Using Web-Data to Estimate Spatial Regression Models

Macro econometrics has been recently affected by the so-called ‘Google Econometrics’. Comparatively less attention has been paid to the subject by the regional and spatial sciences where the Big Data revolution is challenging the conventional econometric techniques with the availability of a variety...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International regional science review Ročník 47; číslo 2; s. 204 - 226
Hlavní autoři: Arbia, Giuseppe, Nardelli, Vincenzo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Angeles, CA SAGE Publications 01.03.2024
Sage Publications Ltd
Témata:
ISSN:0160-0176, 1552-6925
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Macro econometrics has been recently affected by the so-called ‘Google Econometrics’. Comparatively less attention has been paid to the subject by the regional and spatial sciences where the Big Data revolution is challenging the conventional econometric techniques with the availability of a variety of non- traditionally collected data (such as, e. g., crowdsourcing, web scraping, etc) which are almost invariably geo-coded. However, these unconventionally collected data represent only what in statistics is known as a “convenience sample” that does not allow any sound probabilistic inference. This paper aims at making aware researchers of the consequence of the unwise use of such data in the applied work and to propose a technique to minimize such the negative effects in the estimation of spatial regression. The method consists of manipulating the data prior their use in an inferential context.
AbstractList Macro econometrics has been recently affected by the so-called ‘Google Econometrics’. Comparatively less attention has been paid to the subject by the regional and spatial sciences where the Big Data revolution is challenging the conventional econometric techniques with the availability of a variety of non- traditionally collected data (such as, e. g., crowdsourcing, web scraping, etc) which are almost invariably geo-coded. However, these unconventionally collected data represent only what in statistics is known as a “convenience sample” that does not allow any sound probabilistic inference. This paper aims at making aware researchers of the consequence of the unwise use of such data in the applied work and to propose a technique to minimize such the negative effects in the estimation of spatial regression. The method consists of manipulating the data prior their use in an inferential context.
Author Arbia, Giuseppe
Nardelli, Vincenzo
Author_xml – sequence: 1
  givenname: Giuseppe
  surname: Arbia
  fullname: Arbia, Giuseppe
  organization: , Milan, Italy
– sequence: 2
  givenname: Vincenzo
  orcidid: 0000-0002-7215-7934
  surname: Nardelli
  fullname: Nardelli, Vincenzo
  email: v.nardelli2@campus.unimib.it
  organization: , Milan, Italy
BookMark eNp1kE1Lw0AQhhepYFv9Ad4CnlN3Z7-yR6n1AyqCWjyGTXZSUmq27m4P_nsTIngQ5zIM87zvMO-MTDrfISGXjC4Y0_qaMkUp0wp4P3LBixMyZVJCrgzICZkO-3wAzsgsxh2lVAsjpkRsYttts3es8lubbJZ8toqp_bAJs9eDTa3dZy-4DRhj67vsyTvcx3Ny2th9xIufPiebu9Xb8iFfP98_Lm_Wec2lSDmKotDgQErVONGXtKqyzjaOq7qChgIzFoySUotKolF14apaVxYYN5Ijn5Or0fcQ_OcRYyp3_hi6_mQJBqgEBVT1FBupOvgYAzblIfQPhK-S0XIIp_wTTq9ZjJpot_jr-r_gG2cUY4E
Cites_doi 10.1080/01621459.2019.1677241
10.1080/13658816.2017.1346255
10.1080/01621459.1992.10475217
10.1111/insr.12434
10.1007/978-94-009-2395-9
10.1016/j.econmod.2012.07.017
10.2307/1403632
10.1177/0160017616650488
10.1257/jep.30.2.151
10.1007/s10708-007-9111-y
10.1080/01621459.1993.10476368
10.1007/978-3-030-73030-7
10.1177/01600176211059981
10.2196/jmir.9330
10.1111/j.2517-6161.1983.tb01224.x
10.1057/9780230244405_26
10.1080/17421771003730703
10.1016/j.spasta.2021.100568
10.1002/env.2194
10.1111/insr.12290
10.1201/9781420064254
10.1007/978-981-10-2762-8
10.1016/j.econmod.2016.12.002
10.1111/rssb.12354
10.4324/9781315735276
10.1177/0739456X16664789
10.1177/152582202237725
10.1007/s12076-011-0065-9
10.1007/978-94-015-7799-1
10.1016/0166-0462(92)90039-4
10.17713/ajs.v44i2.79
10.2139/ssrn.1438286
10.1057/9781137317940
10.1080/17421770600661337
10.1111/j.1468-0262.2004.00558.x
10.1214/16-STS598
10.1016/j.econmod.2019.04.003
10.1177/0160017618821428
ContentType Journal Article
Copyright The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023
DBID AAYXX
CITATION
8BJ
FQK
JBE
DOI 10.1177/01600176231173438
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList CrossRef

International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Sociology & Social History
Social Sciences (General)
Statistics
EISSN 1552-6925
EndPage 226
ExternalDocumentID 10_1177_01600176231173438
10.1177_01600176231173438
GroupedDBID -TM
-~X
.2G
.2L
01A
09Z
0R~
1OL
1~K
29J
31S
31V
31W
31X
4.4
56W
5GY
5VS
AABOD
AACKU
AADIR
AADUE
AAGGD
AAGLT
AAJPV
AAKTJ
AAMFR
AANSI
AAPEO
AAQDB
AAQXI
AARIX
AATAA
AAWLO
AAZLU
ABAWP
ABCCA
ABCJG
ABDBF
ABEHJ
ABEIX
ABFXH
ABHQH
ABIDT
ABJNI
ABKRH
ABPNF
ABQKF
ABQPY
ABQXT
ABRHV
ABUJY
ABYTW
ACAEP
ACCVJ
ACDXX
ACFUR
ACFZE
ACGFS
ACHQT
ACJER
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUFS
ACUHS
ACUIR
ADDLC
ADEBD
ADEIA
ADMHG
ADNMO
ADNON
ADPEE
ADRRZ
ADSTG
ADTOS
ADUKL
ADYCS
AEDXQ
AEOBU
AESMA
AESZF
AEUHG
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGDVU
AGKLV
AGNHF
AGNWV
AGQPQ
AGWNL
AHDMH
AHHCN
AHHFK
AHWHD
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ANDLU
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYPQM
AZFZN
B8O
B8S
B8T
B8Z
BDZRT
BMVBW
BPACV
BYIEH
CAG
CBRKF
CCGJY
CEADM
COF
CS3
DD0
DD~
DG~
DOPDO
DU5
DV7
DV8
EBS
EJD
F5P
FEDTE
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HF~
HVGLF
HZ~
J8X
LPU
MS~
N9A
O9-
P.B
P2P
PQQKQ
Q1R
Q7O
Q7P
Q7X
ROL
S01
SASJQ
SAUOL
SBI
SCNPE
SFB
SFC
SFK
SFT
SFU
SFX
SGP
SGU
SGV
SHB
SHF
SHM
SPJ
SPP
SQCSI
SSDHQ
TN5
ULY
UPT
ZPLXX
ZPPRI
~32
AAEJI
AAPII
AAYXX
ABUAX
ABUFD
ACCVC
AEYHP
AJGYC
AJHME
AJVBE
AMNSR
CITATION
8BJ
FQK
JBE
ID FETCH-LOGICAL-c354t-e48872d2556fd44445a6badafd36cb2f0219a2965574b5e96c8dbc7ba213953e3
IEDL.DBID AEVPJ
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981185200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0160-0176
IngestDate Sun Nov 16 07:11:01 EST 2025
Sat Nov 29 08:14:09 EST 2025
Tue Jun 17 22:28:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords spatial microeconometrics
spatial regression
webscraping
crowdsourcing
big data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-e48872d2556fd44445a6badafd36cb2f0219a2965574b5e96c8dbc7ba213953e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7215-7934
PQID 2920526206
PQPubID 26611
PageCount 23
ParticipantIDs proquest_journals_2920526206
crossref_primary_10_1177_01600176231173438
sage_journals_10_1177_01600176231173438
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: Thousand Oaks
PublicationTitle International regional science review
PublicationYear 2024
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References Fondeur, Karamé 2013; 30
Boeing, Waddell 2017; 37
Kim, Tam 2020; 89
Holt, Smith 1979; 142
Pohjankukka, Pahikkala, Nevalainen, Heikkonen 2017; 31
Anselin, LeGallo 2006; 1
Can 1992; 22
Arbia, Petrarca 2011; 4
Ayouba, Breuille, Grivault, Le Gallo 2020; 43
Loveridge, Paredes 2018; 41
Crequit, Mansouri, Benchoufi, Vivot, Ravaud 2018; 20
Lee 2004; 72
Wei, Cao 2017; 61
Little 1993; 88
Zoričák, Gnip, Drotár, Gazda 2020; 84
Yang, Kim, Song 2020; 82
Beręsewicz 2015; 44
Arbia 1993; 61
Anselin, Lozano-Grazia, Deichmann, Lall 2010; 5
Chen, Li, Wu 2020; 115
Arbia, Matsuda, Wu 2022; 47
Kim, Wang 2019; 87
Kulkarni, Haynes, Stough, Paelinck 2009
Diggle, Milne 1983; 45.1
Grafström, Tillé 2012; 24
Fricker, Schonlau 2002; 14
Goodchild 2007; 69
Gehlke, Bihel 1934; 29
Wrede 2022; 45
Elliott, Valliant 2017; 32
Arbia, Solano-Hermosilla, Micale, Nardelli, Genovese 2018
Cavallo, Rigobon 2016; 30
Deville, Särndal 1992; 87
bibr13-01600176231173438
bibr36-01600176231173438
Gehlke C. E. (bibr26-01600176231173438) 1934; 29
bibr20-01600176231173438
Fisher R. (bibr23-01600176231173438) 1935
bibr10-01600176231173438
bibr8-01600176231173438
bibr5-01600176231173438
Greene W. (bibr29-01600176231173438) 2018
bibr2-01600176231173438
bibr9-01600176231173438
bibr6-01600176231173438
bibr3-01600176231173438
Laney D. (bibr35-01600176231173438) 2001
bibr19-01600176231173438
bibr16-01600176231173438
bibr33-01600176231173438
bibr46-01600176231173438
bibr39-01600176231173438
Poincare J-H. (bibr43-01600176231173438) 1908
bibr4-01600176231173438
bibr17-01600176231173438
bibr7-01600176231173438
bibr27-01600176231173438
bibr22-01600176231173438
bibr45-01600176231173438
bibr48-01600176231173438
bibr25-01600176231173438
Muller W. G. (bibr40-01600176231173438) 2007
Nardelli V. (bibr41-01600176231173438) 2019
bibr12-01600176231173438
bibr15-01600176231173438
bibr42-01600176231173438
bibr32-01600176231173438
bibr18-01600176231173438
bibr21-01600176231173438
bibr28-01600176231173438
bibr38-01600176231173438
bibr24-01600176231173438
bibr47-01600176231173438
bibr34-01600176231173438
bibr37-01600176231173438
bibr44-01600176231173438
bibr14-01600176231173438
bibr1-01600176231173438
Hansen M. H. (bibr30-01600176231173438) 1953
Holt D. (bibr31-01600176231173438) 1979; 142
bibr11-01600176231173438
References_xml – volume: 87
  start-page: 376
  issue: 418
  year: 1992
  end-page: 382
  article-title: Calibration estimators in survey sampling
  publication-title: Journal of the American Statistical Association
– volume: 61
  start-page: 147
  year: 2017
  end-page: 155
  article-title: Forecasting House Prices Using Dynamic Model Averaging Approach: Evidence from China
  publication-title: Economic Modelling
– volume: 29
  start-page: 169
  year: 1934
  end-page: 170
  article-title: Certain Effects of Grouping Upon the Size of Correlation Coefficient in Census Tracks Material
  publication-title: Journal of the American Statistical Association
– volume: 89
  start-page: 382
  year: 2020
  end-page: 401
  article-title: Data Integration by Combining Big Data and Survey Sample Data for Finite Population Inference
  publication-title: International Statistical Review
– year: 2009
  article-title: Forecasting Housing Prices with Google Econometrics
– volume: 61
  start-page: 339
  issue: 2
  year: 1993
  end-page: 359
  article-title: The use of GIS in spatial surveys
  publication-title: International Statistical Review
– volume: 31
  start-page: 2001
  issue: 10
  year: 2017
  end-page: 2019
  article-title: Estimating the Prediction Performance of Spatial Models via Spatial k-Fold Cross Validation
  publication-title: International Journal of Geographical Information Science
– volume: 1
  start-page: 31
  issue: 1
  year: 2006
  end-page: 52
  article-title: Interpolation of Air Quality Measures in Hedonic House Price Models: Spatial Aspects
  publication-title: Spatial Economic Analysis
– volume: 37
  start-page: 457
  issue: 4
  year: 2017
  end-page: 476
  article-title: New Insights into Rental Housing Markets across the United States: Web Scraping and Analyzing Craigslist Rental Listings
  publication-title: Journal of Planning Education and Research
– volume: 24
  start-page: 120
  issue: 2
  year: 2012
  end-page: 131
  article-title: Doubly Balanced Spatial Sampling With Spreading and Restitution of Auxiliary totals
  publication-title: Envirnometrics
– volume: 20
  start-page: 5
  year: 2018
  article-title: Mapping of Crowdsourcing in Health: Systematic Review
  publication-title: Journal of Medical Internet Research
– volume: 41
  start-page: 364
  issue: 3
  year: 2018
  end-page: 382
  article-title: Are Rural Costs of Living Lower? Evidence from a Big Mac Index Approach
  publication-title: International Regional Science Review
– volume: 142
  start-page: 33
  issue: 1
  year: 1979
  end-page: 46
  article-title: Post Stratification
  publication-title: Post Stratification, Series A
– volume: 22
  start-page: 453
  issue: 3
  year: 1992
  end-page: 474
  article-title: Specification and Estimation of Hedonic Housing Price Models
  publication-title: Regional Science and Urban Economics
– volume: 45.1
  start-page: 11
  year: 1983
  end-page: 21
  article-title: Bivariate Cox processes: some models for bivariate spatial point patterns
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– volume: 43
  start-page: 76
  issue: 1–2
  year: 2020
  end-page: 104
  article-title: Does Airbnb disrupt the private rental market? An empirical analysis for French cities
  publication-title: International Regional Science Review
– volume: 47
  start-page: 100568
  year: 2022
  article-title: Estimating spatial regression models with sample data-points: A Gibbs sampler solution
  publication-title: Spatial Statistics
– volume: 44
  start-page: 45
  issue: 2
  year: 2015
  end-page: 57
  article-title: On the Representativeness of Internet Data Sources for the Real Estate Market in Poland
  publication-title: Austrian Journal of Statistics
– volume: 87
  start-page: S177
  issue: S1
  year: 2019
  end-page: S191
  article-title: Sampling Techniques for Big Data Analysis
  publication-title: International Statistical Review
– volume: 45
  start-page: 417
  issue: 4
  year: 2022
  end-page: 443
  article-title: How Short-Term Rentals are Changing the Neighborhood
  publication-title: International Regional Science Review
– volume: 82
  start-page: 445
  issue: 2
  year: 2020
  end-page: 465
  article-title: Doubly Robust Inference When Combining Probability and Non-Probability Samples With High Dimensional Data
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 69
  start-page: 211
  issue: 4
  year: 2007
  end-page: 221
  article-title: Citizens as Sensors: The World of Volunteered Geography
  publication-title: GeoJournal
– volume: 72
  start-page: 1899
  issue: 6
  year: 2004
  end-page: 1925
  article-title: Asymptotic Distribution of Quasi Maximum Likelihood Estimators for Spatial Autoregressive Models
  publication-title: Econometrica
– volume: 14
  start-page: 347
  issue: 4
  year: 2002
  end-page: 367
  article-title: Advantages and Disadvantages of Internet Research Surveys: Evidence from the Literature
  publication-title: Field Methods
– volume: 30
  start-page: 151
  issue: 2
  year: 2016
  end-page: 78
  article-title: The Billion Prices Project: Using Online Prices for Measurement and Research
  publication-title: Journal of Economic Perspectives
– volume: 32
  start-page: 249
  issue: 2
  year: 2017
  end-page: 264
  article-title: Inference for Nonprobability Samples
  publication-title: Statistical Science
– volume: 88
  start-page: 1001
  issue: 423
  year: 1993
  end-page: 1012
  article-title: Post-Stratification: A Modeler's Perspective
  publication-title: Journal of the American Statistical Association
– volume: 30
  start-page: 117
  year: 2013
  end-page: 125
  article-title: Can Google Data Help Predict French Youth Unemployment?
  publication-title: Economic Modelling
– volume: 5
  start-page: 161
  issue: 2
  year: 2010
  end-page: 179
  article-title: Valuing Access to Water—A Spatial Hedonic Approach, with an Application to Bangalore, India
  publication-title: Spatial Economic Analysis
– volume: 4
  start-page: 173
  year: 2011
  end-page: 185
  article-title: Effects of MAUP on spatial econometrics models (with Francesca Petrarca)
  publication-title: Letters in Spatial and Resource Sciences
– year: 2018
  article-title: Post- sampling crowdsourced data to allow reliable statistical inference: the case of food price indices in Nigeria
– volume: 115
  start-page: 2011
  issue: 532
  year: 2020
  end-page: 2021
  article-title: Doubly Robust Inference With Nonprobability Survey Samples
  publication-title: Journal of the American Statistical Association
– volume: 84
  start-page: 165
  year: 2020
  end-page: 176
  article-title: Bankruptcy Prediction for Small- and Medium-Sized Companies Using Severely Imbalanced Datasets
  publication-title: Economic Modelling
– ident: bibr18-01600176231173438
  doi: 10.1080/01621459.2019.1677241
– volume-title: The Design of Experiments
  year: 1935
  ident: bibr23-01600176231173438
– ident: bibr42-01600176231173438
  doi: 10.1080/13658816.2017.1346255
– ident: bibr20-01600176231173438
  doi: 10.1080/01621459.1992.10475217
– ident: bibr32-01600176231173438
  doi: 10.1111/insr.12434
– ident: bibr5-01600176231173438
  doi: 10.1007/978-94-009-2395-9
– ident: bibr24-01600176231173438
  doi: 10.1016/j.econmod.2012.07.017
– ident: bibr6-01600176231173438
  doi: 10.2307/1403632
– ident: bibr39-01600176231173438
  doi: 10.1177/0160017616650488
– ident: bibr17-01600176231173438
  doi: 10.1257/jep.30.2.151
– ident: bibr11-01600176231173438
– ident: bibr27-01600176231173438
  doi: 10.1007/s10708-007-9111-y
– volume: 142
  start-page: 33
  issue: 1
  year: 1979
  ident: bibr31-01600176231173438
  publication-title: Post Stratification, Series A
– ident: bibr38-01600176231173438
  doi: 10.1080/01621459.1993.10476368
– volume-title: Spatial hedonic house price modelling using web data
  year: 2019
  ident: bibr41-01600176231173438
– ident: bibr8-01600176231173438
  doi: 10.1007/978-3-030-73030-7
– volume-title: Science and method
  year: 1908
  ident: bibr43-01600176231173438
– ident: bibr44-01600176231173438
  doi: 10.1177/01600176211059981
– ident: bibr19-01600176231173438
  doi: 10.2196/jmir.9330
– ident: bibr21-01600176231173438
  doi: 10.1111/j.2517-6161.1983.tb01224.x
– volume-title: Sample Survey Methods and Theory
  year: 1953
  ident: bibr30-01600176231173438
– volume-title: Collecting Spatial Data
  year: 2007
  ident: bibr40-01600176231173438
– ident: bibr3-01600176231173438
  doi: 10.1057/9780230244405_26
– ident: bibr4-01600176231173438
  doi: 10.1080/17421771003730703
– volume: 29
  start-page: 169
  year: 1934
  ident: bibr26-01600176231173438
  publication-title: Journal of the American Statistical Association
– ident: bibr12-01600176231173438
  doi: 10.1016/j.spasta.2021.100568
– ident: bibr28-01600176231173438
  doi: 10.1002/env.2194
– ident: bibr33-01600176231173438
  doi: 10.1111/insr.12290
– ident: bibr37-01600176231173438
  doi: 10.1201/9781420064254
– ident: bibr46-01600176231173438
  doi: 10.1007/978-981-10-2762-8
– ident: bibr45-01600176231173438
  doi: 10.1016/j.econmod.2016.12.002
– ident: bibr47-01600176231173438
  doi: 10.1111/rssb.12354
– ident: bibr10-01600176231173438
  doi: 10.4324/9781315735276
– ident: bibr15-01600176231173438
  doi: 10.1177/0739456X16664789
– ident: bibr25-01600176231173438
  doi: 10.1177/152582202237725
– start-page: 949
  volume-title: Application Delivery Strategies by META Group Inc
  year: 2001
  ident: bibr35-01600176231173438
– ident: bibr9-01600176231173438
  doi: 10.1007/s12076-011-0065-9
– ident: bibr1-01600176231173438
  doi: 10.1007/978-94-015-7799-1
– ident: bibr16-01600176231173438
  doi: 10.1016/0166-0462(92)90039-4
– volume-title: Econometric analysis
  year: 2018
  ident: bibr29-01600176231173438
– ident: bibr14-01600176231173438
  doi: 10.17713/ajs.v44i2.79
– ident: bibr34-01600176231173438
  doi: 10.2139/ssrn.1438286
– ident: bibr7-01600176231173438
  doi: 10.1057/9781137317940
– ident: bibr2-01600176231173438
  doi: 10.1080/17421770600661337
– ident: bibr36-01600176231173438
  doi: 10.1111/j.1468-0262.2004.00558.x
– ident: bibr22-01600176231173438
  doi: 10.1214/16-STS598
– ident: bibr48-01600176231173438
  doi: 10.1016/j.econmod.2019.04.003
– ident: bibr13-01600176231173438
  doi: 10.1177/0160017618821428
SSID ssj0007494
Score 2.342628
Snippet Macro econometrics has been recently affected by the so-called ‘Google Econometrics’. Comparatively less attention has been paid to the subject by the regional...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Index Database
Publisher
StartPage 204
SubjectTerms Bayesian analysis
Big Data
Crowdsourcing
Econometrics
Inference
Spatial analysis
Statistics
Title Using Web-Data to Estimate Spatial Regression Models
URI https://journals.sagepub.com/doi/full/10.1177/01600176231173438
https://www.proquest.com/docview/2920526206
Volume 47
WOSCitedRecordID wos000981185200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVSPB
  databaseName: SAGE Journals HSS Package 2015
  customDbUrl:
  eissn: 1552-6925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007494
  issn: 0160-0176
  databaseCode: AEVPJ
  dateStart: 19990401
  isFulltext: true
  titleUrlDefault: http://journals.sagepub.com/
  providerName: SAGE Publications
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1LS8QwEB5014MX3-KuD3IQX1CXbdOkPYnoiojIIr5uJUlTEXRX3K6w_96ZNt1VUfBkb21DH5lkZpL55huAbYNOSNvQMlWgGDiaUE9rnO5aqYzAjGiViqoll_LqKnp4iLtT0K9yYVwPDg4JVoVfVChrmt20G91yQcYW0aLhUELTjacBD6KjYf6SlNvdVVUNukLx6eELhbYNASJHXpXeNg11n4hialA_7tx1L8bKW_LY0YETXksKFwj98aVfTdnEP_0ECSus1Nn8v__fAsw5h5YdlyNwEaZsbwkaZdYvc5pjwPYcvfX-EjTHOTJsh7l2JVnJaBl4AWFg91Z7pypXLO-zDiohdKsto-rJ1PjaPpbg3R6jSm7PgxW4PevcnJx7rrCDZ4KQ555FrSH9lNjPspTjESqhVaqyNBBG-xn6HbHyYxGGkuvQxsJEqTZSKx_91TCwwSrUev2eXQPWtjyVRkZZJhWqHxHHXAQ2NVmq2tiJugEHlYyS15K_I2lXFOffe7kBG5UUk0pQCZXzCom2XzRgl6Q2ufXrg5p_brkOsz66SSWqbQNq-dvQbsKMec-fBm9bbnR-AL1x9H8
linkProvider SAGE Publications
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50E_TFH1Nxc2oexF9QoW2atI9DJ1PnGDJ1byVJUxFkk60K_vde2mxTURDsW2gI4S5395V--Q5gXyEIcZX5TGXoBool1JESw10KkRoyI1alvGtJm3c6Yb8fdS2r0tyFsRYcnxpaFe4oT9bT6DZKSa4p0RjCPg596ofzUKYI2zEoy43mffdqmoc5jayyt6FecWb_af64yNeqNIOan9hdecG5WPnPVldh2cJM0ijOxRrM6UEFqsVdXGLjeUyOrOj0cQVq05sr5IDYeYWEyPs60JxYQB60dM5FJkg2JE1MDQh2NTE9jc3kW_1YUGoHxPRXex5vwN1Fs3fWcmy7BUf5Ac0cjbHMvcRokqUJxScQTIpEpInPlPRSRAOR8CIWBJzKQEdMhYlUXAoPUWTga38TSoPhQG8BcTVNuOJhmnKBSYFFEWW-TlSaCBeNIqtwMjF3_FKoasTuRHj8u9WqUJ84JJ7YPDZNtgIjps-qcGgcMHv160K1P8_cg8VW76Ydty8719uw5CGQKXhndShlo1e9AwvqLXsaj3btofsA4rLMcQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oJuKLl6m4OTUP4g3qXJsm6-PQDS9jDPGyt5JbRZBtbFXw33uyZpuKgmDfSkMI5_qlOfkOwL5CEFJVdpvKUA0UU6gnJbq7FCKxxYyYlcZdS1q83a51u1HH_XCzd2GcBEentqwKVzQO1ta7BzqpuDPGimVFQ0vCzI2vAQ1q85DHbc0Z2nm-3njoXE9jMaeRY_e25VecuXPNHyf5mplmcPNThdc46TRX_rvcVVh2cJPUM_tYgznTK0Axu5NLnF-PyJEjnz4uQGl6g4UcEDcuoxJ5Xwc6LjAgj0Z6FyIVJO2TBoYIBL2G2N7GdvCtecpKa3vE9ll7GW3AfbNxd37pubYLngpCmnoGfZr72nKTJZriEwomhRaJDpiSfoKoIBJ-xMKQUxmaiKmalopL4SOaDAMTbEKu1--ZLSBVQzVXvJYkXGBwYFFEWWC0SrSoolBkEU4mIo8HGbtGXJ0QkH-XWhHKE6XEE7nHttlWaEn1WREOrRJmn36dqPTnkXuw2Lloxq2r9s02LPmIZ7LyszLk0uGr2YEF9ZY-j4a7zu4-AOYqzuU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Web-Data+to+Estimate+Spatial+Regression+Models&rft.jtitle=International+regional+science+review&rft.au=Arbia+Giuseppe&rft.au=Nardelli+Vincenzo&rft.date=2024-03-01&rft.pub=Sage+Publications+Ltd&rft.issn=0160-0176&rft.eissn=1552-6925&rft.volume=47&rft.issue=2&rft.spage=204&rft.epage=226&rft_id=info:doi/10.1177%2F01600176231173438&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-0176&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-0176&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-0176&client=summon