnxvKOtzz4w1YvcZGuAHrcZ037GUko371GI76DIE3o136KzadnF5RGTNORD3pWSAkvxzNqx8Z5skev0QUzBBVslG4TYlDG_RNfoYfZyy2r3kCX_f3jnY_8NiJgVvEIzNOt8V9JlwtrJVGp65XYKblK5sluibClyozIitqW-qy5xwOweCojUS8gwmfdNlTWB5Pxn4TmKzzOvGZqQwCC4cA0yGEqoU0MhGuEHkHRKsHZSNNOXXLOFULgmVSnULVKVKdEh14_ecv0zlHx12DX5ByFa1fnNfqWIaAb0dMWKqPwTrHLFPKDuy0GlVxYTdqoc4OvGlt4trPtz126-7JtuFBGmyRTHIHlmcXP_0zuG9_zUbNRReWyu8_urDyfm8wPOgGG0f5WeySTL8EOSRZHqIcFicoDw6__QZuCwRA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gmIgHEJS4gNoHjQrp2PPa6TkYs0EJhHXjYU24Nf2aZBPYXZlR2T_Fb6RqHi5I5MbB0yazPT2P_uo1XfUVwGvtvRF5kHETJxGPjRVcy9Ryq-NuqAObO1utdD8dDOTxcfZtAS7bWhhKq2x1YqWo3cTSN_IPGFfINOuixfk0_cGpaxTtrrYtNGpYHPnZbwzZio-Hn3F934Th_pfh3gFvugpwi7a15JT57CPhcmGtNDp03QSjBp_ZKNA5kZdkkRFRkttUp13ncAgqem0k2m4MXqSLcN4HsBTHKA6UKij25iS_surwI7Iw4Qnq_3YXtS7Vk1TMhjaBGMe5uGEH_7YGt7ZlK2u3v_q_vacnsNL41axXC8IaLPjxOjy-xra4DmuNHivYu4Zs-_1TGPYYBhaMdiFmbDo5nVGZNk5Ujs48qwjXL0Z1dScrEN94EL18hl4zG1XZoji0QN3rS_w5Y017nmfw_V6edQMWx5Oxfw5M5nEe-MhkBh0nhw60QxcxF9LIQLhExB0Q7bor29CwUzeQUzUnkCaoKISKIqgo0YGdP6dMaw6Suwa_JTAp0k84r9VNmQXeHTF9qR46IzFG0VJ2YLtFkGoUV6Hm8OnAbovBa3__67Kbd0_2Ch4dDL_2Vf9wcLQFy2ElByQO27BYnv_0L-Ch_VWOivOXlUQxOLlvaF4BVrdX5g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAcWlpADW1hDyCgaNX1K14fEIooEVWqqIci9bbsy1KkNklr88hf49cxY69JAdFbD5ws2Zt1HH8z30x25xuA59p7I8qo4CbNEp4aK7iWueVWp_1YR7Z0tnnTR_l4LE9Pi-MV-NHVwtC2ys4nNo7azSz9R76PeYXMiz4yzn4ZtkUcHwzfzS84dZCildaunUYLkZFffMP0rXp7eIDv-kUcDz-cvP_IQ4cBbpFna067oH0iXCmslUbHrp9hBuELm0S6JCGTIjEiyUqb67zvHA5Bp6-NRB7HREa6BOe9BbeRhTOysVHOl4K_sun2I4o44xlyQbei2pbtSSpsQ34g9XEufuPEP5nhryXahvmG6__zb_YA1kK8zQatgWzAip9uwv0rKoybsBH8W8VeBRHu1w_hZMAw4WD0QAs2n50tqHwbJ6on5541QuzfJ23VJ6sQ93gSo3-G0TSbNLtIcWiFPtnXeDhnoW3PI_h0I8_6GFans6nfAibLtIx8YgqDAZXDwNph6FgKaWQkXCbSHogOA8oGeXbqEnKmlsLSBBuFsFEEGyV6sPfrI_NWm-S6wS8JWIr8Fs5rdSi_wG9HCmBqgEFKitm1lD3Y6dCkgkOr1BJKPXjT4fHK5X_d9sn1kz2Du4hIdXQ4Hm3DvbgxCbKMHVitL7_4Xbhjv9aT6vJpY1wMPt80Mn8CR3JgjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+fully+polynomial+time+approximation+scheme+for+the+interval+subset+sum+problem&rft.jtitle=Journal+of+global+optimization&rft.au=Diao%2C+Rui&rft.au=Liu%2C+Ya-Feng&rft.au=Dai%2C+Yu-Hong&rft.date=2017-08-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=68&rft.issue=4&rft.spage=749&rft.epage=775&rft_id=info:doi/10.1007%2Fs10898-017-0514-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_017_0514_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon