Deep learning models to predict primary open-angle glaucoma

Glaucoma is a major cause of blindness and vision impairment worldwide, and visual field (VF) tests are essential for monitoring the conversion of glaucoma. While previous studies have primarily focused on using VF data at a single time point for glaucoma prediction, there has been limited explorati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Stat (International Statistical Institute) Ročník 13; číslo 1
Hlavní autoři: Zhou, Ruiwen, Miller, J Philip, Gordon, Mae, Kass, Michael, Lin, Mingquan, Peng, Yifan, Li, Fuhai, Feng, Jiarui, Liu, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 2024
Témata:
ISSN:2049-1573, 2049-1573
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Glaucoma is a major cause of blindness and vision impairment worldwide, and visual field (VF) tests are essential for monitoring the conversion of glaucoma. While previous studies have primarily focused on using VF data at a single time point for glaucoma prediction, there has been limited exploration of longitudinal trajectories. Additionally, many deep learning techniques treat the time-to-glaucoma prediction as a binary classification problem (glaucoma Yes/No), resulting in the misclassification of some censored subjects into the nonglaucoma category and decreased power. To tackle these challenges, we propose and implement several deep-learning approaches that naturally incorporate temporal and spatial information from longitudinal VF data to predict time-to-glaucoma. When evaluated on the Ocular Hypertension Treatment Study (OHTS) dataset, our proposed convolutional neural network (CNN)-long short-term memory (LSTM) emerged as the top-performing model among all those examined. The implementation code can be found online (https://github.com/rivenzhou/VF_prediction).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2049-1573
2049-1573
DOI:10.1002/sta4.649