Smart power consumption abnormality detection in buildings using micromoments and improved K‐nearest neighbors

Anomaly detection in energy consumption is a crucial step towards developing efficient energy saving systems, diminishing overall energy expenditure and reducing carbon emissions. Therefore, implementing powerful techniques to identify anomalous consumption in buildings and providing this informatio...

Full description

Saved in:
Bibliographic Details
Published in:International journal of intelligent systems Vol. 36; no. 6; pp. 2865 - 2894
Main Authors: Himeur, Yassine, Alsalemi, Abdullah, Bensaali, Faycal, Amira, Abbes
Format: Journal Article
Language:English
Published: New York John Wiley & Sons, Inc 01.06.2021
Subjects:
ISSN:0884-8173, 1098-111X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Anomaly detection in energy consumption is a crucial step towards developing efficient energy saving systems, diminishing overall energy expenditure and reducing carbon emissions. Therefore, implementing powerful techniques to identify anomalous consumption in buildings and providing this information to end‐users and managers is of significant importance. Accordingly, two novel schemes are proposed in this paper; the first one is an unsupervised abnormality detection based on one‐class support vector machine, namely UAD‐OCSVM, in which abnormalities are extracted without the need of annotated data; the second is a supervised abnormality detection based on micromoments (SAD‐M2), which is implemented in the following steps: (i) normal and abnormal power consumptions are defined and assigned; (ii) a rule‐based algorithm is introduced to extract the micromoments representing the intent‐rich moments, in which the end‐users make decisions to consume energy; and (iii) an improved K‐nearest neighbors model is introduced to automatically classify consumption footprints as normal or abnormal. Empirical evaluation conducted in this framework under three different data sets demonstrates that SAD‐M2 achieves both a highest abnormality detection performance and real‐time processing capability with considerably lower computational cost in comparison with other machine learning methods. For instance, up to 99.71% accuracy and 99.77% F1 score have been achieved using a real‐world data set collected at the Qatar University energy lab.
AbstractList Anomaly detection in energy consumption is a crucial step towards developing efficient energy saving systems, diminishing overall energy expenditure and reducing carbon emissions. Therefore, implementing powerful techniques to identify anomalous consumption in buildings and providing this information to end‐users and managers is of significant importance. Accordingly, two novel schemes are proposed in this paper; the first one is an unsupervised abnormality detection based on one‐class support vector machine, namely UAD‐OCSVM, in which abnormalities are extracted without the need of annotated data; the second is a supervised abnormality detection based on micromoments (SAD‐M2), which is implemented in the following steps: (i) normal and abnormal power consumptions are defined and assigned; (ii) a rule‐based algorithm is introduced to extract the micromoments representing the intent‐rich moments, in which the end‐users make decisions to consume energy; and (iii) an improved K‐nearest neighbors model is introduced to automatically classify consumption footprints as normal or abnormal. Empirical evaluation conducted in this framework under three different data sets demonstrates that SAD‐M2 achieves both a highest abnormality detection performance and real‐time processing capability with considerably lower computational cost in comparison with other machine learning methods. For instance, up to 99.71% accuracy and 99.77% F1 score have been achieved using a real‐world data set collected at the Qatar University energy lab.
Anomaly detection in energy consumption is a crucial step towards developing efficient energy saving systems, diminishing overall energy expenditure and reducing carbon emissions. Therefore, implementing powerful techniques to identify anomalous consumption in buildings and providing this information to end‐users and managers is of significant importance. Accordingly, two novel schemes are proposed in this paper; the first one is an unsupervised abnormality detection based on one‐class support vector machine, namely UAD‐OCSVM, in which abnormalities are extracted without the need of annotated data; the second is a supervised abnormality detection based on micromoments (SAD‐M2), which is implemented in the following steps: (i) normal and abnormal power consumptions are defined and assigned; (ii) a rule‐based algorithm is introduced to extract the micromoments representing the intent‐rich moments, in which the end‐users make decisions to consume energy; and (iii) an improved K‐nearest neighbors model is introduced to automatically classify consumption footprints as normal or abnormal. Empirical evaluation conducted in this framework under three different data sets demonstrates that SAD‐M2 achieves both a highest abnormality detection performance and real‐time processing capability with considerably lower computational cost in comparison with other machine learning methods. For instance, up to 99.71% accuracy and 99.77% F1 score have been achieved using a real‐world data set collected at the Qatar University energy lab.
