Smart power consumption abnormality detection in buildings using micromoments and improved K‐nearest neighbors
Anomaly detection in energy consumption is a crucial step towards developing efficient energy saving systems, diminishing overall energy expenditure and reducing carbon emissions. Therefore, implementing powerful techniques to identify anomalous consumption in buildings and providing this informatio...
Uloženo v:
| Vydáno v: | International journal of intelligent systems Ročník 36; číslo 6; s. 2865 - 2894 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
John Wiley & Sons, Inc
01.06.2021
|
| Témata: | |
| ISSN: | 0884-8173, 1098-111X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Anomaly detection in energy consumption is a crucial step towards developing efficient energy saving systems, diminishing overall energy expenditure and reducing carbon emissions. Therefore, implementing powerful techniques to identify anomalous consumption in buildings and providing this information to end‐users and managers is of significant importance. Accordingly, two novel schemes are proposed in this paper; the first one is an unsupervised abnormality detection based on one‐class support vector machine, namely UAD‐OCSVM, in which abnormalities are extracted without the need of annotated data; the second is a supervised abnormality detection based on micromoments (SAD‐M2), which is implemented in the following steps: (i) normal and abnormal power consumptions are defined and assigned; (ii) a rule‐based algorithm is introduced to extract the micromoments representing the intent‐rich moments, in which the end‐users make decisions to consume energy; and (iii) an improved K‐nearest neighbors model is introduced to automatically classify consumption footprints as normal or abnormal. Empirical evaluation conducted in this framework under three different data sets demonstrates that SAD‐M2 achieves both a highest abnormality detection performance and real‐time processing capability with considerably lower computational cost in comparison with other machine learning methods. For instance, up to 99.71% accuracy and 99.77% F1 score have been achieved using a real‐world data set collected at the Qatar University energy lab. |
|---|---|
| AbstractList | Anomaly detection in energy consumption is a crucial step towards developing efficient energy saving systems, diminishing overall energy expenditure and reducing carbon emissions. Therefore, implementing powerful techniques to identify anomalous consumption in buildings and providing this information to end‐users and managers is of significant importance. Accordingly, two novel schemes are proposed in this paper; the first one is an unsupervised abnormality detection based on one‐class support vector machine, namely UAD‐OCSVM, in which abnormalities are extracted without the need of annotated data; the second is a supervised abnormality detection based on micromoments (SAD‐M2), which is implemented in the following steps: (i) normal and abnormal power consumptions are defined and assigned; (ii) a rule‐based algorithm is introduced to extract the micromoments representing the intent‐rich moments, in which the end‐users make decisions to consume energy; and (iii) an improved K‐nearest neighbors model is introduced to automatically classify consumption footprints as normal or abnormal. Empirical evaluation conducted in this framework under three different data sets demonstrates that SAD‐M2 achieves both a highest abnormality detection performance and real‐time processing capability with considerably lower computational cost in comparison with other machine learning methods. For instance, up