Uniqueness of almost periodic-in-time solutions to Navier–Stokes equations in unbounded domains

We present a uniqueness theorem for almost periodic-in-time solutions to the Navier–Stokes equations in 3-dimensional unbounded domains. Thus far, uniqueness of almost periodic-in-time solutions to the Navier–Stokes equations in unbounded domain, roughly speaking, is known only for a small almost pe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of evolution equations Ročník 11; číslo 3; s. 485 - 508
Hlavní autoři: Farwig, Reinhard, Taniuchi, Yasushi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel SP Birkhäuser Verlag Basel 01.09.2011
Témata:
ISSN:1424-3199, 1424-3202
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a uniqueness theorem for almost periodic-in-time solutions to the Navier–Stokes equations in 3-dimensional unbounded domains. Thus far, uniqueness of almost periodic-in-time solutions to the Navier–Stokes equations in unbounded domain, roughly speaking, is known only for a small almost periodic-in-time solution in within the class of solutions that have sufficiently small -norm. In this paper, we show that a small almost periodic-in-time solution in is unique within the class of all almost periodic-in-time solutions in . The proof of the present uniqueness theorem is based on the method of dual equations.
ISSN:1424-3199
1424-3202
DOI:10.1007/s00028-010-0098-3