Author Amira, Abbes
Himeur, Yassine
Alsalemi, Abdullah
Bensaali, Faycal
Author_xml – sequence: 1
  givenname: Yassine
  orcidid: 0000-0001-8904-5587
  surname: Himeur
  fullname: Himeur, Yassine
  email: yassine.himeur@qu.edu.qa
  organization: Qatar University
– sequence: 2
  givenname: Abdullah
  orcidid: 0000-0001-7574-4766
  surname: Alsalemi
  fullname: Alsalemi, Abdullah
  organization: Qatar University
– sequence: 3
  givenname: Faycal
  orcidid: 0000-0002-9273-4735
  surname: Bensaali
  fullname: Bensaali, Faycal
  organization: Qatar University
– sequence: 4
  givenname: Abbes
  orcidid: 0000-0003-1144-630X
  surname: Amira
  fullname: Amira, Abbes
  organization: De Montfort University
BookMark eNp1UM1KxDAYDKLgrnrwDQKePFTztUnbPcriH4oeVPBW0vTrmqVNapIqe_MRfEafxOh6Ej0NfMzMNzNTsmmsQUL2gR0BY-mxNuEoTTnjG2QCbFYmAPC4SSasLHlSQpFtk6n3S8YACi4mZLjrpQt0sK_oqLLGj_0QtDVU1sa6XnY6rGiDAdX3VRtaj7prtFl4OvoItNfK2d72aIKn0jRU94OzL9jQq4-3d4PSoQ_UoF481db5XbLVys7j3g_ukIez0_v5RXJ9e345P7lOVCYET2aqzoq8aaGplUAlQTQ51hwBRN7KIktLoQpViDpD1mKZs0yBrGdcFSzFhvNshxysfWOY5zFGqJZ2dCa-rFIBZQFpzrPIOl6zYgfvHbaV0kF-VQ1O6q4CVn3NWsVZq-9Zo-Lwl2JwOm64-pP74_6qO1z9T6wub-7Xik_ftY19
CitedBy_id crossref_primary_10_3390_app12125855
crossref_primary_10_3390_math11051098
crossref_primary_10_3390_a17080322
crossref_primary_10_1088_1742_6596_2781_1_012032
crossref_primary_10_3390_en15217981
crossref_primary_10_1016_j_measurement_2025_118114
crossref_primary_10_1016_j_dte_2025_100068
crossref_primary_10_1016_j_engappai_2023_107063
crossref_primary_10_1007_s12652_022_04376_w
crossref_primary_10_1109_JIOT_2023_3331351
crossref_primary_10_1007_s10489_025_06663_3
crossref_primary_10_3390_s25113341
crossref_primary_10_1061_JBENF2_BEENG_6012
crossref_primary_10_1038_s41598_024_59373_0
crossref_primary_10_1109_JSEN_2021_3114333
crossref_primary_10_1109_ACCESS_2023_3237554
crossref_primary_10_3390_app13010314
crossref_primary_10_1186_s13677_023_00529_0
crossref_primary_10_3389_fenrg_2024_1346398
crossref_primary_10_1016_j_eswa_2022_118974
crossref_primary_10_1016_j_heliyon_2024_e25394
crossref_primary_10_1002_int_22876
crossref_primary_10_1007_s10207_023_00720_z
crossref_primary_10_1186_s42269_024_01254_7
crossref_primary_10_1016_j_iot_2025_101658
crossref_primary_10_1016_j_tws_2023_110670
crossref_primary_10_1080_13467581_2024_2343800
crossref_primary_10_1016_j_egyr_2023_04_006
crossref_primary_10_1016_j_engappai_2022_105775
crossref_primary_10_3390_en14154649
crossref_primary_10_3390_en15228732
crossref_primary_10_1016_j_jclepro_2021_129786
crossref_primary_10_1016_j_rser_2022_112401
crossref_primary_10_1007_s40747_025_01803_1
crossref_primary_10_1016_j_engappai_2024_108499
crossref_primary_10_1109_TCE_2023_3328147
crossref_primary_10_1007_s10462_022_10286_2
crossref_primary_10_3390_en17174529
crossref_primary_10_1155_2023_4391555
crossref_primary_10_1088_1742_6596_2666_1_012039
crossref_primary_10_1007_s13369_022_07030_x
crossref_primary_10_1016_j_jobe_2023_106923
crossref_primary_10_1109_JSEN_2024_3426090
crossref_primary_10_3390_electronics13010202
crossref_primary_10_1109_TII_2022_3195896
crossref_primary_10_1007_s40866_024_00213_5
crossref_primary_10_1016_j_jclepro_2024_143049
crossref_primary_10_1016_j_rser_2023_114235
crossref_primary_10_1016_j_oceaneng_2025_121956
crossref_primary_10_1016_j_enbuild_2025_115586
crossref_primary_10_1016_j_iot_2023_101035
crossref_primary_10_1186_s13638_023_02258_z
crossref_primary_10_1002_cpe_6707
crossref_primary_10_1016_j_jobe_2023_107847
Cites_doi 10.1016/j.apenergy.2019.02.025
