A Comparative Study of Class Rebalancing Methods for Security Bug Report Classification

Identifying security bug reports (SBRs) accurately from a bug repository can reduce a software product's security risk. However, the class imbalance problem exists for SBR prediction since the number of SBRs is often limited, and this issue has not been thoroughly investigated in previous studi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on reliability Vol. 70; no. 4; pp. 1658 - 1670
Main Authors: Zheng, Wei, Xun, Yuxing, Wu, Xiaoxue, Deng, Zhi, Chen, Xiang, Sui, Yulei
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9529, 1558-1721
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Identifying security bug reports (SBRs) accurately from a bug repository can reduce a software product's security risk. However, the class imbalance problem exists for SBR prediction since the number of SBRs is often limited, and this issue has not been thoroughly investigated in previous studies. In our study, we choose six real-world projects of different sizes with over 120 000 bug reports in total as our empirical subjects. We first analyze the impact of the class imbalance issue on SBR prediction and confirm its negative impact on prediction performance. Then we perform a comparative study of six state-of-the-art class rebalancing methods combined with five popular classification algorithms for SBR prediction. By comparing with the baseline method Farsec, using the class rebalancing methods can improve the performance in 78% of cases in the worst case. Moreover, the combination of the Rose and random forest classification algorithm can construct the model with the best performance, which increases the performance by 267% in the best case and 75% on average in terms of F1-score . Finally, we summarize eight main findings based on our empirical studies' results, which can provide guidelines for choosing appropriate class rebalancing methods and classifiers for SBR prediction in practice.
AbstractList Identifying security bug reports (SBRs) accurately from a bug repository can reduce a software product’s security risk. However, the class imbalance problem exists for SBR prediction since the number of SBRs is often limited, and this issue has not been thoroughly investigated in previous studies. In our study, we choose six real-world projects of different sizes with over 120 000 bug reports in total as our empirical subjects. We first analyze the impact of the class imbalance issue on SBR prediction and confirm its negative impact on prediction performance. Then we perform a comparative study of six state-of-the-art class rebalancing methods combined with five popular classification algorithms for SBR prediction. By comparing with the baseline method Farsec, using the class rebalancing methods can improve the performance in 78% of cases in the worst case. Moreover, the combination of the Rose and random forest classification algorithm can construct the model with the best performance, which increases the performance by 267% in the best case and 75% on average in terms of F1-score . Finally, we summarize eight main findings based on our empirical studies’ results, which can provide guidelines for choosing appropriate class rebalancing methods and classifiers for SBR prediction in practice.
Author Wu, Xiaoxue
Xun, Yuxing
Zheng, Wei
Sui, Yulei
Deng, Zhi
Chen, Xiang
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0001-7969-1630
  surname: Zheng
  fullname: Zheng, Wei
  email: wzheng@nwpu.edu.cn
  organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, MIIT Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Yuxing
  orcidid: 0000-0002-3409-934X
  surname: Xun
  fullname: Xun, Yuxing
  email: xingyu666@mail.nwpu.edu.cn
  organization: School of Software, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Xiaoxue
  orcidid: 0000-0002-7567-3643
  surname: Wu
  fullname: Wu, Xiaoxue
  email: wuxiaoxue00@gmail.com
  organization: College of Information Engineering (College of Artificial Intelligence), Yangzhou University, Yangzhou, China
– sequence: 4
  givenname: Zhi
  surname: Deng
  fullname: Deng, Zhi
  email: dengcai@mail.nwpu.edu.cn
  organization: School of Computer Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 5
  givenname: Xiang
  orcidid: 0000-0002-1180-3891
  surname: Chen
  fullname: Chen, Xiang
  email: xchencs@ntu.edu.cn
  organization: School of Information Science and Technology, Nantong University, Nantong, China
– sequence: 6
  givenname: Yulei
  surname: Sui
  fullname: Sui, Yulei
  email: yulei.sui@uts.edu.au
  organization: School of Computer Science, University of Technology Sydney, Sydney, NSW, Australia
BookMark eNp9kM9LwzAcxYMouE3PHrwEPHfLz7Y5zuEvmAjbxGPJ0mRmdE1NUmH_vd06PHjw9OXB-7zH9w3Bee1qDcANRmOMkZisFmOCCB5TjHNE0jMwwJznCc4IPgcDhHCeCE7EJRiGsO0kYyIfgI8pnLldI72M9lvDZWzLPXQGzioZAlzotaxkrWy9ga86froyQOM8XGrVehv38L7ddKbG-dgT1ljVJbn6ClwYWQV9fboj8P74sJo9J_O3p5fZdJ4oynlMsGayzDQTJKWcEblWnFKVaslMRkotaS4kkyrTeWZ4TpFYC8EwMQZxiTg2dATu-tzGu69Wh1hsXevrrrIgKTrmEty5Jr1LeReC16ZovN1Jvy8wKg7rFatFcVivOK3XEfwPoWw8fha9tNU_3G3PWa31b4vgOUeE0B_SLn1V
CODEN IERQAD
CitedBy_id crossref_primary_10_1155_2022_1499736
crossref_primary_10_1016_j_asoc_2022_109869
crossref_primary_10_1080_00207721_2022_2153635
crossref_primary_10_1016_j_suscom_2022_100812
crossref_primary_10_1002_smr_2758
crossref_primary_10_1155_2022_7419736
crossref_primary_10_1371_journal_pone_0282514
crossref_primary_10_1155_2022_9620555
crossref_primary_10_1080_17455030_2022_2076176
crossref_primary_10_3390_math12142201
crossref_primary_10_1016_j_knosys_2022_108293
crossref_primary_10_1155_2022_8217774
crossref_primary_10_3390_sym15020296
crossref_primary_10_1017_jmo_2022_62
crossref_primary_10_3389_fncom_2022_981739
crossref_primary_10_1016_j_knosys_2023_111258
crossref_primary_10_1002_ett_4632
crossref_primary_10_1093_jcde_qwac075
crossref_primary_10_1093_jcde_qwad002
crossref_primary_10_1093_jcde_qwac111
crossref_primary_10_1111_risa_14179
crossref_primary_10_1109_ACCESS_2024_3451125
crossref_primary_10_1007_s00500_023_09571_1
crossref_primary_10_3390_app122312179
crossref_primary_10_1016_j_infsof_2025_107778
crossref_primary_10_32604_cmc_2022_031583
crossref_primary_10_3390_mi14122204
crossref_primary_10_1109_JIOT_2023_3237661
crossref_primary_10_4018_JOEUC_306270
crossref_primary_10_1155_2022_5121762
crossref_primary_10_3390_electronics11172773
crossref_primary_10_3390_math11153278
crossref_primary_10_1177_03611981231223750
crossref_primary_10_1016_j_compbiomed_2022_106501
crossref_primary_10_3389_fncom_2022_998096
crossref_primary_10_1016_j_ijleo_2022_169431
crossref_primary_10_1109_TR_2023_3234982
crossref_primary_10_1007_s11042_022_13116_3
crossref_primary_10_3390_e24121783
crossref_primary_10_1155_2022_8481452
crossref_primary_10_1002_widm_1520
crossref_primary_10_1016_j_ijleo_2022_169251
crossref_primary_10_1155_2022_9865549
crossref_primary_10_1017_jmo_2022_74
