Greedy Sparse RLS
Starting from the orthogonal (greedy) least squares method, we build an adaptive algorithm for finding online sparse solutions to linear systems. The algorithm belongs to the exponentially windowed recursive least squares (RLS) family and maintains a partial orthogonal factorization with pivoting of...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on signal processing Jg. 60; H. 5; S. 2194 - 2207 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.05.2012
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Starting from the orthogonal (greedy) least squares method, we build an adaptive algorithm for finding online sparse solutions to linear systems. The algorithm belongs to the exponentially windowed recursive least squares (RLS) family and maintains a partial orthogonal factorization with pivoting of the system matrix. For complexity reasons, the permutations that bring the relevant columns into the first positions are restrained mainly to interchanges between neighbors at each time moment. The storage scheme allows the computation of the exact factorization, implicitly working on indefinitely long vectors. The sparsity level of the solution, i.e., the number of nonzero elements, is estimated using information theoretic criteria, in particular Bayesian information criterion (BIC) and predictive least squares. We present simulations showing that, for identifying sparse time-varying FIR channels, our algorithm is consistently better than previous sparse RLS methods based on the -norm regularization of the RLS criterion. We also use our sparse greedy RLS algorithm for computing linear predictions in a lossless audio coding scheme and obtain better compression than MPEG4 ALS using an RLS-LMS cascade. |
|---|---|
| AbstractList | Starting from the orthogonal (greedy) least squares method, we build an adaptive algorithm for finding online sparse solutions to linear systems. The algorithm belongs to the exponentially windowed recursive least squares (RLS) family and maintains a partial orthogonal factorization with pivoting of the system matrix. For complexity reasons, the permutations that bring the relevant columns into the first positions are restrained mainly to interchanges between neighbors at each time moment. The storage scheme allows the computation of the exact factorization, implicitly working on indefinitely long vectors. The sparsity level of the solution, i.e., the number of nonzero elements, is estimated using information theoretic criteria, in particular Bayesian information criterion (BIC) and predictive least squares. We present simulations showing that, for identifying sparse time-varying FIR channels, our algorithm is consistently better than previous sparse RLS methods based on the -norm regularization of the RLS criterion. We also use our sparse greedy RLS algorithm for computing linear predictions in a lossless audio coding scheme and obtain better compression than MPEG4 ALS using an RLS-LMS cascade. Starting from the orthogonal (greedy) least squares method, we build an adaptive algorithm for finding online sparse solutions to linear systems. The algorithm belongs to the exponentially windowed recursive least squares (RLS) family and maintains a partial orthogonal factorization with pivoting of the system matrix. For complexity reasons, the permutations that bring the relevant columns into the first positions are restrained mainly to interchanges between neighbors at each time moment. The storage scheme allows the computation of the exact factorization, implicitly working on indefinitely long vectors. The sparsity level of the solution, i.e., the number of nonzero elements, is estimated using