10.1016/j.apenergy.2019.05.089
10.1016/j.procs.2018.07.138
10.1109/ICASSP.2019.8683792
10.1109/ACCESS.2019.2946342
10.1016/j.apenergy.2019.01.061
10.1109/UCC48980.2020.00066
10.1007/978-981-15-5856-6_30
10.3390/w9030224
10.1109/ICIoT48696.2020.9089624
10.1145/3336191.3371876
10.3390/smartcities3020021
10.1016/j.future.2020.05.041
10.1109/ACCESS.2020.2966640
10.4218/etrij.2018-0475
10.1016/j.procs.2013.06.168
10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00072
10.1109/CIC.2018.00-44
10.1145/2821650.2821662
10.3390/en12122451
10.1109/ACCESS.2019.2928122
10.1016/j.jobe.2019.100936
10.1109/BigData.2018.8621948
10.1016/j.envsoft.2016.05.018
10.23919/ACC.2017.7962928
10.1016/j.apenergy.2019.114145
10.1002/int.22059
10.1007/978-3-030-68028-2_4
10.1016/j.apenergy.2017.12.005
10.1109/PES.2011.6039858
10.1145/130385.130401
10.4316/AECE.2015.01013
10.1002/int.21544
10.1109/ICCSE.2016.7581646
10.1109/PerCom.2014.6813941
10.1109/JSYST.2020.2997773
10.1109/ICS.2016.0143
10.1016/j.iot.2019.100059
10.1109/CSE-EUC-DCABES.2016.184
10.1016/j.apenergy.2020.114877
10.1109/IJCNN.2016.7727242
10.3390/ijerph17197265
10.1016/j.enbuild.2017.02.058
10.1016/j.apenergy.2021.116601
10.1109/ICMLA.2015.80
10.1016/j.egypro.2019.01.931
10.1007/978-3-031-07969-6_14
10.1016/j.apenergy.2020.115147
10.1016/j.apenergy.2020.116027
10.1109/TSG.2016.2643700
10.3390/ijerph17114179
10.1145/2821650.2821659
10.1108/IMDS-06-2016-0195
10.1145/3137133.3141438
10.1016/j.enbuild.2020.109864
10.1145/1541880.1541882
10.1016/j.enbuild.2020.110291
10.1002/int.21875
10.1109/ICASSP.2019.8683671
10.1002/int.22314
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC
Copyright_xml – notice: 2021 Wiley Periodicals LLC
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/int.22404
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1098-111X
EndPage 2894
ExternalDocumentID 10_1002_int_22404
INT22404
Genre article
GrantInformation_xml – fundername: Qatar National Research Fund
  funderid: 10‐0130‐170288
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
PTHSS
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
O8X
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3554-9cb376df1dbc5eca15d6eb4e1156fa73285c7c75b3e0fe8603c1ab94c702ed443
IEDL.DBID DRFUL
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626061200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0884-8173
IngestDate Fri Jul 25 12:29:12 EDT 2025
Tue Nov 18 22:20:12 EST 2025
Sat Nov 29 04:01:51 EST 2025
Wed Jan 22 16:30:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3554-9cb376df1dbc5eca15d6eb4e1156fa73285c7c75b3e0fe8603c1ab94c702ed443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9273-4735
0000-0001-7574-4766
0000-0001-8904-5587
0000-0003-1144-630X
PQID 2518712643
PQPubID 1026350
PageCount 30
ParticipantIDs proquest_journals_2518712643
crossref_citationtrail_10_1002_int_22404
crossref_primary_10_1002_int_22404
wiley_primary_10_1002_int_22404_INT22404
PublicationCentury 2000
PublicationDate June 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of intelligent systems
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2019; 7
2015; 15
2019; 34
2019; 12
2020; 281
2020; 17
2020; 225
2021; 287
1992
2020; 267
2019; 240
2017; 9
2017; 117
2021; 36
2020; 8
2013; 19
2018; 9
2020; 3
2011; 6635
2019; 41
2021
2020
2017; 32
2018; 211
2018; 134
2020; 271
2020; 215
2020; 259
2019
2020; 27
2018
2017
2019; 158
2016
2016; 83
2020; 112
2015
2012; 27
2019; 238
2014
2017; 144
2019; 250
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Pereira W (e_1_2_9_41_1) 2016