crossref_primary_10_1016_j_infsof_2025_107685
crossref_primary_10_1109_TR_2024_3492380
crossref_primary_10_3390_pr10061214
crossref_primary_10_1109_TSE_2024_3513413
Cites_doi 10.1016/j.jss.2019.110456
10.1109/ICST.2013.24
10.1007/BF02834632
10.1007/s10796-020-10031-6
10.1145/3180155.3180197
10.1007/s10664-021-10010-8
10.1109/TSE.2017.2787653
10.1007/s11390-017-1713-3
10.1109/QRS.2018.00047
10.1023/A:1010933404324
10.1109/ICSE.2015.139
10.1016/j.patcog.2019.02.023
10.1093/oso/9780198538493.001.0001
10.1109/TSE.2018.2864217
10.22266/ijies2019.0430.11
10.1016/j.knosys.2019.06.022
10.1109/TSE.2016.2584050
10.1002/smr.2376
10.1109/TSE.2018.2876537
10.32614/RJ-2014-008
10.1016/j.cose.2021.102248
10.1145/3324916
10.1001/jama.2016.7653
10.1016/j.ins.2019.11.004
10.1007/BF00994018
10.1007/s11469-010-9275-4
10.1109/TSE.2019.2937083
10.1142/S0218194018500237
10.1016/j.infsof.2020.106314
10.1109/TSE.2017.2731766
10.1186/s12864-019-6413-7
10.1016/j.jss.2019.02.025
10.1016/j.inffus.2019.07.006
10.1109/TSE.2021.3063727
10.1007/11538059_91
10.1109/TSE.2018.2791521
10.1016/j.infsof.2017.08.004
10.1016/j.ins.2018.10.029
10.1109/MSR.2010.5463340
10.1109/MSR.2015.78
10.1109/HSI.2012.22
10.1038/nbt1206-1565
10.1515/jisys-2018-0476
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TR.2021.3118026
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1721
EndPage 1670
ExternalDocumentID 10_1109_TR_2021_3118026
9585022
Genre orig-research
GrantInformation_xml – fundername: 2021 Key R&D Program in Shaanxi Province
  grantid: 2021GY-041
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
OCL
P2P
RIA
RIE
RNS
TN5
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c355t-1e4ad7e49263542abc533c6ea4f72dea389a4ac7e87f58309b99412ff05a051f3
IEDL.DBID RIE
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000724479600028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9529
IngestDate Mon Jun 30 05:04:59 EDT 2025
Sat Nov 29 01:54:36 EST 2025
Tue Nov 18 22:10:11 EST 2025
Wed Aug 27 05:09:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-1e4ad7e49263542abc533c6ea4f72dea389a4ac7e87f58309b99412ff05a051f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7969-1630
0000-0002-7567-3643
0000-0002-1180-3891
0000-0002-3409-934X
PQID 2604926321
PQPubID 85456
PageCount 13
ParticipantIDs crossref_primary_10_1109_TR_2021_3118026
ieee_primary_9585022
crossref_citationtrail_10_1109_TR_2021_3118026
proquest_journals_2604926321
PublicationCentury 2000
PublicationDate 2021-Dec.
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on reliability
PublicationTitleAbbrev TR
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref52
ref11
ref10
openstack (ref46) 2009
ref16
ref19
(ref28) 2009
lunardon (ref18) 2014; 6
romano (ref49) 0
he (ref32) 0
ref51
ref50
ref45
ref48
ref47
ref42
ref41
ref44
napierala (ref53) 2012; 6
(ref31) 2011
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref30
ref33
kozik (ref24) 2019; 25
ref2
shu (ref17) 0
ref1
ref39
ref38
xie (ref29) 2017
ref26
ref25
ref20
ref22
(ref23) 2016
ref21
bishop (ref43) 1995
ref27
w -c (ref13) 2019; 477
References_xml – ident: ref30
  doi: 10.1016/j.jss.2019.110456
– ident: ref8
  doi: 10.1109/ICST.2013.24
– ident: ref39
  doi: 10.1007/BF02834632
– year: 2011
  ident: ref31
  article-title: LinearSVC in sklearn
– ident: ref25
  doi: 10.1007/s10796-020-10031-6
– ident: ref14
  doi: 10.1145/3180155.3180197
– ident: ref6
  doi: 10.1007/s10664-021-10010-8
– ident: ref3
  doi: 10.1109/TSE.2017.2787653
– ident: ref27
  doi: 10.1007/s11390-017-1713-3
– start-page: 1322
  year: 0
  ident: ref32
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
  publication-title: Proc IEEE Int Joint Conf Neural Netw
– ident: ref16
  doi: 10.1109/QRS.2018.00047
– ident: ref44
  doi: 10.1023/A:1010933404324
– ident: ref10
  doi: 10.1109/ICSE.2015.139
– ident: ref21
  doi: 10.1016/j.patcog.2019.02.023
– start-page: 1
  year: 0
  ident: ref49
  article-title: Appropriate statistics for ordinal level data: Should we really be using t-test and Cohen'sd for evaluating group differences on the NSSE and other surveys
  publication-title: Proc Annu Meeting Florida Assoc Inst Res
– year: 1995
  ident: ref43
  publication-title: Neural Networks for Pattern Recognition
  doi: 10.1093/oso/9780198538493.001.0001
– ident: ref5
  doi: 10.1109/TSE.2018.2864217
– ident: ref34
  doi: 10.22266/ijies2019.0430.11
– ident: ref37
  doi: 10.1016/j.knosys.2019.06.022
– ident: ref38
  doi: 10.1109/TSE.2016.2584050
– year: 2017
  ident: ref29
  article-title: A survey of dimensionality reduction techniques based on random projection
– ident: ref9
  doi: 10.1002/smr.2376
– ident: ref11
  doi: 10.1109/TSE.2018.2876537
– year: 2016
  ident: ref23
  article-title: imblearn
– start-page: 1
  year: 0
  ident: ref17
  article-title: Better security bug report classification via hyperparameter optimization
  publication-title: Proc IEEE Int Conf Automated Software Engineering
– volume: 6
  start-page: 79
  year: 2014
  ident: ref18
  article-title: ROSE: A package for binary imbalanced learning
  publication-title: R Journal
  doi: 10.32614/RJ-2014-008
– ident: ref1
  doi: 10.1016/j.cose.2021.102248
– ident: ref51
  doi: 10.1145/3324916
– ident: ref40
  doi: 10.1001/jama.2016.7653
– ident: ref22
  doi: 10.1016/j.ins.2019.11.004
– ident: ref41
  doi: 10.1007/BF00994018
– ident: ref35
  doi: 10.1007/s11469-010-9275-4
– ident: ref7
  doi: 10.1109/TSE.2019.2937083
– ident: ref20
  doi: 10.1142/S0218194018500237
– ident: ref19
  doi: 10.1016/j.infsof.2020.106314
– ident: ref12
  doi: 10.1109/TSE.2017.2731766
– year: 2009
  ident: ref46
– ident: ref48
  doi: 10.1186/s12864-019-6413-7
– ident: ref47
  doi: 10.1016/j.jss.2019.02.025
– ident: ref36
  doi: 10.1016/j.inffus.2019.07.006
– ident: ref4
  doi: 10.1109/TSE.2021.3063727
– ident: ref33
  doi: 10.1007/11538059_91
– ident: ref50
  doi: 10.1109/TSE.2018.2791521
– volume: 6
  start-page: 1
  year: 2012
  ident: ref53
  article-title: What is the Bonferroni correction
  publication-title: AAOS Now
– ident: ref52
  doi: 10.1016/j.infsof.2017.08.004
– year: 2009
  ident: ref28
  article-title: Scikit learn
– volume: 477
  start-page: 47
  year: 2019
  ident: ref13
  article-title: Under-sampling class imbalanced datasets by combining clustering analysis and instance selection
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.10.029
– volume: 25
  start-page: 2
  year: 2019
  ident: ref24
  article-title: Balanced efficient lifelong learning (B-ELLA) for cyber attack detection
  publication-title: J Universal Comput Sci
– ident: ref2
  doi: 10.1109/MSR.2010.5463340
– ident: ref45
  doi: 10.1109/MSR.2015.78
– ident: ref15
  doi: 10.1109/HSI.2012.22
– ident: ref42
  doi: 10.1038/nbt1206-1565
– ident: ref26
  doi: 10.1515/jisys-2018-0476
SSID ssj0014498
Score 2.5694156
Snippet Identifying security bug reports (SBRs) accurately from a bug repository can reduce a software product's security risk. However, the class imbalance problem...
Identifying security bug reports (SBRs) accurately from a bug repository can reduce a software product’s security risk. However, the class imbalance problem...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1658
SubjectTerms Algorithms
Class imbalance problem
class rebalancing methods
Classification
classification algorithms
Comparative studies
Computer bugs
Debugging
Dimensionality reduction
Empirical analysis
Impact analysis
Performance enhancement
Prediction algorithms
Predictive models
Security
security bug report (SBRs) classification
Software algorithms
State-of-the-art reviews
Title A Comparative Study of Class Rebalancing Methods for Security Bug Report Classification
URI https://ieeexplore.ieee.org/document/9585022
https://www.proquest.com/docview/2604926321
Volume 70
WOSCitedRecordID wos000724479600028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014498
  issn: 0018-9529
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQMMvAqiUJAHBgbSxokdx2OpqBigQqVAt8h1bISEWtQHEv8e23EDCBjYEukuie9i-zv7_B3A6VhjHeacBDihNCAc04CHwvSrJGZjyjCWbh3y4Zr1--loxG8rcF6ehVFKueQz1bKXbi8_n8qlXSprc4NtzZxThSpjrDirVe4YEML9qGteRCPuaXxwyNvDgYkDI2zCU0t3lnybgVxJlR_jsJtcelv_-6xt2PQgEnUKr-9ARU12YeMLtWAdHjuo-0nsjWy64DuaauSKYCJjVJvSKI0ounE1pOfIoFd056vZoYvlEyqweaFhE4qcD_fgvnc57F4FvohCIA2UWARYEZEzZXkBY0oiMZYG4MlECaJZlCthAIsgQjKVMk3TOORjzgmOtA6pMB1Wx_tQm0wn6gCQEWaxtOw7id2vTQVV5hYrHDOeJyltQGtl2Ex6hnFb6OIlc5FGyLPhILOeyLwnGnBWKrwW5Bp_i9at4Usxb_MGNFeey3znm2cmRHPNjfDh71pHsG6fXWSlNKG2mC3VMazJt8XzfHbi_qsPWqrIeQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggQMvAqiUMADAwNp48SO47EgqiLaCpUC3SLXcRASalEfSPx7bMctIGBgS6SznNz58Z3v_B3A6SDDmZ9y4uGIUo9wTD3uCz2vopANKMNY2nPIhxbrdOJ-n98W4HxxF0YpZZPPVNU82lh-OpIzc1RW4xrb6j1nCZYpIQHOb2stYgaEcLfu6q5owB2RD_Z5rdfVnmCAtYNqCM-ib3uQLaryYyW220tj838ftgUbDkaiem73bSio4Q6sfyEXLMFjHV1-UnsjkzD4jkYZsmUwkVarSWqUWhS1bRXpCdL4Fd25enboYvaEcnSetzApRdaKu3DfuOpdNj1XRsGTGkxMPayISJkyzIAhJYEYSA3xZKQEyViQKqEhiyBCMhWzjMahzwecExxkmU-FnrJZuAfF4Wio9gFpYRZKw78TmYhtLKjSr1jhkPE0imkZqnPFJtJxjJtSFy-J9TV8nvS6ibFE4ixRhrNFg9ecXuNv0ZJR_ELM6bwMlbnlEjf9Jol20uzvBvjg91YnsNrstVtJ67pzcwhrpp88R6UCxel4po5gRb5NnyfjYzvGPgDzfMvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+of+Class+Rebalancing+Methods+for+Security+Bug+Report+Classification&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Zheng%2C+Wei&rft.au=Xun%2C+Yuxing&rft.au=Wu%2C+Xiaoxue&rft.au=Deng%2C+Zhi&rft.date=2021-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9529&rft.eissn=1558-1721&rft.volume=70&rft.issue=4&rft.spage=1658&rft_id=info:doi/10.1109%2FTR.2021.3118026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon