Riemann boundary value problem for harmonic functions in Clifford analysis
In this article, we mainly deal with the boundary value problem for harmonic function with values in Clifford algebra: Δ[u](x)=0,x∈Rn∖∂Ω,u+(x)=u−(x)G(x)+g1(x),x∈∂Ω,(Du)+(x)=(Du)−(x)A+g2(x),x∈∂Ω,∥u(∞)∥=0,where ∂Ω is a Liapunov surface in Rn, the Dirac operator D=∑k=1nek∂∂xk, u(x)=∑AeAuA(x) are unknow...
Saved in:
| Published in: | Mathematische Nachrichten Vol. 287; no. 8-9; pp. 1001 - 1012 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
Blackwell Publishing Ltd
01.06.2014
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0025-584X, 1522-2616 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this article, we mainly deal with the boundary value problem for harmonic function with values in Clifford algebra:
Δ[u](x)=0,x∈Rn∖∂Ω,u+(x)=u−(x)G(x)+g1(x),x∈∂Ω,(Du)+(x)=(Du)−(x)A+g2(x),x∈∂Ω,∥u(∞)∥=0,where ∂Ω is a Liapunov surface in Rn, the Dirac operator D=∑k=1nek∂∂xk, u(x)=∑AeAuA(x) are unknown functions with values in a universal Clifford algebra Cl(Vn,n). Under some assumptions, we show that the boundary value problem is solvable. |
|---|---|
| Bibliography: | istex:43B3D93ECD840938CFB3FE2E7DCED09983B42624 NNSF for Young Scholars of China - No. 11001206 ArticleID:MANA201100302 ark:/67375/WNG-G6XHHZ57-8 National Natural Science Foundation of China - No. 11271175; No. 71271158 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0025-584X 1522-2616 |
| DOI: | 10.1002/mana.201100302 |