Sial A (e_1_2_9_52_1) 2019; 7
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Ariyaluran Habeeb RA (e_1_2_9_39_1) 2019
e_1_2_9_70_1
Liu W (e_1_2_9_71_1) 2011; 6635
Liu Y (e_1_2_9_29_1) 2020
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
References_xml – volume: 9
  start-page: 3801
  issue: 4
  year: 2018
  end-page: 3810
  article-title: Non‐intrusive energy use monitoring for a group of electrical appliances
  publication-title: IEEE Trans Smart Grid
– start-page: 4921
  year: 2018
  end-page: 4925
– start-page: 696
  year: 2016
  end-page: 700
– volume: 34
  start-page: 415
  issue: 3
  year: 2019
  end-page: 438
  article-title: Detection of outlier information by the use of linguistic summaries based on classic and interval‐valued fuzzy sets
  publication-title: Int J Intell Syst
– start-page: 303
  end-page: 311
– start-page: 366
  year: 2020
  end-page: 371
– volume: 134
  start-page: 10
  year: 2018
  end-page: 17
  article-title: Building an anomaly detection engine (ADE) for IoT smart applications
  publication-title: Procedia Comput Sci
– start-page: 394
  year: 2020
  end-page: 399
– volume: 32
  start-page: 881
  issue: 9
  year: 2017
  end-page: 899
  article-title: Exponentially weighted ellipsoidal model for anomaly detection
  publication-title: Int J Intell Syst
– volume: 27
  year: 2020
  article-title: A simulation‐aided approach in improving thermal‐visual comfort and power efficiency in buildings
  publication-title: J Building Eng
– volume: 238
  start-page: 796
  year: 2019
  end-page: 805
  article-title: Can non‐intrusive load monitoring be used for identifying an appliance's anomalous behaviour?
  publication-title: Appl Energy
– start-page: 44
  year: 2017
  end-page: 49
– start-page: 894
  year: 2020
  end-page: 896
– start-page: 16
  year: 2018
  end-page: 25
– volume: 41
  start-page: 684
  issue: 5
  year: 2019
  end-page: 695
  article-title: UFKLDA: an unsupervised feature extraction algorithm for anomaly detection under cloud environment
  publication-title: ETRI J
– volume: 83
  start-page: 198
  year: 2016
  end-page: 211
  article-title: Modelling energy efficiency performance of residential building stocks based on Bayesian statistical inference
  publication-title: Environ Modell Software
– volume: 211
  start-page: 1123
  year: 2018
  end-page: 1135
  article-title: Analytical investigation of autoencoder‐based methods for unsupervised anomaly detection in building energy data
  publication-title: Appl Energy
– start-page: 420
  year: 2020
  end-page: 425
– volume: 281
  year: 2020
  article-title: Simulation‐based performance evaluation of model predictive control for building energy systems
  publication-title: Appl Energy
– volume: 7
  issue: 20
  year: 2019
  article-title: Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches
  publication-title: Internet Things
– volume: 117
  start-page: 927
  issue: 5
  year: 2017
  end-page: 945
  article-title: Machine learning‐based anomaly detection via integration of manufacturing, inspection and after‐sales service data
  publication-title: Industr Manage Data Syst
– volume: 17
  start-page: 4179
  issue: 11
  year: 2020
  article-title: Leveraging machine learning techniques and engineering of multi‐nature features for national daily regional ambulance demand prediction
  publication-title: Int J Environ Res Public Health
– start-page: 35
  year: 2015
  end-page: 44
– volume: 15
  start-page: 89
  issue: 1
  year: 2015
  end-page: 94
  article-title: Anomaly detection using power signature of consumer electrical devices
  publication-title: Adv Electr Comput Eng
– start-page: 144
  year: 1992
  end-page: 152
– start-page: 1175
  year: 2015
  end-page: 1179
– start-page: 1
  year: 2018
  end-page: 13
– volume: 158
  start-page: 3433
  year: 2019
  end-page: 3438
  article-title: Support vector regression for predicting building energy consumption in southern China
  publication-title: Energy Procedia
– volume: 8
  start-page: 15047
  year: 2020
  end-page: 15055
  article-title: Achieving domestic energy efficiency using micro‐moments and intelligent recommendations
  publication-title: IEEE Access
– start-page: 38
  year: 2014
  end-page: 43
– start-page: 45
  year: 2015
  end-page: 54
– volume: 259
  year: 2020
  article-title: Real‐time prediction and anomaly detection of electrical load in a residential community
  publication-title: Appl Energy
– volume: 7
  start-page: 93387
  year: 2019
  end-page: 93395
  article-title: Forecasting hospital emergency department patient volume using internet search data
  publication-title: IEEE Access
– start-page: 1
  year: 2019
  end-page: 27
  article-title: Clustering‐based real‐time anomaly detection‐a breakthrough in big data technologies
  publication-title: Transactions on Emerging Telecommunications Technologies
– volume: 112
  start-page: 394
  year: 2020
  end-page: 407
  article-title: REHAB‐C: recommendations for energy HABits change
  publication-title: Future Gener Comput Syst
– start-page: 1
  year: 2021
  end-page: 13
– volume: 12
  start-page: 2451
  year: 2019
  article-title: Analysis of building electricity use pattern using K‐means clustering algorithm by determination of better initial centroids and number of clusters
  publication-title: Energies
– volume: 9
  start-page: 1
  issue: 3
  year: 2017
  end-page: 19
  article-title: Clustering and support vector regression for water demand forecasting and anomaly detection
  publication-title: Water
– volume: 19
  start-page: 1174
  year: 2013
  end-page: 1181
  article-title: A hierarchical framework using approximated local outlier factor for efficient anomaly detection
  publication-title: Procedia Comput Sci
– start-page: 1
  end-page: 8
– volume: 27
  start-page: 733
  issue: 8
  year: 2012
  end-page: 756
  article-title: Similarity measure for anomaly detection and comparing human behaviors
  publication-title: Int J Intell Syst
– volume: 41
  start-page: 1
  issue: 3
  year: 2019
  end-page: 58
  article-title: Anomaly detection: a survey
  publication-title: ACM Comput Surv
– volume: 17
  start-page: 7265
  issue: 19
  year: 2020
  article-title: Medical fraud and abuse detection system based on machine learning
  publication-title: Int J Environ Res Public Health
– start-page: 8325
  year: 2019
  end-page: 8329
– start-page: 33
  year: 2018
  end-page: 42
– start-page: 1
  year: 2017
  end-page: 2
– start-page: 523
  year: 2016
  end-page: 534
– volume: 225
  year: 2020
  article-title: Model predictive control of building energy systems with thermal energy storage in response to occupancy variations and time‐variant electricity prices
  publication-title: Energy Buildings
– volume: 250
  start-page: 1302
  year: 2019
  end-page: 1311
  article-title: Endorsing domestic energy saving behavior using micro‐moment classification
  publication-title: Appl Energy
– volume: 6635
  start-page: 345
  year: 2011
  end-page: 356
  article-title: Class Confidence Weighted kNN Algorithms for Imbalanced Data Sets
