A matrix free, partitioned solution of fluid–structure interaction problems using finite volume and finite element methods

A fully-coupled partitioned finite volume–finite volume and hybrid finite volume–finite element fluid–structure interaction scheme is presented. The fluid domain is modelled as a viscous incompressible isothermal region governed by the Navier–Stokes equations and discretised using an edge-based hybr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of mechanics, B, Fluids Ročník 49; s. 272 - 286
Hlavní autoři: Suliman, R., Oxtoby, O.F., Malan, A.G., Kok, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Masson SAS 01.01.2015
Témata:
ISSN:0997-7546, 1873-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A fully-coupled partitioned finite volume–finite volume and hybrid finite volume–finite element fluid–structure interaction scheme is presented. The fluid domain is modelled as a viscous incompressible isothermal region governed by the Navier–Stokes equations and discretised using an edge-based hybrid-unstructured vertex-centred finite volume methodology. The structure, consisting of a homogeneous isotropic elastic solid undergoing large, non-linear deformations, is discretised using either an elemental/nodal-strain finite volume approach or isoparametric Q8 finite elements and is solved using a matrix-free dual-timestepping approach. Coupling is on the solver sub-iteration level leading to a tighter coupling than if the subdomains are converged separately. The solver is parallelised for distributed-memory systems using METIS for domain-decomposition and MPI for inter-domain communication. The developed technology is evaluated by application to benchmark problems for strongly-coupled fluid–structure interaction systems. It is demonstrated that the scheme results in full coupling between the fluid and solid domains, whilst furnishing accurate solutions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0997-7546
1873-7390
DOI:10.1016/j.euromechflu.2014.10.002