information theoretic criteria, in particular Bayesian information criterion (BIC) and predictive least squares. We present simulations showing that, for identifying sparse time-varying FIR channels, our algorithm is consistently better than previous sparse RLS methods based on the [ell] 1 -norm regularization of the RLS criterion. We also use our sparse greedy RLS algorithm for computing linear predictions in a lossless audio coding scheme and obtain better compression than MPEG4 ALS using an RLS-LMS cascade. Starting from the orthogonal (greedy) least squares method, we build an adaptive algorithm for finding online sparse solutions to linear systems. The algorithm belongs to the exponentially windowed recursive least squares (RLS) family and maintains a partial orthogonal factorization with pivoting of the system matrix. For complexity reasons, the permutations that bring the relevant columns into the first positions are restrained mainly to interchanges between neighbors at each time moment. The storage scheme allows the computation of the exact factorization, implicitly working on indefinitely long vectors. The sparsity level of the solution, i.e., the number of nonzero elements, is estimated using information theoretic criteria, in particular Bayesian information criterion (BIC) and predictive least squares. We present simulations showing that, for identifying sparse time-varying FIR channels, our algorithm is consistently better than previous sparse RLS methods based on the [Formula Omitted]-norm regularization of the RLS criterion. We also use our sparse greedy RLS algorithm for computing linear predictions in a lossless audio coding scheme and obtain better compression than MPEG4 ALS using an RLS-LMS cascade. |
| Author | Helin, P. Tabus, I. Dumitrescu, B. Onose, A. |
| Author_xml | – sequence: 1 givenname: B. surname: Dumitrescu fullname: Dumitrescu, B. email: bogdan.dumitrescu@tut.fi organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland – sequence: 2 givenname: A. surname: Onose fullname: Onose, A. email: alexandru.onose@tut.fi organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland – sequence: 3 givenname: P. surname: Helin fullname: Helin, P. email: petri.helin@tut.fi organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland – sequence: 4 givenname: I. surname: Tabus fullname: Tabus, I. email: ioan.tabus@tut.fi organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25790814$$DView record in Pascal Francis |
| BookMark | eNp9kD1LA0EURQeJYIwWdoJNQASbjfMm81lK0CgEFBPBbpidfQsbNrtxZlPk3zsh0SKF1bvFuZfHOSe9pm2QkGugIwBqHhbz9xGjwEYMtGJanJA-GA4Z5Ur2UqZinAmtvs7IeYxLSoFzI_vkahoQi-1wvnYh4vBjNr8gp6WrI14e7oB8Pj8tJi_Z7G36OnmcZX4seJcVTCNT3OsUQPCCl9z5XOTaO1WaojCSq0Iqx6gTRiFgzmXOmZagBVCVjwfkfr-7Du33BmNnV1X0WNeuwXYTLVDGtKFCsoTeHqHLdhOa9F2iKCRKSZmouwPlond1GVzjq2jXoVq5sLVMKEM18MTJPedDG2PA0vqqc13VNl1wVZ0m7c6oTUbtzqg9GE1FelT83f6ncrOvVIj4h0sQkDSMfwCpjX6D |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2015_02_018 crossref_primary_10_1109_JSEN_2014_2364594 crossref_primary_10_1109_TSP_2013_2257763 crossref_primary_10_1016_j_sigpro_2016_04_013 crossref_primary_10_1007_s00034_015_0098_1 crossref_primary_10_1016_j_compmedimag_2015_03_006 crossref_primary_10_1109_LSP_2020_3000459 crossref_primary_10_1109_TSP_2016_2539138 crossref_primary_10_1109_TNNLS_2013_2296048 crossref_primary_10_1109_TSP_2015_2512560 crossref_primary_10_1109_TGRS_2021_3139355 crossref_primary_10_1007_s00034_025_03327_y crossref_primary_10_1016_j_sigpro_2014_03_048 crossref_primary_10_1109_TSP_2019_2907257 crossref_primary_10_1016_j_sigpro_2013_05_001 crossref_primary_10_1109_TSP_2015_2421472 crossref_primary_10_1109_TSP_2015_2436369 crossref_primary_10_1109_ACCESS_2020_3032688 crossref_primary_10_1109_LSP_2021_3127467 crossref_primary_10_1177_1729881416662537 crossref_primary_10_1109_TVT_2016_2533664 crossref_primary_10_1109_TSP_2013_2258340 crossref_primary_10_3390_s140917516 |
