Structure and function of carbonic anhydrases
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding...
Saved in:
| Published in: | Biochemical journal Vol. 473; no. 14; p. 2023 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
15.07.2016
|
| Subjects: | |
| ISSN: | 1470-8728, 1470-8728 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding of the structure-function relationship in this superfamily of proteins. A metal hydroxide nucleophilic species of the enzyme, and a unique active site architecture, with half of it hydrophilic and the opposing part hydrophobic, allow these enzymes to act as some of the most effective catalysts known in Nature. The CA activation and inhibition mechanisms are also known in detail, with a large number of new inhibitor classes being described in the last years. Apart from the zinc binders, some classes of inhibitors anchor to the metal ion coordinated nucleophile, others occlude the entrance of the active site cavity and more recently, compounds binding outside the active site were described. CA inhibition has therapeutic applications for drugs acting as diuretics, antiepileptics, antiglaucoma, antiobesity and antitumour agents. Targeting such enzymes from pathogens may lead to novel anti-infectives. Successful structure-based drug design campaigns allowed the discovery of highly isoform selective CA inhibitors (CAIs), which may lead to a new generation of drugs targeting these widespread enzymes. The use of CAs in CO2 capture processes for mitigating the global temperature rise has also been investigated more recently. |
|---|---|
| AbstractList | Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding of the structure-function relationship in this superfamily of proteins. A metal hydroxide nucleophilic species of the enzyme, and a unique active site architecture, with half of it hydrophilic and the opposing part hydrophobic, allow these enzymes to act as some of the most effective catalysts known in Nature. The CA activation and inhibition mechanisms are also known in detail, with a large number of new inhibitor classes being described in the last years. Apart from the zinc binders, some classes of inhibitors anchor to the metal ion coordinated nucleophile, others occlude the entrance of the active site cavity and more recently, compounds binding outside the active site were described. CA inhibition has therapeutic applications for drugs acting as diuretics, antiepileptics, antiglaucoma, antiobesity and antitumour agents. Targeting such enzymes from pathogens may lead to novel anti-infectives. Successful structure-based drug design campaigns allowed the discovery of highly isoform selective CA inhibitors (CAIs), which may lead to a new generation of drugs targeting these widespread enzymes. The use of CAs in CO2 capture processes for mitigating the global temperature rise has also been investigated more recently.Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding of the structure-function relationship in this superfamily of proteins. A metal hydroxide nucleophilic species of the enzyme, and a unique active site architecture, with half of it hydrophilic and the opposing part hydrophobic, allow these enzymes to act as some of the most effective catalysts known in Nature. The CA activation and inhibition mechanisms are also known in detail, with a large number of new inhibitor classes being described in the last years. Apart from the zinc binders, some classes of inhibitors anchor to the metal ion coordinated nucleophile, others occlude the entrance of the active site cavity and more recently, compounds binding outside the active site were described. CA inhibition has therapeutic applications for drugs acting as diuretics, antiepileptics, antiglaucoma, antiobesity and antitumour agents. Targeting such enzymes from pathogens may lead to novel anti-infectives. Successful structure-based drug design campaigns allowed the discovery of highly isoform selective CA inhibitors (CAIs), which may lead to a new generation of drugs targeting these widespread enzymes. The use of CAs in CO2 capture processes for mitigating the global temperature rise has also been investigated more recently. Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding of the structure-function relationship in this superfamily of proteins. A metal hydroxide nucleophilic species of the enzyme, and a unique active site architecture, with half of it hydrophilic and the opposing part hydrophobic, allow these enzymes to act as some of the most effective catalysts known in Nature. The CA activation and inhibition mechanisms are also known in detail, with a large number of new inhibitor classes being described in the last years. Apart from the zinc binders, some classes of inhibitors anchor to the metal ion coordinated nucleophile, others occlude the entrance of the active site cavity and more recently, compounds binding outside the active site were described. CA inhibition has therapeutic applications for drugs acting as diuretics, antiepileptics, antiglaucoma, antiobesity and antitumour agents. Targeting such enzymes from pathogens may lead to novel anti-infectives. Successful structure-based drug design campaigns allowed the discovery of highly isoform selective CA inhibitors (CAIs), which may lead to a new generation of drugs targeting these widespread enzymes. The use of CAs in CO2 capture processes for mitigating the global temperature rise has also been investigated more recently. |
| Author | Supuran, Claudiu T |
| Author_xml | – sequence: 1 givenname: Claudiu T surname: Supuran fullname: Supuran, Claudiu T email: claudiu.supuran@unifi.it organization: Neurofarba Department and Laboratorio di Chimica Bioinorganica, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy claudiu.supuran@unifi.it |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27407171$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLxDAUhYOMOA9duZcu3VTvTZMmXWoZXwy4UNclvb3FSicdk3Yx_94BR3B1PjgfB85SzPzgWYhLhBsEJW_vyxcJmAOiPhELVAZSa6Sd_eO5WMb4BYAKFJyJuTQKDBpciPRtDBONU-DE-SZpJ09jN_hkaBNyoR58R4fic98EFzmei9PW9ZEvjrkSHw_r9_Ip3bw-Ppd3m5QyrccU64y1UjorVEuac-u0rq0spKqzPM-IilyRYy50g9a1xlLGhoAKaLBRtpUrcf27uwvD98RxrLZdJO5753mYYoUWFBY2t3hQr47qVG-5qXah27qwr_4uyh_D8lK1 |
| CitedBy_id | crossref_primary_10_1016_j_bioorg_2018_05_015 crossref_primary_10_3390_ijms22168723 crossref_primary_10_1002_cmdc_201800180 crossref_primary_10_1002_jbt_21872 crossref_primary_10_1016_j_jsb_2018_12_009 crossref_primary_10_1080_14756366_2020_1755852 crossref_primary_10_1080_14756366_2022_2124409 crossref_primary_10_1016_j_bmcl_2021_128147 crossref_primary_10_1016_j_procbio_2018_08_017 crossref_primary_10_1021_jacs_5c05198 crossref_primary_10_3390_ijms21103562 crossref_primary_10_1080_14756366_2022_2092729 crossref_primary_10_1016_j_ejmech_2020_112219 crossref_primary_10_1371_journal_pone_0249866 crossref_primary_10_3390_ijms21082764 crossref_primary_10_1007_s44411_025_00288_1 crossref_primary_10_3390_ijms23147685 crossref_primary_10_1016_j_bioorg_2018_05_027 crossref_primary_10_1016_j_cbi_2024_111284 crossref_primary_10_1080_14756366_2018_1463221 crossref_primary_10_1016_j_bioorg_2017_12_034 crossref_primary_10_1080_14756366_2022_2077333 crossref_primary_10_3390_ijms24119610 crossref_primary_10_3390_molecules27051604 crossref_primary_10_1016_j_heliyon_2023_e22183 crossref_primary_10_1080_14756366_2016_1235042 crossref_primary_10_3390_metabo9020026 crossref_primary_10_1016_j_bioorg_2020_104204 crossref_primary_10_1080_14756366_2017_1284069 crossref_primary_10_1002_jobm_202300323 crossref_primary_10_1016_j_ejmech_2019_111811 crossref_primary_10_1002_jbt_23704 crossref_primary_10_1016_j_jcrysgro_2021_126113 crossref_primary_10_1016_j_molstruc_2022_133048 crossref_primary_10_1107_S2053230X18018344 crossref_primary_10_1080_14756366_2020_1752201 crossref_primary_10_2174_0118715206290722240125112447 crossref_primary_10_1016_j_bbabio_2024_149149 crossref_primary_10_1080_14756366_2021_1956913 crossref_primary_10_3390_life13030735 crossref_primary_10_1016_j_bmc_2017_07_056 crossref_primary_10_1016_j_bmc_2019_03_001 crossref_primary_10_1093_protein_gzab021 crossref_primary_10_3390_molecules27030816 crossref_primary_10_3390_molecules29245911 crossref_primary_10_3390_ijms24119401 crossref_primary_10_1080_14756366_2023_2287420 crossref_primary_10_1124_pharmrev_124_001125 crossref_primary_10_1016_j_bbrc_2021_02_036 crossref_primary_10_1002_ardp_202200562 crossref_primary_10_1080_14756366_2020_1715388 crossref_primary_10_1016_j_bcab_2023_102755 crossref_primary_10_1016_j_bioorg_2020_104237 crossref_primary_10_1038_s41540_019_0105_4 crossref_primary_10_1080_14756366_2023_2203389 crossref_primary_10_1155_2017_9290478 crossref_primary_10_1002_ejoc_202001330 crossref_primary_10_1007_s11030_022_10527_0 crossref_primary_10_1016_j_jsb_2021_107700 crossref_primary_10_1016_j_biochi_2019_03_009 crossref_primary_10_1186_s12886_021_02079_y crossref_primary_10_3389_fmolb_2023_1326633 crossref_primary_10_1002_cbdv_202401978 crossref_primary_10_1039_D5MD00344J crossref_primary_10_3390_ijms23010461 crossref_primary_10_1016_j_ejmech_2020_112449 crossref_primary_10_3390_metabo10030093 crossref_primary_10_3390_md15090270 crossref_primary_10_1016_j_ejmech_2023_115538 crossref_primary_10_1080_14756366_2022_2080818 crossref_primary_10_1021_jacs_0c05383 crossref_primary_10_2147_JEP_S265620 crossref_primary_10_2174_0118715206373602250318062414 crossref_primary_10_1016_j_colsurfa_2023_132882 crossref_primary_10_1080_14756366_2022_2080816 crossref_primary_10_1080_14756366_2020_1800670 crossref_primary_10_3390_md17030146 crossref_primary_10_1002_cmdc_201800015 crossref_primary_10_1080_14756366_2022_2078970 crossref_primary_10_1016_j_bioorg_2023_106399 crossref_primary_10_1007_s10118_018_2047_5 crossref_primary_10_1016_j_bioorg_2017_12_009 crossref_primary_10_1080_14756366_2017_1355794 crossref_primary_10_1080_07391102_2019_1623075 crossref_primary_10_1016_j_str_2023_05_015 crossref_primary_10_1080_14756366_2019_1666836 crossref_primary_10_3390_ph15121453 crossref_primary_10_1080_14756366_2017_1388233 crossref_primary_10_1080_14756366_2017_1355306 crossref_primary_10_1002_cmdc_202300267 crossref_primary_10_1080_14756366_2017_1355307 crossref_primary_10_1016_j_bbabio_2019_06_003 crossref_primary_10_1016_j_bioorg_2019_102984 crossref_primary_10_1080_01480545_2018_1463242 crossref_primary_10_1038_s41598_017_06796_7 crossref_primary_10_1016_j_ejmech_2020_112300 crossref_primary_10_14233_ajomc_2021_AJOMC_P354 crossref_primary_10_1080_17460441_2022_2039619 crossref_primary_10_1002_cmdc_202100725 crossref_primary_10_1002_jbt_21971 crossref_primary_10_1016_j_bmc_2017_05_007 crossref_primary_10_1002_brb3_1130 crossref_primary_10_1021_acs_jmedchem_6b01804 crossref_primary_10_1557_s43579_025_00810_0 crossref_primary_10_1080_13543776_2020_1811853 crossref_primary_10_1016_j_bioorg_2019_01_060 crossref_primary_10_1016_j_bmc_2017_01_032 crossref_primary_10_3390_molecules27134076 crossref_primary_10_1016_j_bioorg_2023_106492 crossref_primary_10_1155_2021_9998697 crossref_primary_10_1002_pro_3347 crossref_primary_10_1016_j_bmc_2018_07_011 crossref_primary_10_1016_j_bmcl_2016_12_035 crossref_primary_10_1016_j_ejphar_2024_176677 crossref_primary_10_1016_j_bmc_2017_05_001 crossref_primary_10_1007_s00253_019_10015_w crossref_primary_10_1016_j_bmc_2017_01_031 crossref_primary_10_3390_ijms20030467 crossref_primary_10_1080_14756366_2018_1564045 crossref_primary_10_1016_j_ejmech_2020_112875 crossref_primary_10_1080_13543776_2019_1671353 crossref_primary_10_1016_j_jpba_2017_01_023 crossref_primary_10_1080_07391102_2020_1865203 crossref_primary_10_1080_14756366_2019_1683007 crossref_primary_10_1002_ardp_201700314 crossref_primary_10_1016_j_bmc_2017_05_014 crossref_primary_10_1021_acssuschemeng_5c05633 crossref_primary_10_3390_pathogens5020044 crossref_primary_10_1007_s11356_023_28122_7 crossref_primary_10_1016_j_ijbiomac_2024_135010 crossref_primary_10_1186_s12934_024_02463_5 crossref_primary_10_3390_ijms19072128 crossref_primary_10_3390_ijms222011283 crossref_primary_10_3390_molecules26164718 crossref_primary_10_1016_j_bioorg_2017_12_010 crossref_primary_10_1016_j_bioorg_2025_108803 crossref_primary_10_3390_catal11070819 crossref_primary_10_1016_j_ejmech_2021_113793 crossref_primary_10_1016_j_bioorg_2018_11_003 crossref_primary_10_3390_metabo10040136 crossref_primary_10_1002_ardp_202300309 crossref_primary_10_1016_j_bmc_2024_117933 crossref_primary_10_3390_cells14100693 crossref_primary_10_1080_10406638_2022_2157027 crossref_primary_10_1021_acs_jmedchem_5c01421 crossref_primary_10_1002_ardp_70041 crossref_primary_10_3390_ijms24044251 crossref_primary_10_1007_s00449_021_02667_8 crossref_primary_10_1134_S1995078020010140 crossref_primary_10_3390_ijms22094324 crossref_primary_10_1016_j_ejmech_2024_116434 crossref_primary_10_1080_14756366_2021_1998026 crossref_primary_10_3390_f15111962 crossref_primary_10_1080_14756366_2017_1375485 crossref_primary_10_1016_j_ejmech_2020_113046 crossref_primary_10_1016_j_bioorg_2018_11_014 crossref_primary_10_1515_znc_2024_0224 crossref_primary_10_1007_s10620_021_06985_5 crossref_primary_10_1016_j_seppur_2021_119446 crossref_primary_10_1080_14728222_2023_2263914 crossref_primary_10_3390_metabo10010039 crossref_primary_10_1080_13543776_2024_2349739 crossref_primary_10_1016_j_tplants_2023_07_007 crossref_primary_10_1080_14756366_2020_1722658 crossref_primary_10_1111_tpj_14638 crossref_primary_10_1016_j_procbio_2023_02_007 crossref_primary_10_3390_molecules28207069 crossref_primary_10_1002_cem_3189 crossref_primary_10_1029_2020JG005966 crossref_primary_10_1093_ismejo_wraf034 crossref_primary_10_1002_cbdv_202300611 crossref_primary_10_1016_j_ijbiomac_2025_146776 crossref_primary_10_3390_metabo7030048 crossref_primary_10_1080_14756366_2020_1801674 crossref_primary_10_1080_14756366_2022_2036986 crossref_primary_10_1002_cbdv_202301824 crossref_primary_10_1080_14756366_2018_1450400 crossref_primary_10_1016_j_bmc_2017_02_037 crossref_primary_10_1002_anie_201913436 crossref_primary_10_1080_14756366_2020_1838501 crossref_primary_10_1039_D3SC04208A crossref_primary_10_3390_molecules23112911 crossref_primary_10_1107_S2059798320007202 crossref_primary_10_1038_s41586_023_06716_y crossref_primary_10_1016_j_bmcl_2016_11_027 crossref_primary_10_3389_fpls_2023_1129130 crossref_primary_10_3390_ijms21051842 crossref_primary_10_1016_j_procbio_2019_12_018 crossref_primary_10_3390_ijms17111820 crossref_primary_10_1002_chem_201700241 crossref_primary_10_1002_ange_202103211 crossref_primary_10_1155_2021_6926082 crossref_primary_10_1016_j_cej_2022_134957 crossref_primary_10_1016_j_bmc_2017_04_007 crossref_primary_10_1002_chem_201704605 crossref_primary_10_1080_17460441_2020_1743676 crossref_primary_10_1016_j_bmc_2017_02_032 crossref_primary_10_1080_14756366_2021_1919891 crossref_primary_10_1016_j_bioorg_2020_104618 crossref_primary_10_1039_D5MD00208G crossref_primary_10_1016_j_comptc_2017_03_041 crossref_primary_10_3390_cancers14205079 crossref_primary_10_1021_acsmedchemlett_7b00387 crossref_primary_10_1002_ardp_202400064 crossref_primary_10_1038_s41416_020_0804_z crossref_primary_10_3390_md17040238 crossref_primary_10_1016_j_bioorg_2018_06_002 crossref_primary_10_1016_j_bioorg_2023_106621 crossref_primary_10_1016_j_jchromb_2017_08_040 crossref_primary_10_1002_jmr_2982 crossref_primary_10_1007_s00044_022_02943_6 crossref_primary_10_1016_j_bioorg_2018_04_010 crossref_primary_10_3390_ijms25179716 crossref_primary_10_1016_j_bmc_2022_117111 crossref_primary_10_1080_14756366_2016_1232254 crossref_primary_10_1080_14756366_2016_1232255 crossref_primary_10_1080_14756366_2019_1705291 crossref_primary_10_1007_s11094_023_02975_1 crossref_primary_10_1002_cbdv_202401225 crossref_primary_10_1021_acs_jmedchem_5c00526 crossref_primary_10_1186_s40164_025_00690_z crossref_primary_10_3390_metabo7040056 crossref_primary_10_3390_ijms22105190 crossref_primary_10_1016_j_molstruc_2020_128911 crossref_primary_10_3390_molecules28010091 crossref_primary_10_1016_j_ica_2017_03_038 crossref_primary_10_1016_j_bioorg_2019_103544 crossref_primary_10_1134_S0006350924700477 crossref_primary_10_3389_fmicb_2019_02751 crossref_primary_10_1016_j_bmc_2023_117467 crossref_primary_10_1016_j_ejmech_2021_113621 crossref_primary_10_1080_14756366_2022_2091557 crossref_primary_10_1007_s40518_020_00149_1 crossref_primary_10_3390_ijms19123946 crossref_primary_10_1016_j_jics_2022_100339 crossref_primary_10_1080_13543776_2021_1923694 crossref_primary_10_3390_molecules28104020 crossref_primary_10_1080_14756366_2017_1387544 crossref_primary_10_1002_cmdc_202200658 crossref_primary_10_1016_j_ejmech_2017_03_026 crossref_primary_10_1002_ange_202101167 crossref_primary_10_1016_j_ab_2018_05_001 crossref_primary_10_1016_j_abb_2024_110182 crossref_primary_10_1016_j_bioorg_2020_103739 crossref_primary_10_1016_j_enzmictec_2018_03_009 crossref_primary_10_4155_fmc_2017_0223 crossref_primary_10_3390_ph15091134 crossref_primary_10_3390_molecules24132418 crossref_primary_10_3390_molecules27082544 crossref_primary_10_3390_biom10111570 crossref_primary_10_1002_cctc_202400356 crossref_primary_10_1039_D5MD00348B crossref_primary_10_3390_catal10091008 crossref_primary_10_1111_pre_12402 crossref_primary_10_1038_s41589_022_01043_1 crossref_primary_10_1016_j_bioorg_2018_12_028 crossref_primary_10_1002_ardp_70094 crossref_primary_10_1155_2018_2906519 crossref_primary_10_1080_14756366_2019_1605991 crossref_primary_10_1016_j_ejmech_2025_117706 crossref_primary_10_1073_pnas_1909498116 crossref_primary_10_1016_j_biotechadv_2025_108644 crossref_primary_10_3390_ijms21051761 crossref_primary_10_3390_ijms21165697 crossref_primary_10_1080_14756366_2018_1425687 crossref_primary_10_1016_j_biopha_2025_117987 crossref_primary_10_1080_14756366_2021_1897802 crossref_primary_10_1016_j_phrs_2020_104964 crossref_primary_10_1016_j_bmc_2017_03_013 crossref_primary_10_1016_j_rechem_2022_100656 crossref_primary_10_1016_j_bmc_2017_03_017 crossref_primary_10_1080_14756366_2023_2291336 crossref_primary_10_3390_ijms21072560 crossref_primary_10_1080_14756366_2019_1710503 crossref_primary_10_1080_14756366_2023_2166503 crossref_primary_10_1002_ardp_202300205 crossref_primary_10_1016_j_ejmech_2021_113875 crossref_primary_10_3390_plants11141882 crossref_primary_10_1007_s10337_020_03973_1 crossref_primary_10_1007_s12010_024_04947_x crossref_primary_10_1080_14756366_2017_1386660 crossref_primary_10_1007_s10709_020_00112_4 crossref_primary_10_1080_17460441_2017_1253677 crossref_primary_10_1016_j_bioorg_2019_103222 crossref_primary_10_1016_j_ejmech_2018_12_049 crossref_primary_10_1016_j_carres_2019_03_001 crossref_primary_10_1371_journal_ppat_1008707 crossref_primary_10_3390_antiox12122044 crossref_primary_10_3390_md18080411 crossref_primary_10_3390_metabo8010019 crossref_primary_10_1080_14756366_2019_1700240 crossref_primary_10_1080_14756366_2020_1828401 crossref_primary_10_1016_j_bmc_2017_03_026 crossref_primary_10_1021_acsmedchemlett_5c00443 crossref_primary_10_1016_j_bmc_2017_03_027 crossref_primary_10_1038_s41598_023_41012_9 crossref_primary_10_3390_molecules23010153 crossref_primary_10_1080_17425255_2020_1743679 crossref_primary_10_1080_14756366_2019_1653290 crossref_primary_10_1007_s00338_022_02278_z crossref_primary_10_1002_chem_201800941 crossref_primary_10_1080_14756366_2022_2155816 crossref_primary_10_1016_j_bmc_2020_115586 crossref_primary_10_1016_j_ejmcr_2024_100131 crossref_primary_10_1002_chem_201805039 crossref_primary_10_1002_slct_202304327 crossref_primary_10_1016_j_ijbiomac_2024_134410 crossref_primary_10_3390_molecules23010017 crossref_primary_10_1093_mtomcs_mfad056 crossref_primary_10_3390_en16227571 crossref_primary_10_1016_j_bioorg_2018_01_003 crossref_primary_10_1039_D4RA06290F crossref_primary_10_3390_molecules24213987 crossref_primary_10_1007_s11274_018_2536_2 crossref_primary_10_1016_j_comptc_2021_113188 crossref_primary_10_1038_s41570_021_00339_5 crossref_primary_10_1016_j_phymed_2024_155928 crossref_primary_10_1080_07391102_2023_2175259 crossref_primary_10_1002_smtd_202400563 crossref_primary_10_1107_S2059798322000079 crossref_primary_10_1016_j_ejmech_2021_114026 crossref_primary_10_1080_14756366_2019_1654470 crossref_primary_10_1371_journal_pone_0266890 crossref_primary_10_3390_metabo8020037 crossref_primary_10_1016_j_ejmech_2025_117619 crossref_primary_10_3390_metabo8020036 crossref_primary_10_1080_14756366_2017_1417277 crossref_primary_10_1016_j_ijggc_2021_103465 crossref_primary_10_1016_j_bioorg_2018_02_029 crossref_primary_10_1016_j_bioorg_2018_09_013 crossref_primary_10_1016_j_jcou_2020_02_005 crossref_primary_10_3390_nu13124456 crossref_primary_10_3390_antibiotics12010142 crossref_primary_10_3390_pharmaceutics16030401 crossref_primary_10_1016_j_geoen_2025_213958 crossref_primary_10_1080_13543776_2019_1629419 crossref_primary_10_1080_14756366_2023_2201407 crossref_primary_10_1007_s00214_021_02839_5 crossref_primary_10_1080_14756366_2023_2201402 crossref_primary_10_1016_j_bioorg_2022_105888 crossref_primary_10_1080_14756366_2023_2201403 crossref_primary_10_1080_14756366_2020_1786820 crossref_primary_10_3390_ijms20092354 crossref_primary_10_1016_j_jclepro_2019_119138 crossref_primary_10_3390_molecules25071748 crossref_primary_10_1007_s11099_017_0685_4 crossref_primary_10_1016_j_biortech_2022_128174 crossref_primary_10_1080_14756366_2021_2024528 crossref_primary_10_1002_cmdc_202500080 crossref_primary_10_1016_j_ejmech_2022_114793 crossref_primary_10_3390_metabo8020025 crossref_primary_10_1016_j_pharmthera_2023_108383 crossref_primary_10_1016_j_bioorg_2018_02_015 crossref_primary_10_3390_molecules25112564 crossref_primary_10_1016_j_bioorg_2017_07_010 crossref_primary_10_1002_ghg_1738 crossref_primary_10_1016_j_bmc_2017_03_054 crossref_primary_10_1016_j_ejmech_2017_01_017 crossref_primary_10_1016_j_bioorg_2018_09_028 crossref_primary_10_1016_j_molstruc_2023_136061 crossref_primary_10_3390_molecules22101642 crossref_primary_10_1016_j_bioorg_2019_103336 crossref_primary_10_1016_j_ejmech_2017_11_061 crossref_primary_10_1080_14756366_2017_1353502 crossref_primary_10_3390_md20110721 crossref_primary_10_1016_j_molstruc_2023_137277 crossref_primary_10_1080_13543776_2018_1523897 crossref_primary_10_15407_biotech16_05_005 crossref_primary_10_1371_journal_pone_0207417 crossref_primary_10_3389_fnins_2021_662064 crossref_primary_10_1016_j_bioorg_2018_10_005 crossref_primary_10_1016_j_csag_2025_100068 crossref_primary_10_1016_j_bioorg_2018_10_006 crossref_primary_10_1080_14756366_2018_1466120 crossref_primary_10_1002_slct_202300039 crossref_primary_10_1016_j_marpolbul_2021_112075 crossref_primary_10_3390_molecules22030421 crossref_primary_10_3389_fmicb_2020_00742 crossref_primary_10_1016_j_ejmech_2021_113352 crossref_primary_10_1088_2516_1075_acb02c crossref_primary_10_3390_ijms21218066 crossref_primary_10_3390_molecules25225483 crossref_primary_10_1021_acs_jmedchem_5c01584 crossref_primary_10_1002_bab_2534 crossref_primary_10_1128_JB_00509_19 crossref_primary_10_1016_j_bmc_2017_03_063 crossref_primary_10_3389_fmicb_2021_629163 crossref_primary_10_1016_j_bbabio_2019_01_006 crossref_primary_10_1080_14756366_2016_1254207 crossref_primary_10_1016_j_jbc_2023_102899 crossref_primary_10_1080_14756366_2017_1327522 crossref_primary_10_1080_14756366_2020_1724995 crossref_primary_10_3390_cimb47060457 crossref_primary_10_1080_14756366_2022_2036137 crossref_primary_10_1080_14756366_2020_1863958 crossref_primary_10_1080_17460441_2022_2117295 crossref_primary_10_1080_14756366_2022_2052868 crossref_primary_10_1016_j_ejmech_2021_113589 crossref_primary_10_1016_j_urolonc_2021_09_020 crossref_primary_10_1080_14756366_2022_2163243 crossref_primary_10_1080_14756366_2022_2164574 crossref_primary_10_3390_pathogens6030030 crossref_primary_10_3390_ijms20102447 crossref_primary_10_1080_14756366_2020_1786821 crossref_primary_10_1080_13543776_2018_1519023 crossref_primary_10_1002_ardp_202400482 crossref_primary_10_1016_j_chemosphere_2022_134419 crossref_primary_10_1016_j_ccr_2020_213550 crossref_primary_10_1007_s11356_023_29817_7 crossref_primary_10_1080_14756366_2022_2131780 crossref_primary_10_1113_JP273309 crossref_primary_10_3389_fmicb_2018_02490 crossref_primary_10_3390_ijms17071150 crossref_primary_10_1080_14756366_2018_1516652 crossref_primary_10_2174_0929867329666220318100019 crossref_primary_10_3390_ijms19071851 crossref_primary_10_3390_molecules23010066 crossref_primary_10_3390_ijms23020957 crossref_primary_10_1016_j_bioorg_2022_106309 crossref_primary_10_1016_j_bmc_2016_11_045 crossref_primary_10_1080_13543776_2022_2083502 crossref_primary_10_1080_14756366_2019_1698036 crossref_primary_10_1080_17460441_2019_1567488 crossref_primary_10_1016_j_ejmech_2025_117578 crossref_primary_10_1080_14756366_2016_1243536 crossref_primary_10_1186_s13567_018_0583_1 crossref_primary_10_1016_j_plaphy_2024_109301 crossref_primary_10_1080_13543776_2016_1230202 crossref_primary_10_3389_fphys_2018_00319 crossref_primary_10_3390_biology12060770 crossref_primary_10_3390_ijms24098050 crossref_primary_10_1016_j_ejmech_2021_113490 crossref_primary_10_1002_cmdc_202400345 crossref_primary_10_1080_14756366_2021_1887171 crossref_primary_10_1080_14756366_2019_1706089 crossref_primary_10_1016_j_bmcl_2023_129411 crossref_primary_10_1080_13543776_2018_1497161 crossref_primary_10_1080_13543776_2018_1497160 crossref_primary_10_3390_life13020332 crossref_primary_10_1002_chem_202103527 crossref_primary_10_3390_pharmaceutics15061733 crossref_primary_10_1007_s00425_020_03553_5 crossref_primary_10_1016_j_ejmech_2019_111586 crossref_primary_10_1016_j_jinorgbio_2024_112689 crossref_primary_10_1016_j_mocell_2025_100226 crossref_primary_10_1107_S2059798321009037 crossref_primary_10_1080_14756366_2016_1244533 crossref_primary_10_1111_cbdd_14351 crossref_primary_10_1016_j_bmc_2016_10_023 crossref_primary_10_1039_D5DT01161B crossref_primary_10_1016_j_cbpa_2024_102475 crossref_primary_10_1016_j_ejmech_2021_113360 crossref_primary_10_1039_D3RA08618F crossref_primary_10_1080_14756366_2018_1468530 crossref_primary_10_1080_13543776_2023_2245971 crossref_primary_10_1039_D2FO02596E crossref_primary_10_1016_j_mocell_2024_100165 crossref_primary_10_1002_bab_2780 crossref_primary_10_1080_14756366_2023_2178430 crossref_primary_10_3390_inorganics10110200 crossref_primary_10_1016_j_jcrysgro_2021_126096 crossref_primary_10_1038_s41467_025_62366_w crossref_primary_10_1080_13543784_2018_1548608 crossref_primary_10_1002_1873_3468_15098 crossref_primary_10_1007_s12274_024_6489_5 crossref_primary_10_1073_pnas_2107425118 crossref_primary_10_1089_jop_2022_0180 crossref_primary_10_1016_j_jcou_2021_101565 crossref_primary_10_1016_j_ab_2017_01_022 crossref_primary_10_1080_14756366_2022_2037579 crossref_primary_10_3390_biom9110700 crossref_primary_10_1039_D1RA07377J crossref_primary_10_1016_j_bmc_2016_07_035 crossref_primary_10_1038_s41598_025_10048_4 crossref_primary_10_1080_14756366_2017_1316719 crossref_primary_10_3390_molecules25051036 crossref_primary_10_1007_s11033_021_06753_8 crossref_primary_10_1080_14756366_2018_1555156 crossref_primary_10_1111_apha_13068 crossref_primary_10_3390_molecules23123112 crossref_primary_10_1080_17460441_2021_1922384 crossref_primary_10_1186_s12915_021_01039_8 crossref_primary_10_1016_j_ejmech_2019_111642 crossref_primary_10_1369_00221554211050133 crossref_primary_10_3390_metabo11040225 crossref_primary_10_1080_14756366_2021_1959573 crossref_primary_10_1002_ardp_202000375 crossref_primary_10_1016_j_ejmech_2019_111768 crossref_primary_10_1080_14756366_2019_1697250 crossref_primary_10_3390_ijms21114175 crossref_primary_10_3390_molecules25102269 crossref_primary_10_1016_j_heliyon_2023_e18885 crossref_primary_10_1016_j_ccst_2025_100511 crossref_primary_10_4155_fmc_2021_0207 crossref_primary_10_1080_14756366_2020_1788009 crossref_primary_10_1016_j_ijbiomac_2024_131548 crossref_primary_10_1098_rsob_220254 crossref_primary_10_1080_14756366_2017_1316720 crossref_primary_10_3390_metabo10100412 crossref_primary_10_1002_ardp_202200019 crossref_primary_10_3390_ijms21155277 crossref_primary_10_1016_j_tibtech_2025_07_010 crossref_primary_10_1080_07391102_2021_1892527 crossref_primary_10_1073_pnas_2511786122 crossref_primary_10_3390_vaccines4040038 crossref_primary_10_1002_cmdc_202200056 crossref_primary_10_1002_chem_202402101 crossref_primary_10_1016_j_ejmech_2020_112745 crossref_primary_10_1002_cmdc_202000500 crossref_primary_10_1080_14756366_2023_2191163 crossref_primary_10_1080_14756366_2017_1368019 crossref_primary_10_1016_j_fuel_2025_135622 crossref_primary_10_1016_j_bmc_2016_11_039 crossref_primary_10_1042_BCJ20190177 crossref_primary_10_1080_07391102_2023_2188957 crossref_primary_10_1016_j_bmc_2016_12_040 crossref_primary_10_1080_14756366_2023_2191165 crossref_primary_10_1016_j_bioorg_2017_09_016 crossref_primary_10_1016_j_bmc_2016_12_047 crossref_primary_10_3390_jmse11101911 crossref_primary_10_3390_nano11041008 crossref_primary_10_1002_1873_3468_14475 crossref_primary_10_1016_j_bioorg_2025_108836 crossref_primary_10_1002_cmdc_202200085 crossref_primary_10_1080_14756366_2023_2270180 crossref_primary_10_1002_ange_201913436 crossref_primary_10_1016_j_bbabio_2021_148503 crossref_primary_10_1016_j_pharma_2021_03_001 crossref_primary_10_1080_13543776_2024_2332663 crossref_primary_10_1016_j_scitotenv_2019_06_446 crossref_primary_10_1016_j_bmc_2016_11_027 crossref_primary_10_1021_acs_jmedchem_8b00208 crossref_primary_10_1080_14756366_2017_1378192 crossref_primary_10_3390_microorganisms11061514 crossref_primary_10_1016_j_envres_2025_122801 crossref_primary_10_1016_j_bioorg_2019_103057 crossref_primary_10_1080_14756366_2018_1559840 crossref_primary_10_1016_j_ccr_2016_12_014 crossref_primary_10_1016_j_bioorg_2019_01_002 crossref_primary_10_1002_cmdc_202300680 crossref_primary_10_3389_fclim_2024_1440833 crossref_primary_10_4155_fmc_2023_0208 crossref_primary_10_1002_ardp_201900384 crossref_primary_10_1016_j_plantsci_2017_12_002 crossref_primary_10_1016_j_enzmictec_2025_110751 crossref_primary_10_3390_molecules28073220 crossref_primary_10_1038_s41598_021_94809_x crossref_primary_10_1080_14756366_2017_1356295 crossref_primary_10_4155_fmc_2023_0321 crossref_primary_10_3390_ijms26104507 crossref_primary_10_3389_fphys_2017_00169 crossref_primary_10_1007_s10646_021_02496_1 crossref_primary_10_1016_j_bmc_2017_08_047 crossref_primary_10_1080_14756366_2018_1538980 crossref_primary_10_3390_molecules25194405 crossref_primary_10_1016_j_rechem_2025_102605 crossref_primary_10_1080_14756366_2016_1220944 crossref_primary_10_1016_j_ejmech_2019_111600 crossref_primary_10_1016_j_ccst_2025_100417 crossref_primary_10_1016_j_molstruc_2023_136770 crossref_primary_10_3390_molecules23051045 crossref_primary_10_1080_14756366_2021_1972995 crossref_primary_10_1016_j_ejmech_2023_115707 crossref_primary_10_1080_14756366_2023_2249267 crossref_primary_10_1111_pin_12949 crossref_primary_10_1016_j_arabjc_2021_103037 crossref_primary_10_1016_j_greenca_2025_02_005 crossref_primary_10_1002_psc_3606 crossref_primary_10_1039_D4SC07359B crossref_primary_10_3390_ijms20010126 crossref_primary_10_1016_j_bioorg_2019_03_052 crossref_primary_10_1093_iob_obad016 crossref_primary_10_1016_j_bbrc_2024_150720 crossref_primary_10_1016_j_bioorg_2019_03_062 crossref_primary_10_1021_acsmedchemlett_5c00235 crossref_primary_10_1080_02713683_2022_2126861 crossref_primary_10_1016_j_bioorg_2018_09_007 crossref_primary_10_1016_j_cbi_2025_111746 crossref_primary_10_3390_ijms22020571 crossref_primary_10_1080_14756366_2016_1247058 crossref_primary_10_1002_anie_202103211 crossref_primary_10_1515_znc_2025_0038 crossref_primary_10_1080_17460441_2019_1651289 crossref_primary_10_1007_s10482_024_02054_9 crossref_primary_10_3389_fmolb_2024_1338528 crossref_primary_10_1080_14756366_2022_2121393 crossref_primary_10_1002_ardp_202400776 crossref_primary_10_1016_j_bbabio_2020_148254 crossref_primary_10_1007_s10930_022_10070_9 crossref_primary_10_1080_14756366_2017_1337759 crossref_primary_10_3390_d15060777 crossref_primary_10_3390_ph14080828 crossref_primary_10_7717_peerj_11059 crossref_primary_10_1016_j_jechem_2023_10_058 crossref_primary_10_1080_14756366_2019_1677638 crossref_primary_10_1080_14756366_2021_2004592 crossref_primary_10_3390_ijms25115853 crossref_primary_10_1080_14756366_2016_1241781 crossref_primary_10_1002_anie_202101167 crossref_primary_10_1080_14756366_2017_1302441 crossref_primary_10_1007_s00044_023_03043_9 crossref_primary_10_1016_j_colsurfa_2024_133711 crossref_primary_10_3390_ijms21020598 crossref_primary_10_1080_14756366_2022_2143496 crossref_primary_10_1186_s12900_018_0093_4 crossref_primary_10_3390_ijms22031120 crossref_primary_10_1016_j_bioorg_2017_08_017 crossref_primary_10_1016_j_bmc_2019_115090 crossref_primary_10_1016_j_biopha_2025_118396 crossref_primary_10_1016_j_ejmech_2019_02_044 crossref_primary_10_4155_fmc_2021_0222 crossref_primary_10_1016_j_bioorg_2018_01_023 crossref_primary_10_1016_j_bioorg_2018_01_021 crossref_primary_10_1002_cctc_202300491 crossref_primary_10_3390_metabo10050200 crossref_primary_10_1002_cmdc_202400063 crossref_primary_10_3390_molecules27020545 crossref_primary_10_1080_14756366_2016_1221825 crossref_primary_10_1016_j_ejmech_2019_111638 crossref_primary_10_3390_cancers15215225 crossref_primary_10_1016_j_bioorg_2025_108408 |
| ContentType | Journal Article |
| Copyright | 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society. |
| Copyright_xml | – notice: 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1042/BCJ20160115 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1470-8728 |
| ExternalDocumentID | 27407171 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- -DZ -~X 0R~ 23N 2WC 4.4 53G 5GY 5RE 6J9 79B A8Z AABGO AAHRG ABJNI ABPPZ ABRJW ACGFO ACGFS ACNCT ADBBV AEGXH AENEX AIAGR AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL CGR CS3 CUY CVF DU5 E3Z EBD EBS ECM EIF EJD EMOBN F5P H13 HH6 HZ~ K-O L7B ML- MV1 N9A NPM NTEUP O9- OK1 P2P RHI RNS RPM RPO SV3 TR2 TWZ WH7 XSW Y6R YNY ~02 ~KM 7X8 ESTFP |
| ID | FETCH-LOGICAL-c355t-1b3e5445394fc5e68a55b82924b3663cc964caee95d18af78c3e7c0c90d1d48f2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 759 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393707500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1470-8728 |
| IngestDate | Mon Sep 08 03:07:22 EDT 2025 Wed Feb 19 02:42:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | X-ray crystallography carbonic anhydrase CO2 capture enzyme inhibitor metalloenzyme drug |
| Language | English |
| License | 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c355t-1b3e5445394fc5e68a55b82924b3663cc964caee95d18af78c3e7c0c90d1d48f2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 27407171 |
| PQID | 1804198681 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1804198681 pubmed_primary_27407171 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-07-15 |
| PublicationDateYYYYMMDD | 2016-07-15 |
| PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Biochemical journal |
| PublicationTitleAlternate | Biochem J |
| PublicationYear | 2016 |
| SSID | ssj0014040 |
| Score | 2.6734693 |
| SecondaryResourceType | review_article |
| Snippet | Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2023 |
| SubjectTerms | Animals Carbon Dioxide - metabolism Carbonic Anhydrase Inhibitors - pharmacology Carbonic Anhydrases - chemistry Carbonic Anhydrases - metabolism Crystallography, X-Ray Enzyme Activation - drug effects Humans Structure-Activity Relationship |
| Title | Structure and function of carbonic anhydrases |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27407171 https://www.proquest.com/docview/1804198681 |
| Volume | 473 |
| WOSCitedRecordID | wos000393707500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_qBH3xY_NjflFBfCtrmqRNn2QOh4iOgR_sraSXFH2wne0m7L_30nbsSRB8yUsItJdL7nd3ud8RcqX9wKdGJC7nkLoc0GFN0Kq4EDLBtKcoVAG3t8dwNJKTSTRuAm5l86xyeSdWF7XOwcbIe9QS5UQykPRm-uXarlE2u9q00FgnLYZQxmp1OFllEbhXF0Ty0MNT78umPg_1tHc7ePAtuRql4ndsWdmY4e5_v26P7DTo0unX6rBP1kzWJp1-hp7158K5dqr3nlUgvU22Bstebx3iPlc0svPCOCrTjjV2dsOcPHVAFYmlz8WJ94Uu0OiVB-R1ePcyuHebRgouIJyYuTRhxpLusIinIEwglRCJ9NH1ShgiDoAo4KCMiYSmUqWhBGZC8CDyNNVcpv4h2cjyzBwTR2muuAFDbQUsgi-ctAx2fiojDlqwLrlcCijGf7DZB5WZfF7GKxF1yVEt5XhaM2rE6Bpbv5Ke_GH1Kdm2O2fjq1SckVaKx9Sck034nn2UxUWlATiOxk8__ke5jg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+function+of+carbonic+anhydrases&rft.jtitle=Biochemical+journal&rft.au=Supuran%2C+Claudiu+T&rft.date=2016-07-15&rft.eissn=1470-8728&rft.volume=473&rft.issue=14&rft.spage=2023&rft_id=info:doi/10.1042%2FBCJ20160115&rft_id=info%3Apmid%2F27407171&rft_id=info%3Apmid%2F27407171&rft.externalDocID=27407171 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8728&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8728&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8728&client=summon |