A line vortex in a two-fluid system

This paper considers the classical problem of a line vortex in planar flow of a fluid. However, an interface is present at some finite radius from the line vortex, and beyond that is a second fluid of different density. The interface is therefore subject to shearing-type instabilities and may overtu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of engineering mathematics Ročník 84; číslo 1; s. 181 - 199
Hlavní autoři: Forbes, Lawrence K., Cosgrove, Jason M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.02.2014
Témata:
ISSN:0022-0833, 1573-2703
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper considers the classical problem of a line vortex in planar flow of a fluid. However, an interface is present at some finite radius from the line vortex, and beyond that is a second fluid of different density. The interface is therefore subject to shearing-type instabilities and may overturn as time progresses. A linearized inviscid theory is developed and reveals unstable behaviours, dependent on the parameters in the system. The non-linear inviscid problem is solved by a spectral method, and high-frequency modes are regularized by a type of filtering. In addition, a Boussinesq viscous model is presented and allows the overturning interface to fold. Results are discussed and compared with the predictions of the inviscid theory.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-0833
1573-2703
DOI:10.1007/s10665-012-9606-5