  publication-title: Adv Knowl Discov Data Min
– start-page: 2737
  year: 2019
  end-page: 2741
– volume: 267
  year: 2020
  article-title: Robust event‐based non‐intrusive appliance recognition using multi‐scale wavelet packet tree and ensemble bagging tree
  publication-title: Appl Energy
– volume: 271
  year: 2020
  article-title: Model predictive control with adaptive machine‐learning‐based model for building energy efficiency and comfort optimization
  publication-title: Appl Energy
– start-page: 511
  year: 2016
  end-page: 518
– volume: 240
  start-page: 561
  year: 2019
  end-page: 582
  article-title: An anomaly detection framework for dynamic systems using a Bayesian hierarchical framework
  publication-title: Appl Energy
– start-page: 1
  year: 2020
  end-page: 26
– volume: 215
  year: 2020
  article-title: A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data
  publication-title: Energy Buildings
– volume: 3
  start-page: 401
  issue: 2
  year: 2020
  end-page: 419
  article-title: A case study based approach for remote fault detection using multi‐level machine learning in a smart building
  publication-title: Smart Cities
– volume: 287
  year: 2021
  article-title: Artificial intelligence based anomaly detection of energy consumption in buildings: a review, current trends and new perspectives
  publication-title: Appl Energy
– volume: 7
  start-page: 153799
  year: 2019
  end-page: 153809
  article-title: A novel methodology to improve cooling efficiency at data centers
  publication-title: IEEE Access
– volume: 36
  start-page: 656
  issue: 2
  year: 2021
  end-page: 680
  article-title: The emergence of explainability of intelligent systems: Delivering explainable and personalized recommendations for energy efficiency
  publication-title: Int J Intell Syst
– start-page: 1
  year: 2020
  end-page: 11
  article-title: Hossain, Deep anomaly detection for time‐series data in industrial IoT: a communication‐efficient on‐device federated learning approach
  publication-title: IEEE Internet Things J
– volume: 7
  start-page: 1
  year: 2019
  end-page: 18
  article-title: Detecting anomalous energy consumption using contextual analysis of smart meter data
  publication-title: Wireless Netw
– start-page: 65
  end-page: 84
– start-page: 587
  year: 2016
  end-page: 591
– start-page: 1
  year: 2020
  end-page: 32
– start-page: 189
  year: 2016
  end-page: 196
– volume: 144
  start-page: 191
  year: 2017
  end-page: 206
  article-title: An ensemble learning framework for anomaly detection in building energy consumption
  publication-title: Energy Buildings
– ident: e_1_2_9_45_1
  doi: 10.1016/j.apenergy.2019.02.025
– ident: e_1_2_9_74_1
  doi: 10.1016/j.apenergy.2019.05.089
– ident: e_1_2_9_57_1
  doi: 10.1016/j.procs.2018.07.138
– ident: e_1_2_9_13_1
  doi: 10.1109/ICASSP.2019.8683792
– ident: e_1_2_9_60_1
  doi: 10.1109/ACCESS.2019.2946342
– ident: e_1_2_9_17_1
– ident: e_1_2_9_20_1
– ident: e_1_2_9_24_1
  doi: 10.1016/j.apenergy.2019.01.061
– ident: e_1_2_9_70_1
  doi: 10.1109/UCC48980.2020.00066
– ident: e_1_2_9_5_1
  doi: 10.1007/978-981-15-5856-6_30
– ident: e_1_2_9_32_1
  doi: 10.3390/w9030224
– ident: e_1_2_9_47_1
– ident: e_1_2_9_7_1
  doi: 10.1109/ICIoT48696.2020.9089624
– volume: 7
  start-page: 1
  year: 2019
  ident: e_1_2_9_52_1
  article-title: Detecting anomalous energy consumption using contextual analysis of smart meter data
  publication-title: Wireless Netw
– ident: e_1_2_9_18_1
  doi: 10.1145/3336191.3371876
– ident: e_1_2_9_44_1
  doi: 10.3390/smartcities3020021
– ident: e_1_2_9_8_1
  doi: 10.1016/j.future.2020.05.041
– ident: e_1_2_9_66_1
– start-page: 1
  year: 2020
  ident: e_1_2_9_29_1
  article-title: Hossain, Deep anomaly detection for time‐series data in industrial IoT: a communication‐efficient on‐device federated learning approach
  publication-title: IEEE Internet Things J
– ident: e_1_2_9_27_1
– ident: e_1_2_9_6_1
  doi: 10.1109/ACCESS.2020.2966640
– start-page: 1
  year: 2019
  ident: e_1_2_9_39_1
  article-title: Clustering‐based real‐time anomaly detection‐a breakthrough in big data technologies
  publication-title: Transactions on Emerging Telecommunications Technologies
– ident: e_1_2_9_46_1
– ident: e_1_2_9_56_1
  doi: 10.4218/etrij.2018-0475
– ident: e_1_2_9_43_1
  doi: 10.1016/j.procs.2013.06.168
– ident: e_1_2_9_67_1
  doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00072
– ident: e_1_2_9_26_1
  doi: 10.1109/CIC.2018.00-44
– ident: e_1_2_9_54_1
  doi: 10.1145/2821650.2821662
– ident: e_1_2_9_42_1
  doi: 10.3390/en12122451
– ident: e_1_2_9_37_1
  doi: 10.1109/ACCESS.2019.2928122
– ident: e_1_2_9_59_1
  doi: 10.1016/j.jobe.2019.100936
– ident: e_1_2_9_21_1
  doi: 10.1109/BigData.2018.8621948
– ident: e_1_2_9_58_1
  doi: 10.1016/j.envsoft.2016.05.018
– ident: e_1_2_9_64_1
  doi: 10.23919/ACC.2017.7962928
– ident: e_1_2_9_12_1
  doi: 10.1016/j.apenergy.2019.114145
– ident: e_1_2_9_16_1
  doi: 10.1002/int.22059
– ident: e_1_2_9_68_1
  doi: 10.1007/978-3-030-68028-2_4
– ident: e_1_2_9_22_1
  doi: 10.1016/j.apenergy.2017.12.005
– ident: e_1_2_9_31_1
  doi: 10.1109/PES.2011.6039858
– ident: e_1_2_9_65_1
  doi: 10.1145/130385.130401
– ident: e_1_2_9_28_1
– ident: e_1_2_9_51_1
  doi: 10.4316/AECE.2015.01013
– ident: e_1_2_9_9_1
  doi: 10.1002/int.21544
– ident: e_1_2_9_25_1
  doi: 10.1145/2821650.2821662
– ident: e_1_2_9_55_1
  doi: 10.1109/ICCSE.2016.7581646
– ident: e_1_2_9_40_1
  doi: 10.1109/PerCom.2014.6813941
– ident: e_1_2_9_69_1
  doi: 10.1109/JSYST.2020.2997773
– ident: e_1_2_9_72_1
  doi: 10.1109/ICS.2016.0143
– ident: e_1_2_9_30_1
  doi: 10.1016/j.iot.2019.100059
– ident: e_1_2_9_34_1
  doi: 10.1109/CSE-EUC-DCABES.2016.184
– ident: e_1_2_9_2_1
  doi: 10.1016/j.apenergy.2020.114877
– ident: e_1_2_9_53_1
  doi: 10.1109/IJCNN.2016.7727242
– ident: e_1_2_9_49_1
  doi: 10.3390/ijerph17197265
– volume: 6635
  start-page: 345
  year: 2011
  ident: e_1_2_9_71_1
  article-title: Class Confidence Weighted kNN Algorithms for Imbalanced Data Sets
  publication-title: Adv Knowl Discov Data Min
– ident: e_1_2_9_35_1
  doi: 10.1016/j.enbuild.2017.02.058
– ident: e_1_2_9_10_1
  doi: 10.1016/j.apenergy.2021.116601
– ident: e_1_2_9_36_1
  doi: 10.1109/ICMLA.2015.80
– ident: e_1_2_9_33_1
  doi: 10.1016/j.egypro.2019.01.931
– ident: e_1_2_9_14_1
  doi: 10.1007/978-3-031-07969-6_14
– ident: e_1_2_9_63_1
  doi: 10.1016/j.apenergy.2020.115147
– ident: e_1_2_9_62_1
  doi: 10.1016/j.apenergy.2020.116027
– ident: e_1_2_9_3_1
  doi: 10.1109/TSG.2016.2643700
– ident: e_1_2_9_38_1
  doi: 10.3390/ijerph17114179
– ident: e_1_2_9_73_1
  doi: 10.1145/2821650.2821659
– start-page: 523
  volume-title: Artificial Intelligence and Soft Computing
  year: 2016
  ident: e_1_2_9_41_1
– ident: e_1_2_9_48_1
  doi: 10.1108/IMDS-06-2016-0195
– ident: e_1_2_9_23_1
  doi: 10.1145/3137133.3141438
– ident: e_1_2_9_11_1
  doi: 10.1016/j.enbuild.2020.109864
– ident: e_1_2_9_19_1
  doi: 10.1145/1541880.1541882
– ident: e_1_2_9_61_1
  doi: 10.1016/j.enbuild.2020.110291
– ident: e_1_2_9_15_1
  doi: 10.1002/int.21875
– ident: e_1_2_9_50_1
  doi: 10.1109/ICASSP.2019.8683671
– ident: e_1_2_9_4_1
  doi: 10.1002/int.22314
SSID ssj0011745
Score 2.5510106
Snippet Anomaly detection in energy consumption is a crucial step towards developing efficient energy saving systems, diminishing overall energy expenditure and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2865
SubjectTerms Abnormalities
Algorithms
Anomalies
anomaly detection
Buildings
Datasets
Energy consumption
improved K‐nearest neighbors
Intelligent systems
Machine learning
micromoments
one‐class support vector machine
Power consumption
rule‐based algorithm
Support vector machines
Title Smart power consumption abnormality detection in buildings using micromoments and improved K‐nearest neighbors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.22404
https://www.proquest.com/docview/2518712643
Volume 36
WOSCitedRecordID wos000626061200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1098-111X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011745
  issn: 0884-8173
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8RADA66evDiW1xfDOLBS7WPmW2LJ1EXRVlEXdhb6aRTWXDHxVbP_gR_o7_EzLRdFRQEbz2kDybJ5Js0-QKwx1GiQHQdLxe5w0OOTpwHdFQJlZd2PEUR0U4tuQp7vWgwiK-n4Kjphan4ISYJN-MZdr82Dp7K4vCTNHSoywMTj_g0zPhkt7wFM6c33f7V5CcCgW1RgUjuRF4YNMRCrn84ufl7OPrEmF-Rqg013YV_feQizNcIkx1XJrEEU0ovw0IzvYHVzrwC49sRmQ0bmzFpDG0npt0-WCq1AbIGn7NMlbZWS7OhZrIeoV0wUy1_z0ZVMZ9tkmOpztjQZihUxi7fX9-0YcctSqZN8pUsrViFfvfs7uTcqecvOGhQiBOjpO0ny72M9Kkw9UTWUZIrApGdPDUsPwJDDIUMlJurqOMG6KUy5hi6vso4D9agpR-1WgcWuyQiyBSUSDkqHmMkI-krIX3MCDO2Yb9RQ4I1ObmZkfGQVLTKfkIrmdiVbMPuRHRcMXL8JLTV6DKpnbJICMrR8ZAQYECvs1r7_QHJRe_OXmz8XXQT5nxT8WJzNFvQKp-e1TbM4ks5LJ52auv8APN27Ic
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5cp9BekvRFnaTJUnroRbUeu5YEuYSkxsauKa0NvgntaBUEzcZYSs_9CfmN-SWZXUl2Cw0EctNh9GBnZufb0cw3AJ84ShSIruPlInd4yNGJ84COKqHy0oGnKCLaqSXTcDaLlsv4ewdO216Ymh9ik3AznmH3a-PgJiHd37KGFrr6YgISfwY7nMxIdGHn4sdwMd38RSC0LWoUyZ3IC4OWWcj1-5ub_41HW5D5N1S1sWa497Sv3IfdBmOys9ooXkFH6dew185vYI07v4HVzysyHLYyg9IY2l5Mu4GwVGoDZQ1CZ5mqbLWWZoVmshmiXTJTL3_JrupyPtsmx1KdscLmKFTGJnd_brXhxy0rpk36lWytfAuL4df5-chpJjA4aHCIE6OkDSjLvYw0qjD1RDZQkiuCkYM8NTw_AkMMhQyUm6to4AbopTLmGLq-yjgP3kFXX2v1HljskoggY1Ai5ah4jJGMpK-E9DEj1NiDz60eEmzoyc2UjF9JTazsJ7SSiV3JHnzciK5qTo7_CR21ykwatywTAnN0QCQMGNDrrNoefkAyns3txcHjRU_gxWj-bZpMx7PJIbz0Tf2LzdgcQbda36gP8Bx_V0W5Pm5M9R4R5_B3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja91ADBbZCLk0zVKaNm2HkEMuTrzMeIFeStNHQx6PkAVyMx6NHB4000fs9Nyf0N_YX1LN2H5JIYFCbz7ICyNp9I0sfQLYl6hRIYZBVKs6kJnEoKgTPqpkFFVpRBwR_dSScTaZ5NfXxdkCfBx6YTp-iHnCzXmG36-dg9PM1EcPrKFT2x66gCQXYVmqImW3XD4-H12N538RGG2rDkXKII-yZGAWCuOj-c1_x6MHkPkYqvpYM1r_v698CS96jCk-dUaxAQtkN2F9mN8genfegtnFLRuOmLlBaQJ9L6bfQESlrYOyDqELQ62v1rJiaoXuh2g3wtXL34jbrpzPt8mJyhox9TkKMuL0989f1vHjNq2wLv3KttZsw9Xoy-Xnr0E_gSFAh0OCAjVvQKaODGuUsIqUSUlLYhiZ1pXj-VGYYaZ0QmFNeRomGFW6kJiFMRkpk1ewZL9beg2iCFlEsTGQqiSSLDDXuY5J6RgNo8YdOBj0UGJPT-6mZHwrO2LluOSVLP1K7sDeXHTWcXI8JbQ7KLPs3bIpGczxAZExYMKv82p7_gHlyeTSX7z5d9EPsHp2PCrHJ5PTt7AWu_IXn7DZhaX27p7ewQr-aKfN3fveUv8Atcfv8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+power+consumption+abnormality+detection+in+buildings+using+micromoments+and+improved+K%E2%80%90nearest+neighbors&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Himeur%2C+Yassine&rft.au=Alsalemi%2C+Abdullah&rft.au=Bensaali%2C+Faycal&rft.au=Abbes+Amira&rft.date=2021-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=36&rft.issue=6&rft.spage=2865&rft.epage=2894&rft_id=info:doi/10.1002%2Fint.22404&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon