A new fully polynomial time approximation scheme for the interval subset sum problem
The interval subset sum problem (ISSP) is a generalization of the well-known subset sum problem. Given a set of intervals [ a i , 1 , a i , 2 ] i = 1 n and a target integer T , the ISSP is to find a set of integers, at most one from each interval, such that their sum best approximates the target T b...
Gespeichert in:
| Veröffentlicht in: | Journal of global optimization Jg. 68; H. 4; S. 749 - 775 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.08.2017
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0925-5001, 1573-2916 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The interval subset sum problem (ISSP) is a generalization of the well-known subset sum problem. Given a set of intervals
[
a
i
,
1
,
a
i
,
2
]
i
=
1
n
and a target integer
T
, the ISSP is to find a set of integers, at most one from each interval, such that their sum best approximates the target
T
but cannot exceed it. In this paper, we first study the computational complexity of the ISSP. We show that the ISSP is relatively easy to solve compared to the 0–1 knapsack problem. We also identify several subclasses of the ISSP which are polynomial time solvable (with high probability), albeit the problem is generally NP-hard. Then, we propose a new fully polynomial time approximation scheme for solving the general ISSP problem. The time and space complexities of the proposed scheme are
O
n
max
1
/
ϵ
,
log
n
and
O
n
+
1
/
ϵ
,
respectively, where
ϵ
is the relative approximation error. To the best of our knowledge, the proposed scheme has almost the same time complexity but a significantly lower space complexity compared to the best known scheme. Both the correctness and efficiency of the proposed scheme are validated by numerical simulations. In particular, the proposed scheme successfully solves ISSP instances with
n
=
100
,
000
and
ϵ
=
0.1
%
within 1 s. |
|---|---|
| AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) The interval subset sum problem (ISSP) is a generalization of the well-known subset sum problem. Given a set of intervals ... and a target integer T, the ISSP is to find a set of integers, at most one from each interval, such that their sum best approximates the target T but cannot exceed it. In this paper, we first study the computational complexity of the ISSP. We show that the ISSP is relatively easy to solve compared to the 0-1 knapsack problem. We also identify several subclasses of the ISSP which are polynomial time solvable (with high probability), albeit the problem is generally NP-hard. Then, we propose a new fully polynomial time approximation scheme for solving the general ISSP problem. The time and space complexities of the proposed scheme are ... and ... respectively, where ... is the relative approximation error. To the best of our knowledge, the proposed scheme has almost the same time complexity but a significantly lower space complexity compared to the best known scheme. Both the correctness and efficiency of the proposed scheme are validated by numerical simulations. In particular, the proposed scheme successfully solves ISSP instances with ... and ... within 1 s. The interval subset sum problem (ISSP) is a generalization of the well-known subset sum problem. Given a set of intervals [Formula omitted] and a target integer T, the ISSP is to find a set of integers, at most one from each interval, such that their sum best approximates the target T but cannot exceed it. In this paper, we first study the computational complexity of the ISSP. We show that the ISSP is relatively easy to solve compared to the 0-1 knapsack problem. We also identify several subclasses of the ISSP which are polynomial time solvable (with high probability), albeit the problem is generally NP-hard. Then, we propose a new fully polynomial time approximation scheme for solving the general ISSP problem. The time and space complexities of the proposed scheme are [Formula omitted] and [Formula omitted] respectively, where [Formula omitted] is the relative approximation error. To the best of our knowledge, the proposed scheme has almost the same time complexity but a significantly lower space complexity compared to the best known scheme. Both the correctness and efficiency of the proposed scheme are validated by numerical simulations. In particular, the proposed scheme successfully solves ISSP instances with [Formula omitted] and [Formula omitted] within 1 s. The interval subset sum problem (ISSP) is a generalization of the well-known subset sum problem. Given a set of intervals [ a i , 1 , a i , 2 ] i = 1 n and a target integer T , the ISSP is to find a set of integers, at most one from each interval, such that their sum best approximates the target T but cannot exceed it. In this paper, we first study the computational complexity of the ISSP. We show that the ISSP is relatively easy to solve compared to the 0–1 knapsack problem. We also identify several subclasses of the ISSP which are polynomial time solvable (with high probability), albeit the problem is generally NP-hard. Then, we propose a new fully polynomial time approximation scheme for solving the general ISSP problem. The time and space complexities of the proposed scheme are O n max 1 / ϵ , log n and O n + 1 / ϵ , respectively, where ϵ is the relative approximation error. To the best of our knowledge, the proposed scheme has almost the same time complexity but a significantly lower space complexity compared to the best known scheme. Both the correctness and efficiency of the proposed scheme are validated by numerical simulations. In particular, the proposed scheme successfully solves ISSP instances with n = 100 , 000 and ϵ = 0.1 % within 1 s. |
| Audience | Academic |
| Author | Diao, Rui Dai, Yu-Hong Liu, Ya-Feng |
| Author_xml | – sequence: 1 givenname: Rui surname: Diao fullname: Diao, Rui organization: State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences – sequence: 2 givenname: Ya-Feng surname: Liu fullname: Liu, Ya-Feng email: yafliu@lsec.cc.ac.cn organization: State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences – sequence: 3 givenname: Yu-Hong surname: Dai fullname: Dai, Yu-Hong organization: State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences |
| BookMark | eNp9kMFOHSEUQEmjSZ_WD3BH0vXYCwwDLF-MVhOTbuyaMAwoZgaewKu-vy86LpombVjc5OYcCOcEHcUUHULnBC4IgPhWCEglOyCiA076Dj6hDeGCdVSR4QhtQFHecQDyGZ2U8gQASnK6QfdbHN0L9vt5PuBdmg8xLcHMuIbFYbPb5fQaFlNDirjYR9eWPmVcHx0Osbr8q6FlPxZX21hww8fZLV_QsTdzcWcf8xT9vL66v7zp7n58v73c3nWWcV47ykA4BpMHa-Vo6DRwKoVTlhHjueqlYiMw7q0wYpimhrCemFHC0A9A5MRO0df13vbu896Vqp_SPsf2pCaKSKEGSvtGXazUg5mdDtGnmo1tZ3JLsC2jD22_FUT2pO-lbIJYBZtTKdl5bUN9b9DEMGsC-q25Xpvr1ly_NdfQTPKXucstXz7816GrUxobH1z-4xP_lH4DstiVbg |
| CitedBy_id | crossref_primary_10_1016_j_cor_2021_105692 crossref_primary_10_1007_s10898_022_01156_w crossref_primary_10_1287_ijoc_2023_0263 |
| Cites_doi | 10.1109/TPWRS.2006.876672 10.1145/321906.321909 10.1016/S0022-0000(03)00006-0 10.1007/11533719_62 10.1007/s40305-013-0004-0 10.1023/A:1009813105532 10.1145/2455.2461 10.1006/jagm.1999.1034 10.1007/978-1-4684-4730-9_2 10.1007/BF01201999 10.1287/moor.4.4.339 10.1016/0377-2217(81)90175-2 10.1287/opre.28.6.1402 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2017 COPYRIGHT 2017 Springer Journal of Global Optimization is a copyright of Springer, 2017. |
| Copyright_xml | – notice: Springer Science+Business Media New York 2017 – notice: COPYRIGHT 2017 Springer – notice: Journal of Global Optimization is a copyright of Springer, 2017. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10898-017-0514-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Sciences (General) Computer Science |
| EISSN | 1573-2916 |
| EndPage | 775 |
| ExternalDocumentID | A718414488 10_1007_s10898_017_0514_0 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11301516; 11671419 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (CN) grantid: 71331001 – fundername: National Natural Science Foundation of China grantid: 11631013 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c355t-2307e30df0cc8ba2d65287e9c31af594893b035fc7a76dd8ba341ab80646018d3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405722900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-5001 |
| IngestDate | Tue Nov 04 22:09:41 EST 2025 Sat Nov 29 10:09:46 EST 2025 Sat Nov 29 01:59:33 EST 2025 Tue Nov 18 21:44:02 EST 2025 Fri Feb 21 02:42:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | 68Q25 Solution structure Fully polynomial time approximation scheme 90C59 Interval subset sum problem Computational complexity Worst-case performance |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c355t-2307e30df0cc8ba2d65287e9c31af594893b035fc7a76dd8ba341ab80646018d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1918796224 |
| PQPubID | 29930 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_1918796224 gale_infotracacademiconefile_A718414488 crossref_citationtrail_10_1007_s10898_017_0514_0 crossref_primary_10_1007_s10898_017_0514_0 springer_journals_10_1007_s10898_017_0514_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20170800 2017-8-00 20170801 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 8 year: 2017 text: 20170800 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
| PublicationTitle | Journal of global optimization |
| PublicationTitleAbbrev | J Glob Optim |
| PublicationYear | 2017 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | SunXLZhengXJLiDRecent advances in mathematical programming with semi-continuous variables and cardinality constraintJ. Oper. Res. Soc. China201311557710.1007/s40305-013-0004-01277.90001 Brickell, E.F.: Solving low density knapsacks. In: Chaum, D. (ed.) Advances in Cryptology, pp. 25–37. Springer (1984) LawlerELFast approximation algorithms for knapsack problemsMath. Oper. Res.19794433935654912210.1287/moor.4.4.3390425.90064 MichaelRGJohnsonDSComputers and Intractability: A Guide to the Theory of NP-Completeness1979San FranciscoW. H. Freeman & Co.0411.68039 CarriónMArroyoJMA computationally efficient mixed-integer linear formulation for the thermal unit commitment problemIEEE Trans. Power Syst.20062131371137810.1109/TPWRS.2006.876672 CosterMJJouxALaMacchiaBAOdlyzkoAMSchnorrCPSternJImproved low-density subset sum algorithmsComput. Complex.199222111128119082510.1007/BF012019990768.11049 MagazineMJOguzOA fully polynomial approximation algorithm for the 0–1 knapsack problemEur. J. Oper. Res.19818327027363739910.1016/0377-2217(81)90175-20473.90056 Kothari, A., Suri, S., Zhou, Y.H.: Interval subset sum and uniform-price auction clearing. In: Wang, L. (ed.) Computing and Combinatorics, pp. 608–620. Springer (2005) IbarraOHKimCEFast approximation algorithms for the knapsack and sum of subset problemsJ. ACM197522446346837846310.1145/321906.3219090345.90049 LagariasJCOdlyzkoAMSolving low-density subset sum problemsJ. ACM198532122924683234110.1145/2455.24610632.94007 ChvátalVHard knapsack problemsOper. Res.19802861402141160996710.1287/opre.28.6.14020447.90063 PisingerDLinear time algorithms for knapsack problems with bounded weightsJ. Algorithms1999331114171269010.1006/jagm.1999.10340951.90047 KellererHPferschyUA new fully polynomial time approximation scheme for the knapsack problemJ. Comb. Optim.1999315971170246110.1023/A:10098131055320957.90112 KellererHMansiniRPferschyUSperanzaMGAn efficient fully polynomial approximation scheme for the subset-sum problemJ. Comput. Syst. Sci.2003662349370197601910.1016/S0022-0000(03)00006-01045.68157 EL Lawler (514_CR10) 1979; 4 MJ Coster (514_CR4) 1992; 2 H Kellerer (514_CR6) 2003; 66 M Carrión (514_CR2) 2006; 21 D Pisinger (514_CR13) 1999; 33 514_CR1 MJ Magazine (514_CR11) 1981; 8 H Kellerer (514_CR7) 1999; 3 514_CR8 JC Lagarias (514_CR9) 1985; 32 V Chvátal (514_CR3) 1980; 28 OH Ibarra (514_CR5) 1975; 22 XL Sun (514_CR14) 2013; 1 RG Michael (514_CR12) 1979 |
| References_xml | – reference: Brickell, E.F.: Solving low density knapsacks. In: Chaum, D. (ed.) Advances in Cryptology, pp. 25–37. Springer (1984) – reference: MichaelRGJohnsonDSComputers and Intractability: A Guide to the Theory of NP-Completeness1979San FranciscoW. H. Freeman & Co.0411.68039 – reference: ChvátalVHard knapsack problemsOper. Res.19802861402141160996710.1287/opre.28.6.14020447.90063 – reference: KellererHPferschyUA new fully polynomial time approximation scheme for the knapsack problemJ. Comb. Optim.1999315971170246110.1023/A:10098131055320957.90112 – reference: LagariasJCOdlyzkoAMSolving low-density subset sum problemsJ. ACM198532122924683234110.1145/2455.24610632.94007 – reference: LawlerELFast approximation algorithms for knapsack problemsMath. Oper. Res.19794433935654912210.1287/moor.4.4.3390425.90064 – reference: Kothari, A., Suri, S., Zhou, Y.H.: Interval subset sum and uniform-price auction clearing. In: Wang, L. (ed.) Computing and Combinatorics, pp. 608–620. Springer (2005) – reference: SunXLZhengXJLiDRecent advances in mathematical programming with semi-continuous variables and cardinality constraintJ. Oper. Res. Soc. China201311557710.1007/s40305-013-0004-01277.90001 – reference: CosterMJJouxALaMacchiaBAOdlyzkoAMSchnorrCPSternJImproved low-density subset sum algorithmsComput. Complex.199222111128119082510.1007/BF012019990768.11049 – reference: CarriónMArroyoJMA computationally efficient mixed-integer linear formulation for the thermal unit commitment problemIEEE Trans. Power Syst.20062131371137810.1109/TPWRS.2006.876672 – reference: KellererHMansiniRPferschyUSperanzaMGAn efficient fully polynomial approximation scheme for the subset-sum problemJ. Comput. Syst. Sci.2003662349370197601910.1016/S0022-0000(03)00006-01045.68157 – reference: MagazineMJOguzOA fully polynomial approximation algorithm for the 0–1 knapsack problemEur. J. Oper. Res.19818327027363739910.1016/0377-2217(81)90175-20473.90056 – reference: PisingerDLinear time algorithms for knapsack problems with bounded weightsJ. Algorithms1999331114171269010.1006/jagm.1999.10340951.90047 – reference: IbarraOHKimCEFast approximation algorithms for the knapsack and sum of subset problemsJ. ACM197522446346837846310.1145/321906.3219090345.90049 – volume: 21 start-page: 1371 issue: 3 year: 2006 ident: 514_CR2 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2006.876672 – volume: 22 start-page: 463 issue: 4 year: 1975 ident: 514_CR5 publication-title: J. ACM doi: 10.1145/321906.321909 – volume: 66 start-page: 349 issue: 2 year: 2003 ident: 514_CR6 publication-title: J. Comput. Syst. Sci. doi: 10.1016/S0022-0000(03)00006-0 – ident: 514_CR8 doi: 10.1007/11533719_62 – volume: 1 start-page: 55 issue: 1 year: 2013 ident: 514_CR14 publication-title: J. Oper. Res. Soc. China doi: 10.1007/s40305-013-0004-0 – volume: 3 start-page: 59 issue: 1 year: 1999 ident: 514_CR7 publication-title: J. Comb. Optim. doi: 10.1023/A:1009813105532 – volume: 32 start-page: 229 issue: 1 year: 1985 ident: 514_CR9 publication-title: J. ACM doi: 10.1145/2455.2461 – volume: 33 start-page: 1 issue: 1 year: 1999 ident: 514_CR13 publication-title: J. Algorithms doi: 10.1006/jagm.1999.1034 – ident: 514_CR1 doi: 10.1007/978-1-4684-4730-9_2 – volume: 2 start-page: 111 issue: 2 year: 1992 ident: 514_CR4 publication-title: Comput. Complex. doi: 10.1007/BF01201999 – volume: 4 start-page: 339 issue: 4 year: 1979 ident: 514_CR10 publication-title: Math. Oper. Res. doi: 10.1287/moor.4.4.339 – volume: 8 start-page: 270 issue: 3 year: 1981 ident: 514_CR11 publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(81)90175-2 – volume: 28 start-page: 1402 issue: 6 year: 1980 ident: 514_CR3 publication-title: Oper. Res. doi: 10.1287/opre.28.6.1402 – volume-title: Computers and Intractability: A Guide to the Theory of NP-Completeness year: 1979 ident: 514_CR12 |
| SSID | ssj0009852 |
| Score | 2.172469 |
| Snippet | The interval subset sum problem (ISSP) is a generalization of the well-known subset sum problem. Given a set of intervals
[
a
i
,
1
,
a
i
,
2
]
i
=
1
n
and a... The interval subset sum problem (ISSP) is a generalization of the well-known subset sum problem. Given a set of intervals [Formula omitted] and a target... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) The interval subset sum problem (ISSP) is a generalization of the well-known subset... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 749 |
| SubjectTerms | Approximation Comparative analysis Complexity Computer Science Computer simulation Integers Knapsack problem Mathematical analysis Mathematics Mathematics and Statistics Numerical analysis Operations Research/Decision Theory Optimization Production scheduling Real Functions |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EPejBR1WsL_Yg-GJh07w2xyIWDyqiVXpb9hUo1LaYKvrvnU03tj5BTyHJZBN2Z2e-ye58A7AvrVUsDzKqojikkdKMSp5qqmWUNGSgc6PLkb5Ir654p5Nd-zzuotrtXi1JlpZ6KtmNu3QwtKqOs5tinD6H3o672Xhzez9h2uVlmR2WNWIaoxGuljK_a-KDM_pskr-sjZYup7X8r49dgSWPMElzrBKrMGP7NViuqjcQP5lrsDhFRYhnl-_8rUUNVr1UQQ49L_XRGrSbBDE4cT_sX8lw0Ht1Gc34JleenpTc5C_dcSIkwZDZ4kUExARbJd1yYyWKFmim7AgPD8RXslmHu9ZZ-_Sc-qIMVCM0GVG3cdyGzORMa65kwyQxBl0202Egc8f9koWKhXGuU5kmxqAI-kmpOEIfjP24CTdgtj_o200gPI_ywIYqU4gxDGJNg2gqZ1zxgJmYRXVg1egI7RnLXeGMnphwLbtuFtjNwnWzYHU4fn9kOKbr-E34wA25cFMZ29XSZyTg1zlSLNFEvx1hwMl5HXYqrRB-jhcCI12eZglioDqcVFowdfun1279SXobFhqlGjlt2oHZ0eOT3YV5_TzqFo97peq_ATmQ_DU priority: 102 providerName: Springer Nature |
| Title | A new fully polynomial time approximation scheme for the interval subset sum problem |
| URI | https://link.springer.com/article/10.1007/s10898-017-0514-0 https://www.proquest.com/docview/1918796224 |
| Volume | 68 |
| WOSCitedRecordID | wos000405722900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: 7WY dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: M0C dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library (ProQuest) customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: M2O dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1573-2916 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxNBEJ8I-CAPKKihgM0-mPiVjXtfvb0nUwnERK0NoCIvm_26pAm0hasG_ntntnsWMfDiyzRpt3uXzOzMb3Z3fgPwXHtvRJ1U3ORFxnNjBdeytNzqvJfqxNbOBk1_KgcDeXxcDeOGWxOvVbY-MThqN7G0R_4W8wpZVj2MOO-m55y6RtHpamyhsQQrSZomZOcfS74g3ZWh446o0oIX6I_bU8156Zyk4jL00cQAzsVfcemmd_7nmDREn_2H__vej2At4k7WnxvKOtzz4w1YvcZGuAHrcZ037GUko371GI76DIE3o136KzadnF5RGTNORD3pWSAkvxzNqx8Z5skev0QUzBBVslG4TYlDG_RNfoYfZyy2r3kCX_f3jnY_8NiJgVvEIzNOt8V9JlwtrJVGp65XYKblK5sluibClyozIitqW-qy5xwOweCojUS8gwmfdNlTWB5Pxn4TmKzzOvGZqQwCC4cA0yGEqoU0MhGuEHkHRKsHZSNNOXXLOFULgmVSnULVKVKdEh14_ecv0zlHx12DX5ByFa1fnNfqWIaAb0dMWKqPwTrHLFPKDuy0GlVxYTdqoc4OvGlt4trPtz126-7JtuFBGmyRTHIHlmcXP_0zuG9_zUbNRReWyu8_urDyfm8wPOgGG0f5WeySTL8EOSRZHqIcFicoDw6__QZuCwRA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gmIgHEJS4gNoHjQrp2PPa6TkYs0EJhHXjYU24Nf2aZBPYXZlR2T_Fb6RqHi5I5MbB0yazPT2P_uo1XfUVwGvtvRF5kHETJxGPjRVcy9Ryq-NuqAObO1utdD8dDOTxcfZtAS7bWhhKq2x1YqWo3cTSN_IPGFfINOuixfk0_cGpaxTtrrYtNGpYHPnZbwzZio-Hn3F934Th_pfh3gFvugpwi7a15JT57CPhcmGtNDp03QSjBp_ZKNA5kZdkkRFRkttUp13ncAgqem0k2m4MXqSLcN4HsBTHKA6UKij25iS_surwI7Iw4Qnq_3YXtS7Vk1TMhjaBGMe5uGEH_7YGt7ZlK2u3v_q_vacnsNL41axXC8IaLPjxOjy-xra4DmuNHivYu4Zs-_1TGPYYBhaMdiFmbDo5nVGZNk5Ujs48qwjXL0Z1dScrEN94EL18hl4zG1XZoji0QN3rS_w5Y017nmfw_V6edQMWx5Oxfw5M5nEe-MhkBh0nhw60QxcxF9LIQLhExB0Q7bor29CwUzeQUzUnkCaoKISKIqgo0YGdP6dMaw6Suwa_JTAp0k84r9VNmQXeHTF9qR46IzFG0VJ2YLtFkGoUV6Hm8OnAbovBa3__67Kbd0_2Ch4dDL_2Vf9wcLQFy2ElByQO27BYnv_0L-Ch_VWOivOXlUQxOLlvaF4BVrdX5g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAcWlpADW1hDyCgaNX1K14fEIooEVWqqIci9bbsy1KkNklr88hf49cxY69JAdFbD5ws2Zt1HH8z30x25xuA59p7I8qo4CbNEp4aK7iWueVWp_1YR7Z0tnnTR_l4LE9Pi-MV-NHVwtC2ys4nNo7azSz9R76PeYXMiz4yzn4ZtkUcHwzfzS84dZCildaunUYLkZFffMP0rXp7eIDv-kUcDz-cvP_IQ4cBbpFna067oH0iXCmslUbHrp9hBuELm0S6JCGTIjEiyUqb67zvHA5Bp6-NRB7HREa6BOe9BbeRhTOysVHOl4K_sun2I4o44xlyQbei2pbtSSpsQ34g9XEufuPEP5nhryXahvmG6__zb_YA1kK8zQatgWzAip9uwv0rKoybsBH8W8VeBRHu1w_hZMAw4WD0QAs2n50tqHwbJ6on5541QuzfJ23VJ6sQ93gSo3-G0TSbNLtIcWiFPtnXeDhnoW3PI_h0I8_6GFans6nfAibLtIx8YgqDAZXDwNph6FgKaWQkXCbSHogOA8oGeXbqEnKmlsLSBBuFsFEEGyV6sPfrI_NWm-S6wS8JWIr8Fs5rdSi_wG9HCmBqgEFKitm1lD3Y6dCkgkOr1BJKPXjT4fHK5X_d9sn1kz2Du4hIdXQ4Hm3DvbgxCbKMHVitL7_4Xbhjv9aT6vJpY1wMPt80Mn8CR3JgjA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+fully+polynomial+time+approximation+scheme+for+the+interval+subset+sum+problem&rft.jtitle=Journal+of+global+optimization&rft.au=Diao%2C+Rui&rft.au=Liu%2C+Ya-Feng&rft.au=Dai%2C+Yu-Hong&rft.date=2017-08-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=68&rft.issue=4&rft.spage=749&rft.epage=775&rft_id=info:doi/10.1007%2Fs10898-017-0514-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_017_0514_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |