Structure and function of carbonic anhydrases

Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical journal Vol. 473; no. 14; p. 2023
Main Author: Supuran, Claudiu T
Format: Journal Article
Language:English
Published: England 15.07.2016
Subjects:
ISSN:1470-8728, 1470-8728
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding of the structure-function relationship in this superfamily of proteins. A metal hydroxide nucleophilic species of the enzyme, and a unique active site architecture, with half of it hydrophilic and the opposing part hydrophobic, allow these enzymes to act as some of the most effective catalysts known in Nature. The CA activation and inhibition mechanisms are also known in detail, with a large number of new inhibitor classes being described in the last years. Apart from the zinc binders, some classes of inhibitors anchor to the metal ion coordinated nucleophile, others occlude the entrance of the active site cavity and more recently, compounds binding outside the active site were described. CA inhibition has therapeutic applications for drugs acting as diuretics, antiepileptics, antiglaucoma, antiobesity and antitumour agents. Targeting such enzymes from pathogens may lead to novel anti-infectives. Successful structure-based drug design campaigns allowed the discovery of highly isoform selective CA inhibitors (CAIs), which may lead to a new generation of drugs targeting these widespread enzymes. The use of CAs in CO2 capture processes for mitigating the global temperature rise has also been investigated more recently.
AbstractList Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding of the structure-function relationship in this superfamily of proteins. A metal hydroxide nucleophilic species of the enzyme, and a unique active site architecture, with half of it hydrophilic and the opposing part hydrophobic, allow these enzymes to act as some of the most effective catalysts known in Nature. The CA activation and inhibition mechanisms are also known in detail, with a large number of new inhibitor classes being described in the last years. Apart from the zinc binders, some classes of inhibitors anchor to the metal ion coordinated nucleophile, others occlude the entrance of the active site cavity and more recently, compounds binding outside the active site were described. CA inhibition has therapeutic applications for drugs acting as diuretics, antiepileptics, antiglaucoma, antiobesity and antitumour agents. Targeting such enzymes from pathogens may lead to novel anti-infectives. Successful structure-based drug design campaigns allowed the discovery of highly isoform selective CA inhibitors (CAIs), which may lead to a new generation of drugs targeting these widespread enzymes. The use of CAs in CO2 capture processes for mitigating the global temperature rise has also been investigated more recently.Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding of the structure-function relationship in this superfamily of proteins. A metal hydroxide nucleophilic species of the enzyme, and a unique active site architecture, with half of it hydrophilic and the opposing part hydrophobic, allow these enzymes to act as some of the most effective catalysts known in Nature. The CA activation and inhibition mechanisms are also known in detail, with a large number of new inhibitor classes being described in the last years. Apart from the zinc binders, some classes of inhibitors anchor to the metal ion coordinated nucleophile, others occlude the entrance of the active site cavity and more recently, compounds binding outside the active site were described. CA inhibition has therapeutic applications for drugs acting as diuretics, antiepileptics, antiglaucoma, antiobesity and antitumour agents. Targeting such enzymes from pathogens may lead to novel anti-infectives. Successful structure-based drug design campaigns allowed the discovery of highly isoform selective CA inhibitors (CAIs), which may lead to a new generation of drugs targeting these widespread enzymes. The use of CAs in CO2 capture processes for mitigating the global temperature rise has also been investigated more recently.
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding of the structure-function relationship in this superfamily of proteins. A metal hydroxide nucleophilic species of the enzyme, and a unique active site architecture, with half of it hydrophilic and the opposing part hydrophobic, allow these enzymes to act as some of the most effective catalysts known in Nature. The CA activation and inhibition mechanisms are also known in detail, with a large number of new inhibitor classes being described in the last years. Apart from the zinc binders, some classes of inhibitors anchor to the metal ion coordinated nucleophile, others occlude the entrance of the active site cavity and more recently, compounds binding outside the active site were described. CA inhibition has therapeutic applications for drugs acting as diuretics, antiepileptics, antiglaucoma, antiobesity and antitumour agents. Targeting such enzymes from pathogens may lead to novel anti-infectives. Successful structure-based drug design campaigns allowed the discovery of highly isoform selective CA inhibitors (CAIs), which may lead to a new generation of drugs targeting these widespread enzymes. The use of CAs in CO2 capture processes for mitigating the global temperature rise has also been investigated more recently.
Author Supuran, Claudiu T
Author_xml – sequence: 1
  givenname: Claudiu T
  surname: Supuran
  fullname: Supuran, Claudiu T
  email: claudiu.supuran@unifi.it
  organization: Neurofarba Department and Laboratorio di Chimica Bioinorganica, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy claudiu.supuran@unifi.it
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27407171$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLxDAUhYOMOA9duZcu3VTvTZMmXWoZXwy4UNclvb3FSicdk3Yx_94BR3B1PjgfB85SzPzgWYhLhBsEJW_vyxcJmAOiPhELVAZSa6Sd_eO5WMb4BYAKFJyJuTQKDBpciPRtDBONU-DE-SZpJ09jN_hkaBNyoR58R4fic98EFzmei9PW9ZEvjrkSHw_r9_Ip3bw-Ppd3m5QyrccU64y1UjorVEuac-u0rq0spKqzPM-IilyRYy50g9a1xlLGhoAKaLBRtpUrcf27uwvD98RxrLZdJO5753mYYoUWFBY2t3hQr47qVG-5qXah27qwr_4uyh_D8lK1
CitedBy_id crossref_primary_10_1016_j_bioorg_2018_05_015
crossref_primary_10_3390_ijms22168723
crossref_primary_10_1002_cmdc_201800180
crossref_primary_10_1002_jbt_21872
crossref_primary_10_1016_j_jsb_2018_12_009
crossref_primary_10_1080_14756366_2020_1755852
crossref_primary_10_1080_14756366_2022_2124409
crossref_primary_10_1016_j_bmcl_2021_128147
crossref_primary_10_1016_j_procbio_2018_08_017
crossref_primary_10_1021_jacs_5c05198
crossref_primary_10_3390_ijms21103562
crossref_primary_10_1080_14756366_2022_2092729
crossref_primary_10_1016_j_ejmech_2020_112219
crossref_primary_10_1371_journal_pone_0249866
crossref_primary_10_3390_ijms21082764
crossref_primary_10_1007_s44411_025_00288_1
crossref_primary_10_3390_ijms23147685
crossref_primary_10_1016_j_bioorg_2018_05_027
crossref_primary_10_1016_j_cbi_2024_111284
crossref_primary_10_1080_14756366_2018_1463221
crossref_primary_10_1016_j_bioorg_2017_12_034
crossref_primary_10_1080_14756366_2022_2077333
crossref_primary_10_3390_ijms24119610
crossref_primary_10_3390_molecules27051604
crossref_primary_10_1016_j_heliyon_2023_e22183
crossref_primary_10_1080_14756366_2016_1235042
crossref_primary_10_3390_metabo9020026
crossref_primary_10_1016_j_bioorg_2020_104204
crossref_primary_10_1080_14756366_2017_1284069
crossref_primary_10_1002_jobm_202300323
crossref_primary_10_1016_j_ejmech_2019_111811
crossref_primary_10_1002_jbt_23704
crossref_primary_10_1016_j_jcrysgro_2021_126113
crossref_primary_10_1016_j_molstruc_2022_133048
crossref_primary_10_1107_S2053230X18018344
crossref_primary_10_1080_14756366_2020_1752201
crossref_primary_10_2174_0118715206290722240125112447
crossref_primary_10_1016_j_bbabio_2024_149149
crossref_primary_10_1080_14756366_2021_1956913
crossref_primary_10_3390_life13030735
crossref_primary_10_1016_j_bmc_2017_07_056
crossref_primary_10_1016_j_bmc_2019_03_001
crossref_primary_10_1093_protein_gzab021
crossref_primary_10_3390_molecules27030816
crossref_primary_10_3390_molecules29245911
crossref_primary_10_3390_ijms24119401
crossref_primary_10_1080_14756366_2023_2287420
crossref_primary_10_1124_pharmrev_124_001125
crossref_primary_10_1016_j_bbrc_2021_02_036
crossref_primary_10_1002_ardp_202200562
crossref_primary_10_1080_14756366_2020_1715388
crossref_primary_10_1016_j_bcab_2023_102755
crossref_primary_10_1016_j_bioorg_2020_104237
crossref_primary_10_1038_s41540_019_0105_4
crossref_primary_10_1080_14756366_2023_2203389
crossref_primary_10_1155_2017_9290478
crossref_primary_10_1002_ejoc_202001330
crossref_primary_10_1007_s11030_022_10527_0
crossref_primary_10_1016_j_jsb_2021_107700
crossref_primary_10_1016_j_biochi_2019_03_009
crossref_primary_10_1186_s12886_021_02079_y
crossref_primary_10_3389_fmolb_2023_1326633
crossref_primary_10_1002_cbdv_202401978
crossref_primary_10_1039_D5MD00344J
crossref_primary_10_3390_ijms23010461
crossref_primary_10_1016_j_ejmech_2020_112449
crossref_primary_10_3390_metabo10030093
crossref_primary_10_3390_md15090270
crossref_primary_10_1016_j_ejmech_2023_115538
crossref_primary_10_1080_14756366_2022_2080818
crossref_primary_10_1021_jacs_0c05383
crossref_primary_10_2147_JEP_S265620
crossref_primary_10_2174_0118715206373602250318062414
crossref_primary_10_1016_j_colsurfa_2023_132882
crossref_primary_10_1080_14756366_2022_2080816
crossref_primary_10_1080_14756366_2020_1800670
crossref_primary_10_3390_md17030146
crossref_primary_10_1002_cmdc_201800015
crossref_primary_10_1080_14756366_2022_2078970
crossref_primary_10_1016_j_bioorg_2023_106399
crossref_primary_10_1007_s10118_018_2047_5
crossref_primary_10_1016_j_bioorg_2017_12_009
crossref_primary_10_1080_14756366_2017_1355794
crossref_primary_10_1080_07391102_2019_1623075
crossref_primary_10_1016_j_str_2023_05_015
crossref_primary_10_1080_14756366_2019_1666836
crossref_primary_10_3390_ph15121453
crossref_primary_10_1080_14756366_2017_1388233
crossref_primary_10_1080_14756366_2017_1355306
crossref_primary_10_1002_cmdc_202300267
crossref_primary_10_1080_14756366_2017_1355307
crossref_primary_10_1016_j_bbabio_2019_06_003
crossref_primary_10_1016_j_bioorg_2019_102984
crossref_primary_10_1080_01480545_2018_1463242
crossref_primary_10_1038_s41598_017_06796_7
crossref_primary_10_1016_j_ejmech_2020_112300
crossref_primary_10_14233_ajomc_2021_AJOMC_P354
crossref_primary_10_1080_17460441_2022_2039619
crossref_primary_10_1002_cmdc_202100725
crossref_primary_10_1002_jbt_21971
crossref_primary_10_1016_j_bmc_2017_05_007
crossref_primary_10_1002_brb3_1130
crossref_primary_10_1021_acs_jmedchem_6b01804
crossref_primary_10_1557_s43579_025_00810_0
crossref_primary_10_1080_13543776_2020_1811853
crossref_primary_10_1016_j_bioorg_2019_01_060
crossref_primary_10_1016_j_bmc_2017_01_032
crossref_primary_10_3390_molecules27134076
crossref_primary_10_1016_j_bioorg_2023_106492
crossref_primary_10_1155_2021_9998697
crossref_primary_10_1002_pro_3347
crossref_primary_10_1016_j_bmc_2018_07_011
crossref_primary_10_1016_j_bmcl_2016_12_035
crossref_primary_10_1016_j_ejphar_2024_176677
crossref_primary_10_1016_j_bmc_2017_05_001
crossref_primary_10_1007_s00253_019_10015_w
crossref_primary_10_1016_j_bmc_2017_01_031
crossref_primary_10_3390_ijms20030467
crossref_primary_10_1080_14756366_2018_1564045
crossref_primary_10_1016_j_ejmech_2020_112875
crossref_primary_10_1080_13543776_2019_1671353
crossref_primary_10_1016_j_jpba_2017_01_023
crossref_primary_10_1080_07391102_2020_1865203
crossref_primary_10_1080_14756366_2019_1683007
crossref_primary_10_1002_ardp_201700314
crossref_primary_10_1016_j_bmc_2017_05_014
crossref_primary_10_1021_acssuschemeng_5c05633
crossref_primary_10_3390_pathogens5020044
crossref_primary_10_1007_s11356_023_28122_7
crossref_primary_10_1016_j_ijbiomac_2024_135010
crossref_primary_10_1186_s12934_024_02463_5
crossref_primary_10_3390_ijms19072128
crossref_primary_10_3390_ijms222011283
crossref_primary_10_3390_molecules26164718
crossref_primary_10_1016_j_bioorg_2017_12_010
crossref_primary_10_1016_j_bioorg_2025_108803
crossref_primary_10_3390_catal11070819
crossref_primary_10_1016_j_ejmech_2021_113793
crossref_primary_10_1016_j_bioorg_2018_11_003
crossref_primary_10_3390_metabo10040136
crossref_primary_10_1002_ardp_202300309
crossref_primary_10_1016_j_bmc_2024_117933
crossref_primary_10_3390_cells14100693
crossref_primary_10_1080_10406638_2022_2157027
crossref_primary_10_1021_acs_jmedchem_5c01421
crossref_primary_10_1002_ardp_70041
crossref_primary_10_3390_ijms24044251
crossref_primary_10_1007_s00449_021_02667_8
crossref_primary_10_1134_S1995078020010140
crossref_primary_10_3390_ijms22094324
crossref_primary_10_1016_j_ejmech_2024_116434
crossref_primary_10_1080_14756366_2021_1998026
crossref_primary_10_3390_f15111962
crossref_primary_10_1080_14756366_2017_1375485
crossref_primary_10_1016_j_ejmech_2020_113046
crossref_primary_10_1016_j_bioorg_2018_11_014
crossref_primary_10_1515_znc_2024_0224
crossref_primary_10_1007_s10620_021_06985_5
crossref_primary_10_1016_j_seppur_2021_119446
crossref_primary_10_1080_14728222_2023_2263914
crossref_primary_10_3390_metabo10010039
crossref_primary_10_1080_13543776_2024_2349739
crossref_primary_10_1016_j_tplants_2023_07_007
crossref_primary_10_1080_14756366_2020_1722658
crossref_primary_10_1111_tpj_14638
crossref_primary_10_1016_j_procbio_2023_02_007
crossref_primary_10_3390_molecules28207069
crossref_primary_10_1002_cem_3189
crossref_primary_10_1029_2020JG005966
crossref_primary_10_1093_ismejo_wraf034
crossref_primary_10_1002_cbdv_202300611
crossref_primary_10_1016_j_ijbiomac_2025_146776
crossref_primary_10_3390_metabo7030048
crossref_primary_10_1080_14756366_2020_1801674
crossref_primary_10_1080_14756366_2022_2036986
crossref_primary_10_1002_cbdv_202301824
crossref_primary_10_1080_14756366_2018_1450400
crossref_primary_10_1016_j_bmc_2017_02_037
crossref_primary_10_1002_anie_201913436
crossref_primary_10_1080_14756366_2020_1838501
crossref_primary_10_1039_D3SC04208A
crossref_primary_10_3390_molecules23112911
crossref_primary_10_1107_S2059798320007202
crossref_primary_10_1038_s41586_023_06716_y
crossref_primary_10_1016_j_bmcl_2016_11_027
crossref_primary_10_3389_fpls_2023_1129130
crossref_primary_10_3390_ijms21051842
crossref_primary_10_1016_j_procbio_2019_12_018
crossref_primary_10_3390_ijms17111820
crossref_primary_10_1002_chem_201700241
crossref_primary_10_1002_ange_202103211
crossref_primary_10_1155_2021_6926082
crossref_primary_10_1016_j_cej_2022_134957
crossref_primary_10_1016_j_bmc_2017_04_007
crossref_primary_10_1002_chem_201704605
crossref_primary_10_1080_17460441_2020_1743676
crossref_primary_10_1016_j_bmc_2017_02_032
crossref_primary_10_1080_14756366_2021_1919891
crossref_primary_10_1016_j_bioorg_2020_104618
crossref_primary_10_1039_D5MD00208G
crossref_primary_10_1016_j_comptc_2017_03_041
crossref_primary_10_3390_cancers14205079
crossref_primary_10_1021_acsmedchemlett_7b00387
crossref_primary_10_1002_ardp_202400064
crossref_primary_10_1038_s41416_020_0804_z
crossref_primary_10_3390_md17040238
crossref_primary_10_1016_j_bioorg_2018_06_002
crossref_primary_10_1016_j_bioorg_2023_106621
crossref_primary_10_1016_j_jchromb_2017_08_040
crossref_primary_10_1002_jmr_2982
crossref_primary_10_1007_s00044_022_02943_6
crossref_primary_10_1016_j_bioorg_2018_04_010
crossref_primary_10_3390_ijms25179716
crossref_primary_10_1016_j_bmc_2022_117111
crossref_primary_10_1080_14756366_2016_1232254
crossref_primary_10_1080_14756366_2016_1232255
crossref_primary_10_1080_14756366_2019_1705291
crossref_primary_10_1007_s11094_023_02975_1
crossref_primary_10_1002_cbdv_202401225
crossref_primary_10_1021_acs_jmedchem_5c00526
crossref_primary_10_1186_s40164_025_00690_z
crossref_primary_10_3390_metabo7040056
crossref_primary_10_3390_ijms22105190
crossref_primary_10_1016_j_molstruc_2020_128911
crossref_primary_10_3390_molecules28010091
crossref_primary_10_1016_j_ica_2017_03_038
crossref_primary_10_1016_j_bioorg_2019_103544
crossref_primary_10_1134_S0006350924700477
crossref_primary_10_3389_fmicb_2019_02751
crossref_primary_10_1016_j_bmc_2023_117467
crossref_primary_10_1016_j_ejmech_2021_113621
crossref_primary_10_1080_14756366_2022_2091557
crossref_primary_10_1007_s40518_020_00149_1
crossref_primary_10_3390_ijms19123946
crossref_primary_10_1016_j_jics_2022_100339
crossref_primary_10_1080_13543776_2021_1923694
crossref_primary_10_3390_molecules28104020
crossref_primary_10_1080_14756366_2017_1387544
crossref_primary_10_1002_cmdc_202200658
crossref_primary_10_1016_j_ejmech_2017_03_026
crossref_primary_10_1002_ange_202101167
crossref_primary_10_1016_j_ab_2018_05_001
crossref_primary_10_1016_j_abb_2024_110182
crossref_primary_10_1016_j_bioorg_2020_103739
crossref_primary_10_1016_j_enzmictec_2018_03_009
crossref_primary_10_4155_fmc_2017_0223
crossref_primary_10_3390_ph15091134
crossref_primary_10_3390_molecules24132418
crossref_primary_10_3390_molecules27082544
crossref_primary_10_3390_biom10111570
crossref_primary_10_1002_cctc_202400356
crossref_primary_10_1039_D5MD00348B
crossref_primary_10_3390_catal10091008
crossref_primary_10_1111_pre_12402
crossref_primary_10_1038_s41589_022_01043_1
crossref_primary_10_1016_j_bioorg_2018_12_028
crossref_primary_10_1002_ardp_70094
crossref_primary_10_1155_2018_2906519
crossref_primary_10_1080_14756366_2019_1605991
crossref_primary_10_1016_j_ejmech_2025_117706
crossref_primary_10_1073_pnas_1909498116
crossref_primary_10_1016_j_biotechadv_2025_108644
crossref_primary_10_3390_ijms21051761
crossref_primary_10_3390_ijms21165697
crossref_primary_10_1080_14756366_2018_1425687
crossref_primary_10_1016_j_biopha_2025_117987
crossref_primary_10_1080_14756366_2021_1897802
crossref_primary_10_1016_j_phrs_2020_104964
crossref_primary_10_1016_j_bmc_2017_03_013
crossref_primary_10_1016_j_rechem_2022_100656
crossref_primary_10_1016_j_bmc_2017_03_017
crossref_primary_10_1080_14756366_2023_2291336
crossref_primary_10_3390_ijms21072560
crossref_primary_10_1080_14756366_2019_1710503
crossref_primary_10_1080_14756366_2023_2166503
crossref_primary_10_1002_ardp_202300205
crossref_primary_10_1016_j_ejmech_2021_113875
crossref_primary_10_3390_plants11141882
crossref_primary_10_1007_s10337_020_03973_1
crossref_primary_10_1007_s12010_024_04947_x
crossref_primary_10_1080_14756366_2017_1386660
crossref_primary_10_1007_s10709_020_00112_4
crossref_primary_10_1080_17460441_2017_1253677
crossref_primary_10_1016_j_bioorg_2019_103222
crossref_primary_10_1016_j_ejmech_2018_12_049
crossref_primary_10_1016_j_carres_2019_03_001
crossref_primary_10_1371_journal_ppat_1008707
crossref_primary_10_3390_antiox12122044
crossref_primary_10_3390_md18080411
crossref_primary_10_3390_metabo8010019
crossref_primary_10_1080_14756366_2019_1700240
crossref_primary_10_1080_14756366_2020_1828401
crossref_primary_10_1016_j_bmc_2017_03_026
crossref_primary_10_1021_acsmedchemlett_5c00443
crossref_primary_10_1016_j_bmc_2017_03_027
crossref_primary_10_1038_s41598_023_41012_9
crossref_primary_10_3390_molecules23010153
crossref_primary_10_1080_17425255_2020_1743679
crossref_primary_10_1080_14756366_2019_1653290
crossref_primary_10_1007_s00338_022_02278_z
crossref_primary_10_1002_chem_201800941
crossref_primary_10_1080_14756366_2022_2155816
crossref_primary_10_1016_j_bmc_2020_115586
crossref_primary_10_1016_j_ejmcr_2024_100131
crossref_primary_10_1002_chem_201805039
crossref_primary_10_1002_slct_202304327
crossref_primary_10_1016_j_ijbiomac_2024_134410
crossref_primary_10_3390_molecules23010017
crossref_primary_10_1093_mtomcs_mfad056
crossref_primary_10_3390_en16227571
crossref_primary_10_1016_j_bioorg_2018_01_003
crossref_primary_10_1039_D4RA06290F
crossref_primary_10_3390_molecules24213987
crossref_primary_10_1007_s11274_018_2536_2
crossref_primary_10_1016_j_comptc_2021_113188
crossref_primary_10_1038_s41570_021_00339_5
crossref_primary_10_1016_j_phymed_2024_155928
crossref_primary_10_1080_07391102_2023_2175259
crossref_primary_10_1002_smtd_202400563
crossref_primary_10_1107_S2059798322000079
crossref_primary_10_1016_j_ejmech_2021_114026
crossref_primary_10_1080_14756366_2019_1654470
crossref_primary_10_1371_journal_pone_0266890
crossref_primary_10_3390_metabo8020037
crossref_primary_10_1016_j_ejmech_2025_117619
crossref_primary_10_3390_metabo8020036
crossref_primary_10_1080_14756366_2017_1417277
crossref_primary_10_1016_j_ijggc_2021_103465
crossref_primary_10_1016_j_bioorg_2018_02_029
crossref_primary_10_1016_j_bioorg_2018_09_013
crossref_primary_10_1016_j_jcou_2020_02_005
crossref_primary_10_3390_nu13124456
crossref_primary_10_3390_antibiotics12010142
crossref_primary_10_3390_pharmaceutics16030401
crossref_primary_10_1016_j_geoen_2025_213958
crossref_primary_10_1080_13543776_2019_1629419
crossref_primary_10_1080_14756366_2023_2201407
crossref_primary_10_1007_s00214_021_02839_5
crossref_primary_10_1080_14756366_2023_2201402
crossref_primary_10_1016_j_bioorg_2022_105888
crossref_primary_10_1080_14756366_2023_2201403
crossref_primary_10_1080_14756366_2020_1786820
crossref_primary_10_3390_ijms20092354
crossref_primary_10_1016_j_jclepro_2019_119138
crossref_primary_10_3390_molecules25071748
crossref_primary_10_1007_s11099_017_0685_4
crossref_primary_10_1016_j_biortech_2022_128174
crossref_primary_10_1080_14756366_2021_2024528
crossref_primary_10_1002_cmdc_202500080
crossref_primary_10_1016_j_ejmech_2022_114793
crossref_primary_10_3390_metabo8020025
crossref_primary_10_1016_j_pharmthera_2023_108383
crossref_primary_10_1016_j_bioorg_2018_02_015
crossref_primary_10_3390_molecules25112564
crossref_primary_10_1016_j_bioorg_2017_07_010
crossref_primary_10_1002_ghg_1738
crossref_primary_10_1016_j_bmc_2017_03_054
crossref_primary_10_1016_j_ejmech_2017_01_017
crossref_primary_10_1016_j_bioorg_2018_09_028
crossref_primary_10_1016_j_molstruc_2023_136061
crossref_primary_10_3390_molecules22101642
crossref_primary_10_1016_j_bioorg_2019_103336
crossref_primary_10_1016_j_ejmech_2017_11_061
crossref_primary_10_1080_14756366_2017_1353502
crossref_primary_10_3390_md20110721
crossref_primary_10_1016_j_molstruc_2023_137277
crossref_primary_10_1080_13543776_2018_1523897
crossref_primary_10_15407_biotech16_05_005
crossref_primary_10_1371_journal_pone_0207417
crossref_primary_10_3389_fnins_2021_662064
crossref_primary_10_1016_j_bioorg_2018_10_005
crossref_primary_10_1016_j_csag_2025_100068
crossref_primary_10_1016_j_bioorg_2018_10_006
crossref_primary_10_1080_14756366_2018_1466120
crossref_primary_10_1002_slct_202300039
crossref_primary_10_1016_j_marpolbul_2021_112075
crossref_primary_10_3390_molecules22030421
crossref_primary_10_3389_fmicb_2020_00742
crossref_primary_10_1016_j_ejmech_2021_113352
crossref_primary_10_1088_2516_1075_acb02c
crossref_primary_10_3390_ijms21218066
crossref_primary_10_3390_molecules25225483
crossref_primary_10_1021_acs_jmedchem_5c01584
crossref_primary_10_1002_bab_2534
crossref_primary_10_1128_JB_00509_19
crossref_primary_10_1016_j_bmc_2017_03_063
crossref_primary_10_3389_fmicb_2021_629163
crossref_primary_10_1016_j_bbabio_2019_01_006
crossref_primary_10_1080_14756366_2016_1254207
crossref_primary_10_1016_j_jbc_2023_102899
crossref_primary_10_1080_14756366_2017_1327522
crossref_primary_10_1080_14756366_2020_1724995
crossref_primary_10_3390_cimb47060457
crossref_primary_10_1080_14756366_2022_2036137
crossref_primary_10_1080_14756366_2020_1863958
crossref_primary_10_1080_17460441_2022_2117295
crossref_primary_10_1080_14756366_2022_2052868
crossref_primary_10_1016_j_ejmech_2021_113589
crossref_primary_10_1016_j_urolonc_2021_09_020
crossref_primary_10_1080_14756366_2022_2163243
crossref_primary_10_1080_14756366_2022_2164574
crossref_primary_10_3390_pathogens6030030
crossref_primary_10_3390_ijms20102447
crossref_primary_10_1080_14756366_2020_1786821
crossref_primary_10_1080_13543776_2018_1519023
crossref_primary_10_1002_ardp_202400482
crossref_primary_10_1016_j_chemosphere_2022_134419
crossref_primary_10_1016_j_ccr_2020_213550
crossref_primary_10_1007_s11356_023_29817_7
crossref_primary_10_1080_14756366_2022_2131780
crossref_primary_10_1113_JP273309
crossref_primary_10_3389_fmicb_2018_02490
crossref_primary_10_3390_ijms17071150
crossref_primary_10_1080_14756366_2018_1516652
crossref_primary_10_2174_0929867329666220318100019
crossref_primary_10_3390_ijms19071851
crossref_primary_10_3390_molecules23010066
crossref_primary_10_3390_ijms23020957
crossref_primary_10_1016_j_bioorg_2022_106309
crossref_primary_10_1016_j_bmc_2016_11_045
crossref_primary_10_1080_13543776_2022_2083502
crossref_primary_10_1080_14756366_2019_1698036
crossref_primary_10_1080_17460441_2019_1567488
crossref_primary_10_1016_j_ejmech_2025_117578
crossref_primary_10_1080_14756366_2016_1243536
crossref_primary_10_1186_s13567_018_0583_1
crossref_primary_10_1016_j_plaphy_2024_109301
crossref_primary_10_1080_13543776_2016_1230202
crossref_primary_10_3389_fphys_2018_00319
crossref_primary_10_3390_biology12060770
crossref_primary_10_3390_ijms24098050
crossref_primary_10_1016_j_ejmech_2021_113490
crossref_primary_10_1002_cmdc_202400345
crossref_primary_10_1080_14756366_2021_1887171
crossref_primary_10_1080_14756366_2019_1706089
crossref_primary_10_1016_j_bmcl_2023_129411
crossref_primary_10_1080_13543776_2018_1497161
crossref_primary_10_1080_13543776_2018_1497160
crossref_primary_10_3390_life13020332
crossref_primary_10_1002_chem_202103527
crossref_primary_10_3390_pharmaceutics15061733
crossref_primary_10_1007_s00425_020_03553_5
crossref_primary_10_1016_j_ejmech_2019_111586
crossref_primary_10_1016_j_jinorgbio_2024_112689
crossref_primary_10_1016_j_mocell_2025_100226
crossref_primary_10_1107_S2059798321009037
crossref_primary_10_1080_14756366_2016_1244533
crossref_primary_10_1111_cbdd_14351
crossref_primary_10_1016_j_bmc_2016_10_023
crossref_primary_10_1039_D5DT01161B
crossref_primary_10_1016_j_cbpa_2024_102475
crossref_primary_10_1016_j_ejmech_2021_113360
crossref_primary_10_1039_D3RA08618F
crossref_primary_10_1080_14756366_2018_1468530
crossref_primary_10_1080_13543776_2023_2245971
crossref_primary_10_1039_D2FO02596E
crossref_primary_10_1016_j_mocell_2024_100165
crossref_primary_10_1002_bab_2780
crossref_primary_10_1080_14756366_2023_2178430
crossref_primary_10_3390_inorganics10110200
crossref_primary_10_1016_j_jcrysgro_2021_126096
crossref_primary_10_1038_s41467_025_62366_w
crossref_primary_10_1080_13543784_2018_1548608
crossref_primary_10_1002_1873_3468_15098
crossref_primary_10_1007_s12274_024_6489_5
crossref_primary_10_1073_pnas_2107425118
crossref_primary_10_1089_jop_2022_0180
crossref_primary_10_1016_j_jcou_2021_101565
crossref_primary_10_1016_j_ab_2017_01_022
crossref_primary_10_1080_14756366_2022_2037579
crossref_primary_10_3390_biom9110700
crossref_primary_10_1039_D1RA07377J
crossref_primary_10_1016_j_bmc_2016_07_035
crossref_primary_10_1038_s41598_025_10048_4
crossref_primary_10_1080_14756366_2017_1316719
crossref_primary_10_3390_molecules25051036
crossref_primary_10_1007_s11033_021_06753_8
crossref_primary_10_1080_14756366_2018_1555156
crossref_primary_10_1111_apha_13068
crossref_primary_10_3390_molecules23123112
crossref_primary_10_1080_17460441_2021_1922384
crossref_primary_10_1186_s12915_021_01039_8
crossref_primary_10_1016_j_ejmech_2019_111642
crossref_primary_10_1369_00221554211050133
crossref_primary_10_3390_metabo11040225
crossref_primary_10_1080_14756366_2021_1959573
crossref_primary_10_1002_ardp_202000375
crossref_primary_10_1016_j_ejmech_2019_111768
crossref_primary_10_1080_14756366_2019_1697250
crossref_primary_10_3390_ijms21114175
crossref_primary_10_3390_molecules25102269
crossref_primary_10_1016_j_heliyon_2023_e18885
crossref_primary_10_1016_j_ccst_2025_100511
crossref_primary_10_4155_fmc_2021_0207
crossref_primary_10_1080_14756366_2020_1788009
crossref_primary_10_1016_j_ijbiomac_2024_131548
crossref_primary_10_1098_rsob_220254
crossref_primary_10_1080_14756366_2017_1316720
crossref_primary_10_3390_metabo10100412
crossref_primary_10_1002_ardp_202200019
crossref_primary_10_3390_ijms21155277
crossref_primary_10_1016_j_tibtech_2025_07_010
crossref_primary_10_1080_07391102_2021_1892527
crossref_primary_10_1073_pnas_2511786122
crossref_primary_10_3390_vaccines4040038
crossref_primary_10_1002_cmdc_202200056
crossref_primary_10_1002_chem_202402101
crossref_primary_10_1016_j_ejmech_2020_112745
crossref_primary_10_1002_cmdc_202000500
crossref_primary_10_1080_14756366_2023_2191163
crossref_primary_10_1080_14756366_2017_1368019
crossref_primary_10_1016_j_fuel_2025_135622
crossref_primary_10_1016_j_bmc_2016_11_039
crossref_primary_10_1042_BCJ20190177
crossref_primary_10_1080_07391102_2023_2188957
crossref_primary_10_1016_j_bmc_2016_12_040
crossref_primary_10_1080_14756366_2023_2191165
crossref_primary_10_1016_j_bioorg_2017_09_016
crossref_primary_10_1016_j_bmc_2016_12_047
crossref_primary_10_3390_jmse11101911
crossref_primary_10_3390_nano11041008
crossref_primary_10_1002_1873_3468_14475
crossref_primary_10_1016_j_bioorg_2025_108836
crossref_primary_10_1002_cmdc_202200085
crossref_primary_10_1080_14756366_2023_2270180
crossref_primary_10_1002_ange_201913436
crossref_primary_10_1016_j_bbabio_2021_148503
crossref_primary_10_1016_j_pharma_2021_03_001
crossref_primary_10_1080_13543776_2024_2332663
crossref_primary_10_1016_j_scitotenv_2019_06_446
crossref_primary_10_1016_j_bmc_2016_11_027
crossref_primary_10_1021_acs_jmedchem_8b00208
crossref_primary_10_1080_14756366_2017_1378192
crossref_primary_10_3390_microorganisms11061514
crossref_primary_10_1016_j_envres_2025_122801
crossref_primary_10_1016_j_bioorg_2019_103057
crossref_primary_10_1080_14756366_2018_1559840
crossref_primary_10_1016_j_ccr_2016_12_014
crossref_primary_10_1016_j_bioorg_2019_01_002
crossref_primary_10_1002_cmdc_202300680
crossref_primary_10_3389_fclim_2024_1440833
crossref_primary_10_4155_fmc_2023_0208
crossref_primary_10_1002_ardp_201900384
crossref_primary_10_1016_j_plantsci_2017_12_002
crossref_primary_10_1016_j_enzmictec_2025_110751
crossref_primary_10_3390_molecules28073220
crossref_primary_10_1038_s41598_021_94809_x
crossref_primary_10_1080_14756366_2017_1356295
crossref_primary_10_4155_fmc_2023_0321
crossref_primary_10_3390_ijms26104507
crossref_primary_10_3389_fphys_2017_00169
crossref_primary_10_1007_s10646_021_02496_1
crossref_primary_10_1016_j_bmc_2017_08_047
crossref_primary_10_1080_14756366_2018_1538980
crossref_primary_10_3390_molecules25194405
crossref_primary_10_1016_j_rechem_2025_102605
crossref_primary_10_1080_14756366_2016_1220944
crossref_primary_10_1016_j_ejmech_2019_111600
crossref_primary_10_1016_j_ccst_2025_100417
crossref_primary_10_1016_j_molstruc_2023_136770
crossref_primary_10_3390_molecules23051045
crossref_primary_10_1080_14756366_2021_1972995
crossref_primary_10_1016_j_ejmech_2023_115707
crossref_primary_10_1080_14756366_2023_2249267
crossref_primary_10_1111_pin_12949
crossref_primary_10_1016_j_arabjc_2021_103037
crossref_primary_10_1016_j_greenca_2025_02_005
crossref_primary_10_1002_psc_3606
crossref_primary_10_1039_D4SC07359B
crossref_primary_10_3390_ijms20010126
crossref_primary_10_1016_j_bioorg_2019_03_052
crossref_primary_10_1093_iob_obad016
crossref_primary_10_1016_j_bbrc_2024_150720
crossref_primary_10_1016_j_bioorg_2019_03_062
crossref_primary_10_1021_acsmedchemlett_5c00235
crossref_primary_10_1080_02713683_2022_2126861
crossref_primary_10_1016_j_bioorg_2018_09_007
crossref_primary_10_1016_j_cbi_2025_111746
crossref_primary_10_3390_ijms22020571
crossref_primary_10_1080_14756366_2016_1247058
crossref_primary_10_1002_anie_202103211
crossref_primary_10_1515_znc_2025_0038
crossref_primary_10_1080_17460441_2019_1651289
crossref_primary_10_1007_s10482_024_02054_9
crossref_primary_10_3389_fmolb_2024_1338528
crossref_primary_10_1080_14756366_2022_2121393
crossref_primary_10_1002_ardp_202400776
crossref_primary_10_1016_j_bbabio_2020_148254
crossref_primary_10_1007_s10930_022_10070_9
crossref_primary_10_1080_14756366_2017_1337759
crossref_primary_10_3390_d15060777
crossref_primary_10_3390_ph14080828
crossref_primary_10_7717_peerj_11059
crossref_primary_10_1016_j_jechem_2023_10_058
crossref_primary_10_1080_14756366_2019_1677638
crossref_primary_10_1080_14756366_2021_2004592
crossref_primary_10_3390_ijms25115853
crossref_primary_10_1080_14756366_2016_1241781
crossref_primary_10_1002_anie_202101167
crossref_primary_10_1080_14756366_2017_1302441
crossref_primary_10_1007_s00044_023_03043_9
crossref_primary_10_1016_j_colsurfa_2024_133711
crossref_primary_10_3390_ijms21020598
crossref_primary_10_1080_14756366_2022_2143496
crossref_primary_10_1186_s12900_018_0093_4
crossref_primary_10_3390_ijms22031120
crossref_primary_10_1016_j_bioorg_2017_08_017
crossref_primary_10_1016_j_bmc_2019_115090
crossref_primary_10_1016_j_biopha_2025_118396
crossref_primary_10_1016_j_ejmech_2019_02_044
crossref_primary_10_4155_fmc_2021_0222
crossref_primary_10_1016_j_bioorg_2018_01_023
crossref_primary_10_1016_j_bioorg_2018_01_021
crossref_primary_10_1002_cctc_202300491
crossref_primary_10_3390_metabo10050200
crossref_primary_10_1002_cmdc_202400063
crossref_primary_10_3390_molecules27020545
crossref_primary_10_1080_14756366_2016_1221825
crossref_primary_10_1016_j_ejmech_2019_111638
crossref_primary_10_3390_cancers15215225
crossref_primary_10_1016_j_bioorg_2025_108408
ContentType Journal Article
Copyright 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Copyright_xml – notice: 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1042/BCJ20160115
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1470-8728
ExternalDocumentID 27407171
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-~X
0R~
23N
2WC
4.4
53G
5GY
5RE
6J9
79B
A8Z
AABGO
AAHRG
ABJNI
ABPPZ
ABRJW
ACGFO
ACGFS
ACNCT
ADBBV
AEGXH
AENEX
AIAGR
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CGR
CS3
CUY
CVF
DU5
E3Z
EBD
EBS
ECM
EIF
EJD
EMOBN
F5P
H13
HH6
HZ~
K-O
L7B
ML-
MV1
N9A
NPM
NTEUP
O9-
OK1
P2P
RHI
RNS
RPM
RPO
SV3
TR2
TWZ
WH7
XSW
Y6R
YNY
~02
~KM
7X8
ESTFP
ID FETCH-LOGICAL-c355t-1b3e5445394fc5e68a55b82924b3663cc964caee95d18af78c3e7c0c90d1d48f2
IEDL.DBID 7X8
ISICitedReferencesCount 759
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393707500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1470-8728
IngestDate Mon Sep 08 03:07:22 EDT 2025
Wed Feb 19 02:42:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords X-ray crystallography
carbonic anhydrase
CO2 capture
enzyme inhibitor
metalloenzyme
drug
Language English
License 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-1b3e5445394fc5e68a55b82924b3663cc964caee95d18af78c3e7c0c90d1d48f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 27407171
PQID 1804198681
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1804198681
pubmed_primary_27407171
PublicationCentury 2000
PublicationDate 2016-07-15
PublicationDateYYYYMMDD 2016-07-15
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biochemical journal
PublicationTitleAlternate Biochem J
PublicationYear 2016
SSID ssj0014040
Score 2.6734693
SecondaryResourceType review_article
Snippet Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2023
SubjectTerms Animals
Carbon Dioxide - metabolism
Carbonic Anhydrase Inhibitors - pharmacology
Carbonic Anhydrases - chemistry
Carbonic Anhydrases - metabolism
Crystallography, X-Ray
Enzyme Activation - drug effects
Humans
Structure-Activity Relationship
Title Structure and function of carbonic anhydrases
URI https://www.ncbi.nlm.nih.gov/pubmed/27407171
https://www.proquest.com/docview/1804198681
Volume 473
WOSCitedRecordID wos000393707500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_qBH3xY_NjflFBfCtrmqRNn2QOh4iOgR_sraSXFH2wne0m7L_30nbsSRB8yUsItJdL7nd3ud8RcqX9wKdGJC7nkLoc0GFN0Kq4EDLBtKcoVAG3t8dwNJKTSTRuAm5l86xyeSdWF7XOwcbIe9QS5UQykPRm-uXarlE2u9q00FgnLYZQxmp1OFllEbhXF0Ty0MNT78umPg_1tHc7ePAtuRql4ndsWdmY4e5_v26P7DTo0unX6rBP1kzWJp1-hp7158K5dqr3nlUgvU22Bstebx3iPlc0svPCOCrTjjV2dsOcPHVAFYmlz8WJ94Uu0OiVB-R1ePcyuHebRgouIJyYuTRhxpLusIinIEwglRCJ9NH1ShgiDoAo4KCMiYSmUqWhBGZC8CDyNNVcpv4h2cjyzBwTR2muuAFDbQUsgi-ctAx2fiojDlqwLrlcCijGf7DZB5WZfF7GKxF1yVEt5XhaM2rE6Bpbv5Ke_GH1Kdm2O2fjq1SckVaKx9Sck034nn2UxUWlATiOxk8__ke5jg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+function+of+carbonic+anhydrases&rft.jtitle=Biochemical+journal&rft.au=Supuran%2C+Claudiu+T&rft.date=2016-07-15&rft.eissn=1470-8728&rft.volume=473&rft.issue=14&rft.spage=2023&rft_id=info:doi/10.1042%2FBCJ20160115&rft_id=info%3Apmid%2F27407171&rft_id=info%3Apmid%2F27407171&rft.externalDocID=27407171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8728&client=summon