| Cites_doi | 10.1109/89.861368 10.1016/j.sigpro.2009.07.011 10.1109/TASL.2007.911675 10.1109/SARNOF.2005.1426532 10.1007/978-0-387-68812-1 10.1109/TASL.2008.2010156 10.1109/TSP.2002.800414 10.1080/00207178908953472 10.1109/ICASSP.2011.5947208 10.1109/TAC.1985.1103818 10.1137/060657704 10.1109/TSP.2010.2048103 10.1214/aos/1176344136 10.1109/LSP.2002.1001652 10.1109/TSP.2010.2090874 10.1111/j.2517-6161.1989.tb01759.x 10.1016/j.sigpro.2011.02.013 10.2307/3214342 10.1016/j.sigpro.2005.09.015 10.1109/ACSSC.2000.911292 10.1109/TSP.2010.2044841 10.1109/TSP.2010.2046897 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TSP.2012.2187285 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1941-0476 |
| EndPage | 2207 |
| ExternalDocumentID | 2636180731 25790814 10_1109_TSP_2012_2187285 6151185 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c354t-d28e274c8d28154d4f4acb5b8ca7f9dd9647d67a20a597e1eb46b4286185107b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302938800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Thu Oct 02 06:56:45 EDT 2025 Mon Jun 30 10:21:25 EDT 2025 Mon Jul 21 09:13:21 EDT 2025 Sat Nov 29 04:10:23 EST 2025 Tue Nov 18 22:20:45 EST 2025 Tue Aug 26 16:56:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | channel identification Time variable channel Lossless circuit Audio signal processing Adaptive algorithm Adaptive algorithms Acoustic signal processing Recursive algorithm Factorization Linear prediction Audio coding Linear system Simulation sparse filters Least squares method On line processing orthogonal least squares Greedy algorithm Recursive method Signal processing Least mean squares methods Information theory |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c354t-d28e274c8d28154d4f4acb5b8ca7f9dd9647d67a20a597e1eb46b4286185107b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 1001890766 |
| PQPubID | 85478 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_1001890766 ieee_primary_6151185 pascalfrancis_primary_25790814 proquest_miscellaneous_1022890562 crossref_citationtrail_10_1109_TSP_2012_2187285 crossref_primary_10_1109_TSP_2012_2187285 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-05-01 |
| PublicationDateYYYYMMDD | 2012-05-01 |
| PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2012 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 hannan (ref23) 1989; 51 ref11 ref10 ref2 rocha (ref16) 2007 ref1 ref19 rissanen (ref17) 2007 dumitrescu (ref18) 2010 chen (ref6) 2009 ref24 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref5 |
| References_xml | – ident: ref2 doi: 10.1109/89.861368 – ident: ref20 doi: 10.1016/j.sigpro.2009.07.011 – ident: ref25 doi: 10.1109/TASL.2007.911675 – start-page: 63 year: 2007 ident: ref16 article-title: Greedy and relaxed approximations to model selection: A simulation study publication-title: Festschrift in Honor of Jorma Rissannen on the Occasion of His 75th Birthday – ident: ref12 doi: 10.1109/SARNOF.2005.1426532 – year: 2007 ident: ref17 publication-title: Information and Complexity in Statistical Modeling doi: 10.1007/978-0-387-68812-1 – ident: ref5 doi: 10.1109/TASL.2008.2010156 – ident: ref3 doi: 10.1109/TSP.2002.800414 – ident: ref14 doi: 10.1080/00207178908953472 – ident: ref19 doi: 10.1109/ICASSP.2011.5947208 – ident: ref21 doi: 10.1109/TAC.1985.1103818 – ident: ref1 doi: 10.1137/060657704 – ident: ref8 doi: 10.1109/TSP.2010.2048103 – ident: ref24 doi: 10.1214/aos/1176344136 – ident: ref15 doi: 10.1109/LSP.2002.1001652 – start-page: 1484 year: 2010 ident: ref18 article-title: Greedy RLS for sparse filters publication-title: Eur Signal Process Conf (EUSIPCO) – ident: ref9 doi: 10.1109/TSP.2010.2090874 – volume: 51 start-page: 217 year: 1989 ident: ref23 article-title: Recursive estimation of autoregressions publication-title: J Royal Stat Soc Ser B doi: 10.1111/j.2517-6161.1989.tb01759.x – ident: ref10 doi: 10.1016/j.sigpro.2011.02.013 – ident: ref22 doi: 10.2307/3214342 – start-page: 3125 year: 2009 ident: ref6 article-title: Sparse LMS for system identification publication-title: Int Conf Acoust Speech Signal Process – ident: ref4 doi: 10.1016/j.sigpro.2005.09.015 – ident: ref11 doi: 10.1109/ACSSC.2000.911292 – ident: ref13 doi: 10.1109/TSP.2010.2044841 – ident: ref7 doi: 10.1109/TSP.2010.2046897 |
| SSID | ssj0014496 |
| Score | 2.2383006 |
| Snippet | Starting from the orthogonal (greedy) least squares method, we build an adaptive algorithm for finding online sparse solutions to linear systems. The algorithm... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2194 |
| SubjectTerms | Adaptive algorithms Algorithms Applied sciences Approximation algorithms audio coding channel identification Channels Coding, codes Computation Construction Criteria Detection, estimation, filtering, equalization, prediction Exact sciences and technology Factorization Information theory Information, signal and communications theory Least squares approximation Least squares method Matching pursuit algorithms Mathematical models Miscellaneous orthogonal least squares Signal and communications theory Signal processing Signal processing algorithms Signal, noise sparse filters Studies Telecommunications and information theory Vectors |
| Title | Greedy Sparse RLS |
| URI | https://ieeexplore.ieee.org/document/6151185 https://www.proquest.com/docview/1001890766 https://www.proquest.com/docview/1022890562 |
| Volume | 60 |
| WOSCitedRecordID | wos000302938800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPWq1itJYKXgTT5rHJbo4iFg9Siq3QW9jsAwRpSx-C_96ZJA0VRfAW2A1Zvn3M92VmZwBudODr2ErrGuQOLkssoyAA7QoVyYRby61SebEJPhyK6TQZ1eCuugtjjMmDz0yPHnNfvp6rDf0q65P1RftShzrncXFXq_IYMJbX4kK6ELqR4NOtS9JL-pPxiGK4gh6aMx5Q1eQdE5TXVKGISLlCUGxRzeLHwZxbm8HR_8bZhMOSVXbvi2VwDDUzO4GDnVyDLWhShI3-7I4XKGVN9-V5fAqvg8fJw5Nb1kNwVRixtasDYVBEKoEPyHw0s0yqLMqEktwmWtOlUh1zGXgSZYLxTcbiDOVFjGNBlZeFZ9CYzWfmHLo85DglWcRCTzFPRcLTnhRGIT1gkvuJA_0tRKkqk4VTzYr3NBcNXpIiqCmBmpagOnBbvbEoEmX80bdFoFX9Srwc6Hybhaodj5UEqQtzoL2dlrTcaitKuuwLlPhx7MB11YybhDwfcmbmG-oTkEMVud7F75--hH0aYBHJ2IbGerkxV7CnPtZvq2UnX2lfna7M_g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB68QH3QemE8I_gimDbHJrt5FFEUaxFboW9hswcI0hbbCv57Z5I0VBTBt8BuyPLtMd-XmZ0BONdhoBMrrWeQO3gstYyCALQnVCxTbi23ShXFJninI_r99GkBLuu7MMaYIvjMNOmx8OXroZrSr7IWWV-0L4uwHDMW-uVtrdpnwFhRjQsJQ-TFgvdnTkk_bfW6TxTFFTbRoPGQ6ibPGaGiqgrFRMoxwmLLehY_jubC3txu_m-kDdioeKV7VS6ELVgwg21Yn8s2uAMNirHRn253hGLWuM_t7i683N70ru-8qiKCp6KYTTwdCoMyUgl8QO6jmWVS5XEulOQ21ZquleqEy9CXKBRMYHKW5CgwEhwL6rw82oOlwXBg9sHlEcdJyWMW-Yr5Kha-9qUwCgkCkzxIHWjNIMpUlS6cqla8ZYVs8NMMQc0I1KwC1YGL-o1RmSrjj747BFrdr8LLgZNvs1C348GSInlhDhzNpiWrNtuY0i4HAkV-kjhwVjfjNiHfhxyY4ZT6hORSRbZ38PunT2H1rvfYztr3nYdDWKPBlnGNR7A0eZ-aY1hRH5PX8ftJseq-AHZB0EU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greedy+Sparse+RLS&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=DUMITRESCU%2C+Bogdan&rft.au=ONOSE%2C+Alexandru&rft.au=HELIN%2C+Petri&rft.au=TABUS%2C+Ioan&rft.date=2012-05-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1053-587X&rft.volume=60&rft.issue=5&rft.spage=2194&rft.epage=2207&rft_id=info:doi/10.1109%2FTSP.2012.2187285&rft.externalDBID=n%2Fa&rft.externalDocID=25790814 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |