Finiteness of the space of n-cycles for a reduced (n − 2)-concave complex space

EPIGA, Volume 1 (2017), Nr. 5 We show that for n ≥ 2 the space of closed n-cycles in a strongly (n − 2)-concave complex space has a natural structure of reduced complex space locally of finite dimension and represents the functor " analytic family of n-cycles " parametrized by Banach analy...

Full description

Saved in:
Bibliographic Details
Published in:Épijournal de géométrie algébrique Vol. 1
Main Author: Barlet, Daniel
Format: Journal Article
Language:English
Published: EPIGA 01.09.2017
Association Epiga
Subjects:
ISSN:2491-6765, 2491-6765
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:EPIGA, Volume 1 (2017), Nr. 5 We show that for n ≥ 2 the space of closed n-cycles in a strongly (n − 2)-concave complex space has a natural structure of reduced complex space locally of finite dimension and represents the functor " analytic family of n-cycles " parametrized by Banach analytic sets. Nous montrons que, pour n ≥ 2, l'espace des n-cycles fermés dans un espace complexe fortement (n − 2)-concave a une structure naturelle d'espace complexe réduit localement de dimension finie et que cet espace représente le foncteur " famille analytique de n-cycles " paramétrée par des ensembles analytiques banachiques.
ISSN:2491-6765
2491-6765
DOI:10.46298/epiga.2017.volume1.1521