A line vortex in a two-fluid system

This paper considers the classical problem of a line vortex in planar flow of a fluid. However, an interface is present at some finite radius from the line vortex, and beyond that is a second fluid of different density. The interface is therefore subject to shearing-type instabilities and may overtu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of engineering mathematics Ročník 84; číslo 1; s. 181 - 199
Hlavní autori: Forbes, Lawrence K., Cosgrove, Jason M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.02.2014
Predmet:
ISSN:0022-0833, 1573-2703
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper considers the classical problem of a line vortex in planar flow of a fluid. However, an interface is present at some finite radius from the line vortex, and beyond that is a second fluid of different density. The interface is therefore subject to shearing-type instabilities and may overturn as time progresses. A linearized inviscid theory is developed and reveals unstable behaviours, dependent on the parameters in the system. The non-linear inviscid problem is solved by a spectral method, and high-frequency modes are regularized by a type of filtering. In addition, a Boussinesq viscous model is presented and allows the overturning interface to fold. Results are discussed and compared with the predictions of the inviscid theory.
AbstractList This paper considers the classical problem of a line vortex in planar flow of a fluid. However, an interface is present at some finite radius from the line vortex, and beyond that is a second fluid of different density. The interface is therefore subject to shearing-type instabilities and may overturn as time progresses. A linearized inviscid theory is developed and reveals unstable behaviours, dependent on the parameters in the system. The non-linear inviscid problem is solved by a spectral method, and high-frequency modes are regularized by a type of filtering. In addition, a Boussinesq viscous model is presented and allows the overturning interface to fold. Results are discussed and compared with the predictions of the inviscid theory.
Author Cosgrove, Jason M.
Forbes, Lawrence K.
Author_xml – sequence: 1
  givenname: Lawrence K.
  surname: Forbes
  fullname: Forbes, Lawrence K.
  email: larry.forbes@utas.edu.au
  organization: School of Mathematics and Physics, University of Tasmania
– sequence: 2
  givenname: Jason M.
  surname: Cosgrove
  fullname: Cosgrove, Jason M.
  organization: School of Mathematics and Physics, University of Tasmania
BookMark eNp9kDtPwzAURi1UJNrCD2CLxMJiuH7GGauKl1SJBWYrcRzkKrWL7QD996QKE0Onu5xz9eks0MwHbxG6JnBHAMr7REBKgYFQXEmQWJyhORElw7QENkNzAEoxKMYu0CKlLQBUitM5ulkVvfO2-Aox25_C-aIu8nfAXT-4tkiHlO3uEp13dZ_s1d9dovfHh7f1M968Pr2sVxtsmOAZm04J1TCleNlQ2ShrQdRVx5nhgnEQylRCtpRx2o7LeCuhMRYaYhlRUPKGLdHt9Hcfw-dgU9Y7l4zt-9rbMCRNBB1XSwnliJYTamJIKdpOG5fr7ILPsXa9JqCPWfSURY9Z9DGLFqNJ_pn76HZ1PJx06OSkkfUfNuptGKIfW5yQfgHGyHO8
CitedBy_id crossref_primary_10_1007_s10665_017_9920_z
crossref_primary_10_1017_S1446181115000085
crossref_primary_10_1017_jfm_2019_1068
crossref_primary_10_1017_S1446181115000243
crossref_primary_10_1093_qjmam_hbx025
Cites_doi 10.1016/j.jcp.2010.11.017
10.1017/S0022112098003334
10.1017/S0022112005007561
10.1098/rspa.1979.0009
10.1063/1.1491255
10.1007/s003329900080
10.1111/j.1365-2966.2010.17284.x
10.1007/s10665-010-9374-z
10.1016/0021-9991(86)90210-X
10.1115/1.2926492
10.1016/j.jcp.2003.10.023
10.1016/j.ijheatfluidflow.2009.02.020
10.1007/BF00646234
10.1017/S0022112005007305
10.1017/S1446181112000090
10.1063/1.3574370
10.1063/1.1790496
10.1103/PhysRevE.74.066303
10.1017/S0022112075001784
10.1007/s10665-009-9288-9
10.1093/imamat/hxh063
10.1016/j.jcp.2006.06.010
10.1017/CBO9780511616938
10.1088/0951-7715/6/6/001
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2013
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2013
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1007/s10665-012-9606-5
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1573-2703
EndPage 199
ExternalDocumentID 10_1007_s10665_012_9606_5
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z86
Z8M
Z8S
ZMTXR
ZWQNP
ZY4
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c354t-cf858b38847b26b8ee05a9f43c4534058c956d2342d1574d60bce0b1e318074b3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330955000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-0833
IngestDate Thu Oct 02 10:56:30 EDT 2025
Sat Nov 29 05:49:17 EST 2025
Tue Nov 18 21:31:32 EST 2025
Fri Feb 21 02:37:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Boussinesq approximation
Fluid interface
Interfacial roll-up
Line vortex
Spectral methods
Curvature singularity
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-cf858b38847b26b8ee05a9f43c4534058c956d2342d1574d60bce0b1e318074b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1520986607
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1520986607
crossref_citationtrail_10_1007_s10665_012_9606_5
crossref_primary_10_1007_s10665_012_9606_5
springer_journals_10_1007_s10665_012_9606_5
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of engineering mathematics
PublicationTitleAbbrev J Eng Math
PublicationYear 2014
Publisher Springer Netherlands
Publisher_xml – name: Springer Netherlands
References ChandrasekharSHydrodynamic and hydromagnetic stability1981New YorkDover
BatchelorGKAn Introduction to Fluid Dynamics1977CambridgeCambridge University Press
BakerGRPhamLDA comparison of blob methods for vortex sheet roll-upJ. Fluid Mech.20065472973162006JFM...547..297B10.1017/S00221120050073051082.760782263355
CaflischRELiXShelleyMJThe collapse of an axi-symmetric, swirling vortex sheetNonlinearity199368438671993Nonli...6..843C10.1088/0951-7715/6/6/0010796.760221251246
DrazinPGReidWHHydrodynamic stability20042CambridgeCambridge University Press10.1017/CBO97805116169381055.76001
BakerGRBealeJTVortex blob methods applied to interfacial motionJ. Comput. Phys.20041962332582004JCoPh.196..233B10.1016/j.jcp.2003.10.0231115.763802054344
CrowdyDGExact solutions for steady capillary waves on a fluid annulusJ. Nonlinear Sci.199996156401999JNS.....9..615C10.1007/s0033299000800949.760121718171
CataldoJCSkalafurisAJLaboratory plasmas and the galactic spiral armsAstrophys. Space Sci.197532L11L141975Ap&SS..32L..11C10.1007/BF00646234
MooreDWThe spontaneous appearance of a singularity in the shape of an evolving vortex sheetProc. Roy. Soc. London A19793651051191979RSPSA.365..105M10.1098/rspa.1979.00090404.76040
CrapperGDDombrowskiNPyottGADKelvin-Helmholtz wave growth on cylindrical sheetsJ. Fluid Mech.1975684975021975JFM....68..497C10.1017/S00221120750017840316.76025
ChambersKForbesLKThe magnetic Rayleigh-Taylor instability for inviscid and viscous fluidsPhys. Plasmas201118052101
Van DykeMAn album of fluid motion1982Stanford, CaliforniaParabolic Press
von Winckel G (2004) lgwt.m, at: MATLAB file exchange website. http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=4540&objectType=file
SiamasGAJiangXWrobelLCNumerical investigation of a perturbed swirling annular two-phase jetInt. J. Heat Fluid Flow20093048149310.1016/j.ijheatfluidflow.2009.02.020
HallidayDResnickRWalkerJFundamentals of Physics20057New JerseyWiley International
FarrowDEHockingGCA numerical model for withdrawal from a two-layer fluidJ. Fluid Mech.20065491411572006JFM...549..141F10.1017/S00221120050075612263248
ForbesLKA cylindrical Rayleigh-Taylor instability: radial outflow from pipes or starsJ. Eng. Math.201170205224
ForbesLKChenMJTrenhamCEComputing unstable periodic waves at the interface of two inviscid fluids in uniform vertical flowJ. Comput. Phys.20072212692872007JCoPh.221..269F10.1016/j.jcp.2006.06.0101123.760122290572
TryggvasonGDahmWJASbeihKFine structure of vortex sheet rollup by viscous and inviscid simulationJ. Fluids Engineering1991113313610.1115/1.2926492
ChenMJForbesLKAccurate methods for computing inviscid and viscous Kelvin-Helmholtz instabilityJ. Comput. Phys.2011230149915152011JCoPh.230.1499C10.1016/j.jcp.2010.11.017058671002753375
ForbesLKRayleigh-Taylor instabilities in axi-symmetric outflow from a point sourceANZIAM J.2011538712110.1017/S14461811120000901247.760322966172
Van DykeMPerturbation methods in fluid mechanics1975Stanford, CaliforniaParabolic Press0329.76002
AbramowitzMStegunIAHandbook of Mathematical Functions1972New YorkDover0543.33001
ForbesLKThe Rayleigh-Taylor instability for inviscid and viscous fluidsJ. Eng. Math.200965273290
BlythMGVanden-BroeckJ-MNew solutions for capillary waves on curved sheets of fluidIMA J. Appl. Math.2005705886012005JApMa..70..588B10.1093/imamat/hxh0631079.760172156460
LovelaceRVERomanovaMMUstyugovaGVKoldobaAVOne-sided outflows/jets from rotating stars with complex magnetic fieldsMon. Not. R. Astron. Soc.2010408208320912010MNRAS.408.2083L10.1111/j.1365-2966.2010.17284.x
KrasnyRDesingularization of periodic vortex sheet roll-upJ. Comput. Phys.1986652923131986JCoPh..65..292K10.1016/0021-9991(86)90210-X0591.76059
AntonHCalculus with analytic geometry1980New YorkWiley
SakajoTFormation of curvature singularity along vortex line in an axisymmetric, swirling vortex sheetPhys. Fluids200214288628972002PhFl...14.2886S10.1063/1.14912551917315
MatsuokaCNishiharaKAnalytical and numerical study on a vortex sheet in incompressible Richtmyer-Meshkov instability in cylindrical geometryPhys. Rev. E200674066303
EpsteinROn the Bell-Plesset effects: The effects of uniform compression and geometrical convergence on the classical Rayleigh-Taylor instabilityPhys. Plasmas200411511451242004PhPl...11.5114E10.1063/1.1790496
CowleySJBakerGRTanveerSOn the formation of Moore curvature singularities in vortex sheetsJ. Fluid Mech.19993782332671999JFM...378..233C10.1017/S00221120980033341671776
JohnsonLWRiessRDNumerical Analysis19822MassachusettsAddison-Wesley0557.65001
T Sakajo (9606_CR18) 2002; 14
GD Crapper (9606_CR16) 1975; 68
S Chandrasekhar (9606_CR2) 1981
GR Baker (9606_CR9) 2006; 547
9606_CR12
9606_CR11
9606_CR31
R Epstein (9606_CR13) 2004; 11
9606_CR30
M Dyke Van (9606_CR1) 1982
GK Batchelor (9606_CR23) 1977
GA Siamas (9606_CR19) 2009; 30
DE Farrow (9606_CR25) 2006; 549
(9606_CR26) 1972
M Dyke Van (9606_CR20) 1975
DG Crowdy (9606_CR32) 1999; 9
MJ Chen (9606_CR10) 2011; 230
MG Blyth (9606_CR33) 2005; 70
R Krasny (9606_CR6) 1986; 65
H Anton (9606_CR28) 1980
RE Caflisch (9606_CR17) 1993; 6
LW Johnson (9606_CR29) 1982
LK Forbes (9606_CR15) 2011; 53
GR Baker (9606_CR7) 2004; 196
D Halliday (9606_CR22) 2005
9606_CR27
DW Moore (9606_CR4) 1979; 365
G Tryggvason (9606_CR8) 1991; 113
LK Forbes (9606_CR24) 2007; 221
PG Drazin (9606_CR3) 2004
SJ Cowley (9606_CR5) 1999; 378
RVE Lovelace (9606_CR14) 2010; 408
JC Cataldo (9606_CR21) 1975; 32
References_xml – reference: ChandrasekharSHydrodynamic and hydromagnetic stability1981New YorkDover
– reference: MatsuokaCNishiharaKAnalytical and numerical study on a vortex sheet in incompressible Richtmyer-Meshkov instability in cylindrical geometryPhys. Rev. E200674066303
– reference: FarrowDEHockingGCA numerical model for withdrawal from a two-layer fluidJ. Fluid Mech.20065491411572006JFM...549..141F10.1017/S00221120050075612263248
– reference: ChambersKForbesLKThe magnetic Rayleigh-Taylor instability for inviscid and viscous fluidsPhys. Plasmas201118052101
– reference: EpsteinROn the Bell-Plesset effects: The effects of uniform compression and geometrical convergence on the classical Rayleigh-Taylor instabilityPhys. Plasmas200411511451242004PhPl...11.5114E10.1063/1.1790496
– reference: CaflischRELiXShelleyMJThe collapse of an axi-symmetric, swirling vortex sheetNonlinearity199368438671993Nonli...6..843C10.1088/0951-7715/6/6/0010796.760221251246
– reference: SakajoTFormation of curvature singularity along vortex line in an axisymmetric, swirling vortex sheetPhys. Fluids200214288628972002PhFl...14.2886S10.1063/1.14912551917315
– reference: SiamasGAJiangXWrobelLCNumerical investigation of a perturbed swirling annular two-phase jetInt. J. Heat Fluid Flow20093048149310.1016/j.ijheatfluidflow.2009.02.020
– reference: BatchelorGKAn Introduction to Fluid Dynamics1977CambridgeCambridge University Press
– reference: HallidayDResnickRWalkerJFundamentals of Physics20057New JerseyWiley International
– reference: DrazinPGReidWHHydrodynamic stability20042CambridgeCambridge University Press10.1017/CBO97805116169381055.76001
– reference: CataldoJCSkalafurisAJLaboratory plasmas and the galactic spiral armsAstrophys. Space Sci.197532L11L141975Ap&SS..32L..11C10.1007/BF00646234
– reference: ForbesLKRayleigh-Taylor instabilities in axi-symmetric outflow from a point sourceANZIAM J.2011538712110.1017/S14461811120000901247.760322966172
– reference: MooreDWThe spontaneous appearance of a singularity in the shape of an evolving vortex sheetProc. Roy. Soc. London A19793651051191979RSPSA.365..105M10.1098/rspa.1979.00090404.76040
– reference: LovelaceRVERomanovaMMUstyugovaGVKoldobaAVOne-sided outflows/jets from rotating stars with complex magnetic fieldsMon. Not. R. Astron. Soc.2010408208320912010MNRAS.408.2083L10.1111/j.1365-2966.2010.17284.x
– reference: Van DykeMPerturbation methods in fluid mechanics1975Stanford, CaliforniaParabolic Press0329.76002
– reference: AbramowitzMStegunIAHandbook of Mathematical Functions1972New YorkDover0543.33001
– reference: ChenMJForbesLKAccurate methods for computing inviscid and viscous Kelvin-Helmholtz instabilityJ. Comput. Phys.2011230149915152011JCoPh.230.1499C10.1016/j.jcp.2010.11.017058671002753375
– reference: von Winckel G (2004) lgwt.m, at: MATLAB file exchange website. http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=4540&objectType=file
– reference: BakerGRPhamLDA comparison of blob methods for vortex sheet roll-upJ. Fluid Mech.20065472973162006JFM...547..297B10.1017/S00221120050073051082.760782263355
– reference: JohnsonLWRiessRDNumerical Analysis19822MassachusettsAddison-Wesley0557.65001
– reference: CrapperGDDombrowskiNPyottGADKelvin-Helmholtz wave growth on cylindrical sheetsJ. Fluid Mech.1975684975021975JFM....68..497C10.1017/S00221120750017840316.76025
– reference: CrowdyDGExact solutions for steady capillary waves on a fluid annulusJ. Nonlinear Sci.199996156401999JNS.....9..615C10.1007/s0033299000800949.760121718171
– reference: CowleySJBakerGRTanveerSOn the formation of Moore curvature singularities in vortex sheetsJ. Fluid Mech.19993782332671999JFM...378..233C10.1017/S00221120980033341671776
– reference: ForbesLKChenMJTrenhamCEComputing unstable periodic waves at the interface of two inviscid fluids in uniform vertical flowJ. Comput. Phys.20072212692872007JCoPh.221..269F10.1016/j.jcp.2006.06.0101123.760122290572
– reference: AntonHCalculus with analytic geometry1980New YorkWiley
– reference: BakerGRBealeJTVortex blob methods applied to interfacial motionJ. Comput. Phys.20041962332582004JCoPh.196..233B10.1016/j.jcp.2003.10.0231115.763802054344
– reference: BlythMGVanden-BroeckJ-MNew solutions for capillary waves on curved sheets of fluidIMA J. Appl. Math.2005705886012005JApMa..70..588B10.1093/imamat/hxh0631079.760172156460
– reference: TryggvasonGDahmWJASbeihKFine structure of vortex sheet rollup by viscous and inviscid simulationJ. Fluids Engineering1991113313610.1115/1.2926492
– reference: ForbesLKA cylindrical Rayleigh-Taylor instability: radial outflow from pipes or starsJ. Eng. Math.201170205224
– reference: Van DykeMAn album of fluid motion1982Stanford, CaliforniaParabolic Press
– reference: KrasnyRDesingularization of periodic vortex sheet roll-upJ. Comput. Phys.1986652923131986JCoPh..65..292K10.1016/0021-9991(86)90210-X0591.76059
– reference: ForbesLKThe Rayleigh-Taylor instability for inviscid and viscous fluidsJ. Eng. Math.200965273290
– volume: 230
  start-page: 1499
  year: 2011
  ident: 9606_CR10
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.11.017
– volume: 378
  start-page: 233
  year: 1999
  ident: 9606_CR5
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098003334
– volume-title: An Introduction to Fluid Dynamics
  year: 1977
  ident: 9606_CR23
– volume: 549
  start-page: 141
  year: 2006
  ident: 9606_CR25
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112005007561
– volume: 365
  start-page: 105
  year: 1979
  ident: 9606_CR4
  publication-title: Proc. Roy. Soc. London A
  doi: 10.1098/rspa.1979.0009
– volume: 14
  start-page: 2886
  year: 2002
  ident: 9606_CR18
  publication-title: Phys. Fluids
  doi: 10.1063/1.1491255
– volume: 9
  start-page: 615
  year: 1999
  ident: 9606_CR32
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s003329900080
– volume: 408
  start-page: 2083
  year: 2010
  ident: 9606_CR14
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2010.17284.x
– ident: 9606_CR12
  doi: 10.1007/s10665-010-9374-z
– volume-title: Perturbation methods in fluid mechanics
  year: 1975
  ident: 9606_CR20
– volume: 65
  start-page: 292
  year: 1986
  ident: 9606_CR6
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(86)90210-X
– volume: 113
  start-page: 31
  year: 1991
  ident: 9606_CR8
  publication-title: J. Fluids Engineering
  doi: 10.1115/1.2926492
– volume: 196
  start-page: 233
  year: 2004
  ident: 9606_CR7
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.10.023
– volume-title: Handbook of Mathematical Functions
  year: 1972
  ident: 9606_CR26
– volume: 30
  start-page: 481
  year: 2009
  ident: 9606_CR19
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2009.02.020
– volume: 32
  start-page: L11
  year: 1975
  ident: 9606_CR21
  publication-title: Astrophys. Space Sci.
  doi: 10.1007/BF00646234
– volume-title: Hydrodynamic and hydromagnetic stability
  year: 1981
  ident: 9606_CR2
– volume: 547
  start-page: 297
  year: 2006
  ident: 9606_CR9
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112005007305
– volume: 53
  start-page: 87
  year: 2011
  ident: 9606_CR15
  publication-title: ANZIAM J.
  doi: 10.1017/S1446181112000090
– ident: 9606_CR31
  doi: 10.1063/1.3574370
– volume: 11
  start-page: 5114
  year: 2004
  ident: 9606_CR13
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1790496
– volume-title: Numerical Analysis
  year: 1982
  ident: 9606_CR29
– ident: 9606_CR11
  doi: 10.1103/PhysRevE.74.066303
– volume-title: An album of fluid motion
  year: 1982
  ident: 9606_CR1
– volume: 68
  start-page: 497
  year: 1975
  ident: 9606_CR16
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112075001784
– ident: 9606_CR27
– volume-title: Calculus with analytic geometry
  year: 1980
  ident: 9606_CR28
– ident: 9606_CR30
  doi: 10.1007/s10665-009-9288-9
– volume: 70
  start-page: 588
  year: 2005
  ident: 9606_CR33
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxh063
– volume: 221
  start-page: 269
  year: 2007
  ident: 9606_CR24
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.06.010
– volume-title: Hydrodynamic stability
  year: 2004
  ident: 9606_CR3
  doi: 10.1017/CBO9780511616938
– volume-title: Fundamentals of Physics
  year: 2005
  ident: 9606_CR22
– volume: 6
  start-page: 843
  year: 1993
  ident: 9606_CR17
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/6/6/001
SSID ssj0009842
Score 2.0020633
Snippet This paper considers the classical problem of a line vortex in planar flow of a fluid. However, an interface is present at some finite radius from the line...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 181
SubjectTerms Applications of Mathematics
Computational fluid dynamics
Computational Mathematics and Numerical Analysis
Density
Filtering
Fluid flow
Fluids
Mathematical and Computational Engineering
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Spectral methods
Theoretical and Applied Mechanics
Vortices
Title A line vortex in a two-fluid system
URI https://link.springer.com/article/10.1007/s10665-012-9606-5
https://www.proquest.com/docview/1520986607
Volume 84
WOSCitedRecordID wos000330955000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-2703
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009842
  issn: 0022-0833
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o9EEfnE7FeSOiT0qgbS5NH4coPugQb-wtNGkKg9HJ2k1_vsnablNU0MdCGspJTs6Xnu98B-CMeorziIU4TFWAnaIXVn5Mceorrm1AVGE0LRS-Dbtd0etF91Udd16z3euU5PSkXih249wRzQLsUDdmy7Bio51w_RoeHl_mSruCziTCLb4gdSrzuyk-B6M5wvySFJ3Gmuvmv75yEzYqaIk65V7YgiWTtaBZwUxUOXHegvUFDUL7dDcTbs234bSDHO5EE8fBfUf9DMWoeBvidDDuJ6iUfd6B5-urp8sbXPVRwJowWmCdCiYUETYQqYArYYzH4iilRFNGLGAT2l6SkoDQIPFZSBPuKW085bvfoxZhKLILjWyYmT1AJorthY1qlUbECdHEiT0yaKJpqLWKdNAGrzao1JXIuOt1MZBzeWRnIGkNJJ2BJGvD-eyV11Jh47fBJ_UqSesHLrkRZ2Y4zqXv-DyCcy9sw0W9NLJyyPznGff_NPoA1ixioiVt-xAaxWhsjmBVT4p-PjqebsQP9f_Tbw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fS8MwEMcPnYL64HQqzp8RfVIC_ZGm6eMQh-I2RKfsLTRpCoPRydpN_3yTtd2mqKCPhTSUSy73Te_yCcAFsQSlgedjPxYONkQvLOyQ4NgWVOqAKPxgelC45Xc6rNcLHopz3GlZ7V6mJKcr9cJhN0pNoZmDjerG3jKsEB2wDDD_8ellTtplZIYI1_rCLVOZ33XxORjNFeaXpOg01jSr__rKLdgspCVq5HNhG5ZUUoNqITNR4cRpDTYWGIT6qT0Dt6Y7cN5ARneiianBfUf9BIUoexvieDDuRyjHPu_Cc_Ome32Li3sUsHQ9kmEZM48Jl-lAJBwqmFKWFwYxcSXxXC3YmNSbpMhxiRPZnk8iagmpLGGb36NaYQh3DyrJMFH7gFQQ6g0bkSIOXAOiCSO9ZJBIEl9KEUinDlZpUC4LyLi562LA53hkYyCuDcSNgbhXh8vZK685YeO3xmflKHHtBya5ESZqOE65bep5GKWWX4ercmh44ZDpzz0e_Kn1Kazddtst3rrr3B_CulZPJC_hPoJKNhqrY1iVk6yfjk6mk_ID6JDWUw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEHL1NxXiP6pIS1TZqmj0MdinMMvLC30KQtDEY31m76803WdlNRQXwspKGc5OR8p-fLdwDOqSUZ810Pe7F0sFH0wtIOKI5tyZQOiNLzpxeFW167zbtdv1P0OU1LtntZkszvNBiVpiSrD8O4_uHiG2OGdOZgg8CxuwhL1PDoTbr--DJX3eV0JheusQYpy5rfTfE5MM3R5pcC6TTuNDf-_cWbsF5ATtTI98gWLERJFTYK-IkK506rsPZBm1A_PcwEXdNtOGsgg0fRxHBz31AvQQHKXgc47o97IcrloHfguXnzdHWLi_4KWBGXZljF3OWScB2gpMMkjyLLDfyYEkVdooEcVzp5Ch1CndB2PRoyS6rIkrb5baqRhyS7UEkGSbQHKPIDnchRJWOfGIGaINRHCQ0V9ZSSvnJqYJXGFaoQHzc9MPpiLptsDCS0gYQxkHBrcDF7ZZgrb_w2-LRcMaH9wxQ9giQajFNhG54PZ8zyanBZLpMoHDX9ecb9P40-gZXOdVO07tr3B7CqQRXNmd2HUMlG4-gIltUk66Wj4-n-fAepVt83
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+line+vortex+in+a+two-fluid+system&rft.jtitle=Journal+of+engineering+mathematics&rft.au=Forbes%2C+Lawrence+K.&rft.au=Cosgrove%2C+Jason+M.&rft.date=2014-02-01&rft.issn=0022-0833&rft.eissn=1573-2703&rft.volume=84&rft.issue=1&rft.spage=181&rft.epage=199&rft_id=info:doi/10.1007%2Fs10665-012-9606-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10665_012_9606_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0833&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0833&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0833&client=summon