to 99.71% accuracy and 99.77% F1 score have been achieved using a real‐world data set collected at the Qatar University energy lab. Anomaly detection in energy consumption is a crucial step towards developing efficient energy saving systems, diminishing overall energy expenditure and reducing carbon emissions. Therefore, implementing powerful techniques to identify anomalous consumption in buildings and providing this information to end‐users and managers is of significant importance. Accordingly, two novel schemes are proposed in this paper; the first one is an unsupervised abnormality detection based on one‐class support vector machine, namely UAD‐OCSVM, in which abnormalities are extracted without the need of annotated data; the second is a supervised abnormality detection based on micromoments (SAD‐M2), which is implemented in the following steps: (i) normal and abnormal power consumptions are defined and assigned; (ii) a rule‐based algorithm is introduced to extract the micromoments representing the intent‐rich moments, in which the end‐users make decisions to consume energy; and (iii) an improved K‐nearest neighbors model is introduced to automatically classify consumption footprints as normal or abnormal. Empirical evaluation conducted in this framework under three different data sets demonstrates that SAD‐M2 achieves both a highest abnormality detection performance and real‐time processing capability with considerably lower computational cost in comparison with other machine learning methods. For instance, up to 99.71% accuracy and 99.77% F1 score have been achieved using a real‐world data set collected at the Qatar University energy lab. |
| Author | Amira, Abbes Himeur, Yassine Alsalemi, Abdullah Bensaali, Faycal |
| Author_xml | – sequence: 1 givenname: Yassine orcidid: 0000-0001-8904-5587 surname: Himeur fullname: Himeur, Yassine email: yassine.himeur@qu.edu.qa organization: Qatar University – sequence: 2 givenname: Abdullah orcidid: 0000-0001-7574-4766 surname: Alsalemi fullname: Alsalemi, Abdullah organization: Qatar University – sequence: 3 givenname: Faycal orcidid: 0000-0002-9273-4735 surname: Bensaali fullname: Bensaali, Faycal organization: Qatar University – sequence: 4 givenname: Abbes orcidid: 0000-0003-1144-630X surname: Amira fullname: Amira, Abbes organization: De Montfort University |
| BookMark | eNp1UM1KxDAYDKLgrnrwDQKePFTztUnbPcriH4oeVPBW0vTrmqVNapIqe_MRfEafxOh6Ej0NfMzMNzNTsmmsQUL2gR0BY-mxNuEoTTnjG2QCbFYmAPC4SSasLHlSQpFtk6n3S8YACi4mZLjrpQt0sK_oqLLGj_0QtDVU1sa6XnY6rGiDAdX3VRtaj7prtFl4OvoItNfK2d72aIKn0jRU94OzL9jQq4-3d4PSoQ_UoF481db5XbLVys7j3g_ukIez0_v5RXJ9e345P7lOVCYET2aqzoq8aaGplUAlQTQ51hwBRN7KIktLoQpViDpD1mKZs0yBrGdcFSzFhvNshxysfWOY5zFGqJZ2dCa-rFIBZQFpzrPIOl6zYgfvHbaV0kF-VQ1O6q4CVn3NWsVZq-9Zo-Lwl2JwOm64-pP74_6qO1z9T6wub-7Xik_ftY19 |
| CitedBy_id | crossref_primary_10_3390_app12125855 crossref_primary_10_3390_math11051098 crossref_primary_10_3390_a17080322 crossref_primary_10_1088_1742_6596_2781_1_012032 crossref_primary_10_3390_en15217981 crossref_primary_10_1016_j_measurement_2025_118114 crossref_primary_10_1016_j_dte_2025_100068 crossref_primary_10_1016_j_engappai_2023_107063 crossref_primary_10_1007_s12652_022_04376_w crossref_primary_10_1109_JIOT_2023_3331351 crossref_primary_10_1007_s10489_025_06663_3 crossref_primary_10_3390_s25113341 crossref_primary_10_1061_JBENF2_BEENG_6012 crossref_primary_10_1038_s41598_024_59373_0 crossref_primary_10_1109_JSEN_2021_3114333 crossref_primary_10_1109_ACCESS_2023_3237554 crossref_primary_10_3390_app13010314 crossref_primary_10_1186_s13677_023_00529_0 crossref_primary_10_3389_fenrg_2024_1346398 crossref_primary_10_1016_j_eswa_2022_118974 crossref_primary_10_1016_j_heliyon_2024_e25394 crossref_primary_10_1002_int_22876 crossref_primary_10_1007_s10207_023_00720_z crossref_primary_10_1186_s42269_024_01254_7 crossref_primary_10_1016_j_iot_2025_101658 crossref_primary_10_1016_j_tws_2023_110670 crossref_primary_10_1080_13467581_2024_2343800 crossref_primary_10_1016_j_egyr_2023_04_006 crossref_primary_10_1016_j_engappai_2022_105775 crossref_primary_10_3390_en14154649 crossref_primary_10_3390_en15228732 crossref_primary_10_1016_j_jclepro_2021_129786 crossref_primary_10_1016_j_rser_2022_112401 crossref_primary_10_1007_s40747_025_01803_1 crossref_primary_10_1016_j_engappai_2024_108499 crossref_primary_10_1109_TCE_2023_3328147 crossref_primary_10_1007_s10462_022_10286_2 crossref_primary_10_3390_en17174529 crossref_primary_10_1155_2023_4391555 crossref_primary_10_1088_1742_6596_2666_1_012039 crossref_primary_10_1007_s13369_022_07030_x crossref_primary_10_1016_j_jobe_2023_106923 crossref_primary_10_1109_JSEN_2024_3426090 crossref_primary_10_3390_electronics13010202 crossref_primary_10_1109_TII_2022_3195896 crossref_primary_10_1007_s40866_024_00213_5 crossref_primary_10_1016_j_jclepro_2024_143049 crossref_primary_10_1016_j_rser_2023_114235 crossref_primary_10_1016_j_oceaneng_2025_121956 crossref_primary_10_1016_j_enbuild_2025_115586 crossref_primary_10_1016_j_iot_2023_101035 crossref_primary_10_1186_s13638_023_02258_z crossref_primary_10_1002_cpe_6707 crossref_primary_10_1016_j_jobe_2023_107847 |
| Cites_doi | 10.1016/j.apenergy.2019.02.025 10.1016/j.apenergy.2019.05.089 10.1016/j.procs.2018.07.138 10.1109/ICASSP.2019.8683792 10.1109/ACCESS.2019.2946342 10.1016/j.apenergy.2019.01.061 10.1109/UCC48980.2020.00066 10.1007/978-981-15-5856-6_30 10.3390/w9030224 10.1109/ICIoT48696.2020.9089624 10.1145/3336191.3371876 10.3390/smartcities3020021 10.1016/j.future.2020.05.041 10.1109/ACCESS.2020.2966640 10.4218/etrij.2018-0475 10.1016/j.procs.2013.06.168 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00072 10.1109/CIC.2018.00-44 10.1145/2821650.2821662 10.3390/en12122451 10.1109/ACCESS.2019.2928122 10.1016/j.jobe.2019.100936 10.1109/BigData.2018.8621948 10.1016/j.envsoft.2016.05.018 10.23919/ACC.2017.7962928 10.1016/j.apenergy.2019.114145 10.1002/int.22059 10.1007/978-3-030-68028-2_4 10.1016/j.apenergy.2017.12.005 10.1109/PES.2011.6039858 10.1145/130385.130401 10.4316/AECE.2015.01013 10.1002/int.21544 10.1109/ICCSE.2016.7581646 10.1109/PerCom.2014.6813941 10.1109/JSYST.2020.2997773 10.1109/ICS.2016.0143 10.1016/j.iot.2019.100059 10.1109/CSE-EUC-DCABES.2016.184 10.1016/j.apenergy.2020.114877 10.1109/IJCNN.2016.7727242 10.3390/ijerph17197265 10.1016/j.enbuild.2017.02.058 10.1016/j.apenergy.2021.116601 10.1109/ICMLA.2015.80 10.1016/j.egypro.2019.01.931 10.1007/978-3-031-07969-6_14 10.1016/j.apenergy.2020.115147 10.1016/j.apenergy.2020.116027 10.1109/TSG.2016.2643700 10.3390/ijerph17114179 10.1145/2821650.2821659 10.1108/IMDS-06-2016-0195 10.1145/3137133.3141438 10.1016/j.enbuild.2020.109864 10.1145/1541880.1541882 10.1016/j.enbuild.2020.110291 10.1002/int.21875 10.1109/ICASSP.2019.8683671 10.1002/int.22314 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley Periodicals LLC |
| Copyright_xml | – notice: 2021 Wiley Periodicals LLC |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/int.22404 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1098-111X |
| EndPage | 2894 |
| ExternalDocumentID | 10_1002_int_22404 INT22404 |
| Genre | article |
| GrantInformation_xml | – fundername: Qatar National Research Fund funderid: 10‐0130‐170288 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WWI WXSBR WYISQ WZISG XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION O8X PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3554-9cb376df1dbc5eca15d6eb4e1156fa73285c7c75b3e0fe8603c1ab94c702ed443 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626061200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0884-8173 |
| IngestDate | Fri Jul 25 12:29:12 EDT 2025 Tue Nov 18 22:20:12 EST 2025 Sat Nov 29 04:01:51 EST 2025 Wed Jan 22 16:30:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3554-9cb376df1dbc5eca15d6eb4e1156fa73285c7c75b3e0fe8603c1ab94c702ed443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9273-4735 0000-0001-7574-4766 0000-0001-8904-5587 0000-0003-1144-630X |
| PQID | 2518712643 |
| PQPubID | 1026350 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_2518712643 crossref_citationtrail_10_1002_int_22404 crossref_primary_10_1002_int_22404 wiley_primary_10_1002_int_22404_INT22404 |
| PublicationCentury | 2000 |
| PublicationDate | June 2021 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of intelligent systems |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2019; 7 2015; 15 2019; 34 2019; 12 2020; 281 2020; 17 2020; 225 2021; 287 1992 2020; 267 2019; 240 2017; 9 2017; 117 2021; 36 2020; 8 2013; 19 2018; 9 2020; 3 2011; 6635 2019; 41 2021 2020 2017; 32 2018; 211 2018; 134 2020; 271 2020; 215 2020; 259 2019 2020; 27 2018 2017 2019; 158 2016 2016; 83 2020; 112 2015 2012; 27 2019; 238 2014 2017; 144 2019; 250 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Pereira W (e_1_2_9_41_1) 2016 Sial A (e_1_2_9_52_1) 2019; 7 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Ariyaluran Habeeb RA (e_1_2_9_39_1) 2019 e_1_2_9_70_1 Liu W (e_1_2_9_71_1) 2011; 6635 Liu Y (e_1_2_9_29_1) 2020 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 |
| References_xml | – volume: 9 start-page: 3801 issue: 4 year: 2018 end-page: 3810 article-title: Non‐intrusive energy use monitoring for a group of electrical appliances publication-title: IEEE Trans Smart Grid – start-page: 4921 year: 2018 end-page: 4925 – start-page: 696 year: 2016 end-page: 700 – volume: 34 start-page: 415 issue: 3 year: 2019 end-page: 438 article-title: Detection of outlier information by the use of linguistic summaries based on classic and interval‐valued fuzzy sets publication-title: Int J Intell Syst – start-page: 303 end-page: 311 – start-page: 366 year: 2020 end-page: 371 – volume: 134 start-page: 10 year: 2018 end-page: 17 article-title: Building an anomaly detection engine (ADE) for IoT smart applications publication-title: Procedia Comput Sci – start-page: 394 year: 2020 end-page: 399 – volume: 32 start-page: 881 issue: 9 year: 2017 end-page: 899 article-title: Exponentially weighted ellipsoidal model for anomaly detection publication-title: Int J Intell Syst – volume: 27 year: 2020 article-title: A simulation‐aided approach in improving thermal‐visual comfort and power efficiency in buildings publication-title: J Building Eng – volume: 238 start-page: 796 year: 2019 end-page: 805 article-title: Can non‐intrusive load monitoring be used for identifying an appliance's anomalous behaviour? publication-title: Appl Energy – start-page: 44 year: 2017 end-page: 49 – start-page: 894 year: 2020 end-page: 896 – start-page: 16 year: 2018 end-page: 25 – volume: 41 start-page: 684 issue: 5 year: 2019 end-page: 695 article-title: UFKLDA: an unsupervised feature extraction algorithm for anomaly detection under cloud environment publication-title: ETRI J – volume: 83 start-page: 198 year: 2016 end-page: 211 article-title: Modelling energy efficiency performance of residential building stocks based on Bayesian statistical inference publication-title: Environ Modell Software – volume: 211 start-page: 1123 year: 2018 end-page: 1135 article-title: Analytical investigation of autoencoder‐based methods for unsupervised anomaly detection in building energy data publication-title: Appl Energy – start-page: 420 year: 2020 end-page: 425 – volume: 281 year: 2020 article-title: Simulation‐based performance evaluation of model predictive control for building energy systems publication-title: Appl Energy – volume: 7 issue: 20 year: 2019 article-title: Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches publication-title: Internet Things – volume: 117 start-page: 927 issue: 5 year: 2017 end-page: 945 article-title: Machine learning‐based anomaly detection via integration of manufacturing, inspection and after‐sales service data publication-title: Industr Manage Data Syst – volume: 17 start-page: 4179 issue: 11 year: 2020 article-title: Leveraging machine learning techniques and engineering of multi‐nature features for national daily regional ambulance demand prediction publication-title: Int J Environ Res Public Health – start-page: 35 year: 2015 end-page: 44 – volume: 15 start-page: 89 issue: 1 year: 2015 end-page: 94 article-title: Anomaly detection using power signature of consumer electrical devices publication-title: Adv Electr Comput Eng – start-page: 144 year: 1992 end-page: 152 – start-page: 1175 year: 2015 end-page: 1179 – start-page: 1 year: 2018 end-page: 13 – volume: 158 start-page: 3433 year: 2019 end-page: 3438 article-title: Support vector regression for predicting building energy consumption in southern China publication-title: Energy Procedia – volume: 8 start-page: 15047 year: 2020 end-page: 15055 article-title: Achieving domestic energy efficiency using micro‐moments and intelligent recommendations publication-title: IEEE Access – start-page: 38 year: 2014 end-page: 43 – start-page: 45 year: 2015 end-page: 54 – volume: 259 year: 2020 article-title: Real‐time prediction and anomaly detection of electrical load in a residential community publication-title: Appl Energy – volume: 7 start-page: 93387 year: 2019 end-page: 93395 article-title: Forecasting hospital emergency department patient volume using internet search data publication-title: IEEE Access – start-page: 1 year: 2019 end-page: 27 article-title: Clustering‐based real‐time anomaly detection‐a breakthrough in big data technologies publication-title: Transactions on Emerging Telecommunications Technologies – volume: 112 start-page: 394 year: 2020 end-page: 407 article-title: REHAB‐C: recommendations for energy HABits change publication-title: Future Gener Comput Syst – start-page: 1 year: 2021 end-page: 13 – volume: 12 start-page: 2451 year: 2019 article-title: Analysis of building electricity use pattern using K‐means clustering algorithm by determination of better initial centroids and number of clusters publication-title: Energies – volume: 9 start-page: 1 issue: 3 year: 2017 end-page: 19 article-title: Clustering and support vector regression for water demand forecasting and anomaly detection publication-title: Water – volume: 19 start-page: 1174 year: 2013 end-page: 1181 article-title: A hierarchical framework using approximated local outlier factor for efficient anomaly detection publication-title: Procedia Comput Sci – start-page: 1 end-page: 8 – volume: 27 start-page: 733 issue: 8 year: 2012 end-page: 756 article-title: Similarity measure for anomaly detection and comparing human behaviors publication-title: Int J Intell Syst – volume: 41 start-page: 1 issue: 3 year: 2019 end-page: 58 article-title: Anomaly detection: a survey publication-title: ACM Comput Surv – volume: 17 start-page: 7265 issue: 19 year: 2020 article-title: Medical fraud and abuse detection system based on machine learning publication-title: Int J Environ Res Public Health – start-page: 8325 year: 2019 end-page: 8329 – start-page: 33 year: 2018 end-page: 42 – start-page: 1 year: 2017 end-page: 2 – start-page: 523 year: 2016 end-page: 534 – volume: 225 year: 2020 article-title: Model predictive control of building energy systems with thermal energy storage in response to occupancy variations and time‐variant electricity prices publication-title: Energy Buildings – volume: 250 start-page: 1302 year: 2019 end-page: 1311 article-title: Endorsing domestic energy saving behavior using micro‐moment classification publication-title: Appl Energy – volume: 6635 start-page: 345 year: 2011 end-page: 356 article-title: Class Confidence Weighted kNN Algorithms for Imbalanced Data Sets publication-title: Adv Knowl Discov Data Min – start-page: 2737 year: 2019 end-page: 2741 – volume: 267 year: 2020 article-title: Robust event‐based non‐intrusive appliance recognition using multi‐scale wavelet packet tree and ensemble bagging tree publication-title: Appl Energy – volume: 271 year: 2020 article-title: Model predictive control with adaptive machine‐learning‐based model for building energy efficiency and comfort optimization publication-title: Appl Energy – start-page: 511 year: 2016 end-page: 518 – volume: 240 start-page: 561 year: 2019 end-page: 582 article-title: An anomaly detection framework for dynamic systems using a Bayesian hierarchical framework publication-title: Appl Energy – start-page: 1 year: 2020 end-page: 26 – volume: 215 year: 2020 article-title: A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data publication-title: Energy Buildings – volume: 3 start-page: 401 issue: 2 year: 2020 end-page: 419 article-title: A case study based approach for remote fault detection using multi‐level machine learning in a smart building publication-title: Smart Cities – volume: 287 year: 2021 article-title: Artificial intelligence based anomaly detection of energy consumption in buildings: a review, current trends and new perspectives publication-title: Appl Energy – volume: 7 start-page: 153799 year: 2019 end-page: 153809 article-title: A novel methodology to improve cooling efficiency at data centers publication-title: IEEE Access – volume: 36 start-page: 656 issue: 2 year: 2021 end-page: 680 article-title: The emergence of explainability of intelligent systems: Delivering explainable and personalized recommendations for energy efficiency publication-title: Int J Intell Syst – start-page: 1 year: 2020 end-page: 11 article-title: Hossain, Deep anomaly detection for time‐series data in industrial IoT: a communication‐efficient on‐device federated learning approach publication-title: IEEE Internet Things J – volume: 7 start-page: 1 year: 2019 end-page: 18 article-title: Detecting anomalous energy consumption using contextual analysis of smart meter data publication-title: Wireless Netw – start-page: 65 end-page: 84 – start-page: 587 year: 2016 end-page: 591 – start-page: 1 year: 2020 end-page: 32 – start-page: 189 year: 2016 end-page: 196 – volume: 144 start-page: 191 year: 2017 end-page: 206 article-title: An ensemble learning framework for anomaly detection in building energy consumption publication-title: Energy Buildings – ident: e_1_2_9_45_1 doi: 10.1016/j.apenergy.2019.02.025 – ident: e_1_2_9_74_1 doi: 10.1016/j.apenergy.2019.05.089 – ident: e_1_2_9_57_1 doi: 10.1016/j.procs.2018.07.138 – ident: e_1_2_9_13_1 doi: 10.1109/ICASSP.2019.8683792 – ident: e_1_2_9_60_1 doi: 10.1109/ACCESS.2019.2946342 – ident: e_1_2_9_17_1 – ident: e_1_2_9_20_1 – ident: e_1_2_9_24_1 doi: 10.1016/j.apenergy.2019.01.061 – ident: e_1_2_9_70_1 doi: 10.1109/UCC48980.2020.00066 – ident: e_1_2_9_5_1 doi: 10.1007/978-981-15-5856-6_30 – ident: e_1_2_9_32_1 doi: 10.3390/w9030224 – ident: e_1_2_9_47_1 – ident: e_1_2_9_7_1 doi: 10.1109/ICIoT48696.2020.9089624 – volume: 7 start-page: 1 year: 2019 ident: e_1_2_9_52_1 article-title: Detecting anomalous energy consumption using contextual analysis of smart meter data publication-title: Wireless Netw – ident: e_1_2_9_18_1 doi: 10.1145/3336191.3371876 – ident: e_1_2_9_44_1 doi: 10.3390/smartcities3020021 – ident: e_1_2_9_8_1 doi: 10.1016/j.future.2020.05.041 – ident: e_1_2_9_66_1 – start-page: 1 year: 2020 ident: e_1_2_9_29_1 article-title: Hossain, Deep anomaly detection for time‐series data in industrial IoT: a communication‐efficient on‐device federated learning approach publication-title: IEEE Internet Things J – ident: e_1_2_9_27_1 – ident: e_1_2_9_6_1 doi: 10.1109/ACCESS.2020.2966640 – start-page: 1 year: 2019 ident: e_1_2_9_39_1 article-title: Clustering‐based real‐time anomaly detection‐a breakthrough in big data technologies publication-title: Transactions on Emerging Telecommunications Technologies – ident: e_1_2_9_46_1 – ident: e_1_2_9_56_1 doi: 10.4218/etrij.2018-0475 – ident: e_1_2_9_43_1 doi: 10.1016/j.procs.2013.06.168 – ident: e_1_2_9_67_1 doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00072 – ident: e_1_2_9_26_1 doi: 10.1109/CIC.2018.00-44 – ident: e_1_2_9_54_1 doi: 10.1145/2821650.2821662 – ident: e_1_2_9_42_1 doi: 10.3390/en12122451 – ident: e_1_2_9_37_1 doi: 10.1109/ACCESS.2019.2928122 – ident: e_1_2_9_59_1 doi: 10.1016/j.jobe.2019.100936 – ident: e_1_2_9_21_1 doi: 10.1109/BigData.2018.8621948 – ident: e_1_2_9_58_1 doi: 10.1016/j.envsoft.2016.05.018 – ident: e_1_2_9_64_1 doi: 10.23919/ACC.2017.7962928 – ident: e_1_2_9_12_1 doi: 10.1016/j.apenergy.2019.114145 – ident: e_1_2_9_16_1 doi: 10.1002/int.22059 – ident: e_1_2_9_68_1 doi: 10.1007/978-3-030-68028-2_4 – ident: e_1_2_9_22_1 doi: 10.1016/j.apenergy.2017.12.005 – ident: e_1_2_9_31_1 doi: 10.1109/PES.2011.6039858 – ident: e_1_2_9_65_1 doi: 10.1145/130385.130401 – ident: e_1_2_9_28_1 – ident: e_1_2_9_51_1 doi: 10.4316/AECE.2015.01013 – ident: e_1_2_9_9_1 doi: 10.1002/int.21544 – ident: e_1_2_9_25_1 doi: 10.1145/2821650.2821662 – ident: e_1_2_9_55_1 doi: 10.1109/ICCSE.2016.7581646 – ident: e_1_2_9_40_1 doi: 10.1109/PerCom.2014.6813941 – ident: e_1_2_9_69_1 doi: 10.1109/JSYST.2020.2997773 – ident: e_1_2_9_72_1 doi: 10.1109/ICS.2016.0143 – ident: e_1_2_9_30_1 doi: 10.1016/j.iot.2019.100059 – ident: e_1_2_9_34_1 doi: 10.1109/CSE-EUC-DCABES.2016.184 – ident: e_1_2_9_2_1 doi: 10.1016/j.apenergy.2020.114877 – ident: e_1_2_9_53_1 doi: 10.1109/IJCNN.2016.7727242 – ident: e_1_2_9_49_1 doi: 10.3390/ijerph17197265 – volume: 6635 start-page: 345 year: 2011 ident: e_1_2_9_71_1 article-title: Class Confidence Weighted kNN Algorithms for Imbalanced Data Sets publication-title: Adv Knowl Discov Data Min – ident: e_1_2_9_35_1 doi: 10.1016/j.enbuild.2017.02.058 – ident: e_1_2_9_10_1 doi: 10.1016/j.apenergy.2021.116601 – ident: e_1_2_9_36_1 doi: 10.1109/ICMLA.2015.80 – ident: e_1_2_9_33_1 doi: 10.1016/j.egypro.2019.01.931 – ident: e_1_2_9_14_1 doi: 10.1007/978-3-031-07969-6_14 – ident: e_1_2_9_63_1 doi: 10.1016/j.apenergy.2020.115147 – ident: e_1_2_9_62_1 doi: 10.1016/j.apenergy.2020.116027 – ident: e_1_2_9_3_1 doi: 10.1109/TSG.2016.2643700 – ident: e_1_2_9_38_1 doi: 10.3390/ijerph17114179 – ident: e_1_2_9_73_1 doi: 10.1145/2821650.2821659 – start-page: 523 volume-title: Artificial Intelligence and Soft Computing year: 2016 ident: e_1_2_9_41_1 – ident: e_1_2_9_48_1 doi: 10.1108/IMDS-06-2016-0195 – ident: e_1_2_9_23_1 doi: 10.1145/3137133.3141438 – ident: e_1_2_9_11_1 doi: 10.1016/j.enbuild.2020.109864 – ident: e_1_2_9_19_1 doi: 10.1145/1541880.1541882 – ident: e_1_2_9_61_1 doi: 10.1016/j.enbuild.2020.110291 – ident: e_1_2_9_15_1 doi: 10.1002/int.21875 – ident: e_1_2_9_50_1 doi: 10.1109/ICASSP.2019.8683671 – ident: e_1_2_9_4_1 doi: 10.1002/int.22314 |
| SSID | ssj0011745 |
| Score | 2.5509455 |
| Snippet | Anomaly detection in energy consumption is a crucial step towards developing efficient energy saving systems, diminishing overall energy expenditure and... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2865 |
| SubjectTerms | Abnormalities Algorithms Anomalies anomaly detection Buildings Datasets Energy consumption improved K‐nearest neighbors Intelligent systems Machine learning micromoments one‐class support vector machine Power consumption rule‐based algorithm Support vector machines |
| Title | Smart power consumption abnormality detection in buildings using micromoments and improved K‐nearest neighbors |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.22404 https://www.proquest.com/docview/2518712643 |
| Volume | 36 |
| WOSCitedRecordID | wos000626061200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 0884-8173 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsRAEC10xoMXxxXHjUY8eImT7nQmCZ5EHRRlEBfwFnqLDDjtMIme_QS_0S-xu7OooCB4y6Gy0LX060rVK4A9HEhzaAgzT5rw71EeBh6jkniE9TMWCiYwc43Cl9FwGN_fJ1czcFj3wpT8EE3CzXqGi9fWwRnPe5-koSNdHNj9iM5Cmxi7pS1on1wP7i6bnwgGbIcliKRejKOgJhbySa-5-ft29IkxvyJVt9UMOv_6yEVYqBAmOipNYglmlF6GTj29AVXOvAKTm7ExGzSxY9KQcJ2YLnwgxrUFshafI6kKV6ul0UgjXo3QzpGtln9A47KYzzXJIaYlGrkMhZLo4v31TVt23LxA2iZfjaXlq3A3OL09PvOq-QuesCjESwQ34UdmWHIRKsFwKPuKU2VApFGkZfkJRSSikAfKz1Tc9wOjWZ5QEflESUqDNWjpJ63WARkkIbCfEcxIRrFMDOqhEUtYIjKMZRx0Yb9WQyoqcnI7I-MxLWmVSWpWMnUr2YXdRnRSMnL8JLRV6zKtnDJPDZQzx0ODAO3rnNZ-f0B6Prx1Fxt_F92EeWIrXlyOZgtaxfRZbcOceClG-XSnss4PHl_sMg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfTiW3wbxIOXuk2bbLfgRdRlZesiuoK3kiapLLhxsdWzP8Hf6C8xSR-roCB462H6IPPIl-nMNwCH2Bf60EBTR-jw75CE-g4jwnM81koZ5YxjZhuFo6Dfb9_fh9dTcFL1whT8EHXCzXiGjdfGwU1CujlhDR2q_NhsSGQaZog2I9qAmfObzl1U_0XQaJsWKJI4bRz4FbOQ6zXrm7_vRxOQ-RWq2r2ms_i_r1yChRJjotPCKJZhSqoVWKzmN6DSnVdhfDvShoPGZlAa4rYX0wYQxBJloKxB6EjI3FZrKTRUKCmHaGfI1Ms_oFFRzmfb5BBTAg1tjkIK1Pt4e1eGHzfLkTLpV21r2RrcdS4GZ12nnMDgcINDnJAnOgCJFIuEU8kZpqIlEyI1jNSqNDw_lAc8oIkv3VS2W66vdZuEhAeuJwUh_jo01JOSG4A0luDYTT3MvJRgEWrcQwIWspCnGIu2vwlHlR5iXtKTmykZj3FBrOzFeiVju5KbcFCLjgtOjp-EdiplxqVbZrEGc_qAqDGgeZ1V2-8PiC_7A3ux9XfRfZjrDq6iOLrs97Zh3jP1LzZjswON_PlF7sIsf82H2fNeaaqfOVXwIg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK-LF-sRq1UU8eIlmk92mAS-iFsVSRFvoLWx2N1Kwa2miZ3-Cv9Ff4u4maRUUBG85TB7sPPbbycw3AEfYF_rQQBNH6PDvkJj6DiPCczzWShjljGNmG4W7Qa_XHg7Duwqclb0wOT_ELOFmPMPGa-PgciKS0zlr6EhlJ2ZDIgtQIzRsabesXd53Bt3ZXwSNtmmOIonTxoFfMgu53uns5u_70RxkfoWqdq_p1P_3lauwUmBMdJ4bxRpUpFqHejm_ARXuvAGTh7E2HDQxg9IQt72YNoAgFisDZQ1CR0JmtlpLoZFCcTFEO0WmXv4RjfNyPtsmh5gSaGRzFFKg24-3d2X4cdMMKZN-1baWbsKgc9W_uHaKCQwONzjECXmsA5BIsIg5lZxhKloyJlLDSK1Kw_NDecADGvvSTWS75fpat3FIeOB6UhDib0FVPSu5DUhjCY7dxMPMSwgWocY9JGAhC3mCsWj7DTgu9RDxgp7cTMl4inJiZS_SKxnZlWzA4Ux0knNy_CTULJUZFW6ZRhrM6QOixoDmdVZtvz8guun17cXO30UPYOnushN1b3q3u7DsmfIXm7BpQjWbvsg9WOSv2Sid7heW-gndiu-d |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+power+consumption+abnormality+detection+in+buildings+using+micromoments+and+improved+K%E2%80%90nearest+neighbors&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Himeur%2C+Yassine&rft.au=Alsalemi%2C+Abdullah&rft.au=Bensaali%2C+Faycal&rft.au=Abbes+Amira&rft.date=2021-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=36&rft.issue=6&rft.spage=2865&rft.epage=2894&rft_id=info:doi/10.1002%2Fint.22404&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |