A low-area unified hardware architecture for the AES and the cryptographic hash function ECHO

We propose a compact coprocessor for the AES (encryption, decryption, and key expansion) and the cryptographic hash function ECHO on Virtex-5 and Virtex-6 FPGAs. Our architecture is built around an 8-bit datapath. The Arithmetic and Logic Unit performs a single instruction that allows for implementi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cryptographic engineering Vol. 1; no. 2; pp. 101 - 121
Main Authors: Beuchat, Jean-Luc, Okamoto, Eiji, Yamazaki, Teppei
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01.08.2011
Subjects:
ISSN:2190-8508, 2190-8516
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a compact coprocessor for the AES (encryption, decryption, and key expansion) and the cryptographic hash function ECHO on Virtex-5 and Virtex-6 FPGAs. Our architecture is built around an 8-bit datapath. The Arithmetic and Logic Unit performs a single instruction that allows for implementing AES encryption, AES decryption, AES key expansion, and ECHO at all levels of security. Thanks to a careful organization of AES and ECHO internal states in the register file, we manage to generate all read and write addresses by means of a modulo-16 counter and a modulo-256 counter. A fully autonomous implementation of ECHO and AES on a Virtex-5 FPGA requires 193 slices and a single 36k memory block, and achieves competitive throughputs. Assuming that the security guarantees of ECHO are at least as good as the ones of the SHA-3 finalists BLAKE and Keccak, our results show that ECHO is a better candidate for low-area cryptographic coprocessors. Furthermore, the design strategy described in this work can be applied to combine the AES and the SHA-3 finalist Grøstl.
AbstractList We propose a compact coprocessor for the AES (encryption, decryption, and key expansion) and the cryptographic hash function ECHO on Virtex-5 and Virtex-6 FPGAs. Our architecture is built around an 8-bit datapath. The Arithmetic and Logic Unit performs a single instruction that allows for implementing AES encryption, AES decryption, AES key expansion, and ECHO at all levels of security. Thanks to a careful organization of AES and ECHO internal states in the register file, we manage to generate all read and write addresses by means of a modulo-16 counter and a modulo-256 counter. A fully autonomous implementation of ECHO and AES on a Virtex-5 FPGA requires 193 slices and a single 36k memory block, and achieves competitive throughputs. Assuming that the security guarantees of ECHO are at least as good as the ones of the SHA-3 finalists BLAKE and Keccak, our results show that ECHO is a better candidate for low-area cryptographic coprocessors. Furthermore, the design strategy described in this work can be applied to combine the AES and the SHA-3 finalist Grøstl.
Author Beuchat, Jean-Luc
Okamoto, Eiji
Yamazaki, Teppei
Author_xml – sequence: 1
  givenname: Jean-Luc
  surname: Beuchat
  fullname: Beuchat, Jean-Luc
  email: jeanluc.beuchat@gmail.com
  organization: Graduate School of Systems and Information Engineering, University of Tsukuba
– sequence: 2
  givenname: Eiji
  surname: Okamoto
  fullname: Okamoto, Eiji
  organization: Graduate School of Systems and Information Engineering, University of Tsukuba
– sequence: 3
  givenname: Teppei
  surname: Yamazaki
  fullname: Yamazaki, Teppei
  organization: Graduate School of Systems and Information Engineering, University of Tsukuba
BookMark eNp9kMtOAjEUQBuDiYh8gLv-QPV2Op3pLAlBMSFhoS5Nc6cPpgZnSDuE8PcOYly4YHUfybmPc0tGbdc6Qu45PHCA8jFxIVTFgHMGABVTV2Sc8QqYkrwY_eWgbsg0pVCDEDlIWYox-ZjRbXdgGB3SfRt8cJY2GO1h6FCMpgm9M_1-KHwXad84Olu8UmztT27icdd3m4i7JpiBSw31-9b0oWvpYr5c35Frj9vkpr9xQt6fFm_zJVutn1_msxUzQuY9M4UqpJR1UVUAmXNC-BKstbXjtbS1xNLmPpd54QGVKtBABgjoClRYKqzEhPDzXBO7lKLzehfDF8aj5qBPivRZkR4U6ZMirQam_MeY0OPp9D5i2F4kszOZhi3txkX92e1jOzx4AfoGZch9AQ
CitedBy_id crossref_primary_10_1109_TCSI_2020_2997916
crossref_primary_10_1016_j_jpdc_2017_01_029
crossref_primary_10_1109_TC_2015_2435775
crossref_primary_10_1016_j_micpro_2013_05_005
crossref_primary_10_1109_TCSI_2013_2278385
Cites_doi 10.1007/978-3-642-10366-7_10
10.1049/cp.2010.0478
10.1109/DSD.2006.40
10.1109/ReConFig.2010.44
10.1007/978-0-387-71817-0_10
10.1007/11751632_32
10.1007/978-3-540-28632-5_26
10.1109/FPT.2010.5681776
10.1007/3-540-45682-1_30
10.1007/978-3-642-17455-1_25
10.1109/ISIAS.2010.5604066
10.1007/978-3-540-68164-9_2
10.1007/978-3-642-19574-7_7
10.1109/DSD.2009.162
10.1109/TCSI.2006.875179
10.1007/978-3-662-04722-4
10.1007/11545262_31
ContentType Journal Article
Copyright Springer-Verlag 2011
Copyright_xml – notice: Springer-Verlag 2011
DBID AAYXX
CITATION
DOI 10.1007/s13389-011-0009-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2190-8516
EndPage 121
ExternalDocumentID 10_1007_s13389_011_0009_8
GroupedDBID -EM
0R~
0VY
203
2VQ
30V
4.4
406
408
409
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ8
HF~
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PT4
RLLFE
ROL
RSV
S27
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c354t-c686555b699002ee33f70dddbe1b5db5a7d4f4546f0a886ac020a0ae6a8a78a93
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000218889000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2190-8508
IngestDate Sat Nov 29 03:58:03 EST 2025
Tue Nov 18 22:18:06 EST 2025
Fri Feb 21 02:31:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Hash functions
SHA-3
ECHO
FPGA
AES
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-c686555b699002ee33f70dddbe1b5db5a7d4f4546f0a886ac020a0ae6a8a78a93
PageCount 21
ParticipantIDs crossref_primary_10_1007_s13389_011_0009_8
crossref_citationtrail_10_1007_s13389_011_0009_8
springer_journals_10_1007_s13389_011_0009_8
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Journal of cryptographic engineering
PublicationTitleAbbrev J Cryptogr Eng
PublicationYear 2011
Publisher Springer-Verlag
Publisher_xml – name: Springer-Verlag
References GajK.ChodowiecP.KocÇ.K.FPGA and ASIC implementations of the AESCryptographic Engineering2009New YorkSpringer23529410.1007/978-0-387-71817-0_10
El-Hadedy, M., Margala, M., Gligoroski, D., Knapskog, S.J.: Resource-efficient implementation of Blue Midnight Wish-256 hash function on Xilinx FPGA platform. In: The Second SHA-3 Candidate Conference, August 2010
Benadjila, R., Billet, O., Gueron, S., Robshaw, M.J.B.: The Intel AES instructions set and the SHA-3 candidates. In: Matsui, M. (ed.) Advances in Cryptology—ASIACRYPT 2009. Lecture Notes in Computer Science, vol. 5912, pp. 162–178. Springer, New York (2009)
Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE (version 1.3). http://www.131002.net/blake (2009)
El-Hadedy, M., Gligoroski, D., Knapskog, S.J.: Single core implementation of Blue Midnight Wish hash function on VIRTEX 5 platform. http://tinyurl.com/3xhvx6c (2010)
Wolkerstorfer, J.: An ASIC implementation of the AES-MixColumn operation. In: Rössler, P., Döderlein, A. (eds.) Proceedings of Austrochip 2001, pp. 129–132 (2001)
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) Advances in Cryptology—ASIACRYPT 2001. Lecture Notes in Computer Science, vol. 2248, pp. 514–532. Springer, New York (2001)
Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and implementation of low-area and low-power AES encryption hardware core. In: Ninth Euromicro Conference on Digital System Design: Architectures, Methods and Tools—DSD’06, pp. 577–583. IEEE Computer Society (2006)
Baldwin, B., Byrne, A., Lu, L., Hamilton, M., Hanley, N., O’Neill, N., Marnane, W.P.: A hardware wrapper for the SHA-3 hash algorithms. Cryptology ePrint Archive, Report 2010/124 (2010)
Bulens, P., Standaert, F.-X., Quisquater, J.-J., Pellegrin, P., Rouvroy, G.: Implementation of the AES-128 on Virtex-5 FPGAs. In: Vaudenay, S. (ed.) Progress in Cryptology—AFRICACRYPT 2008. Lecture Notes in Computer Science, vol. 5023, pp. 16–26. Springer, New York (2008)
Good, T., Benaissa, M.: AES on FPGA from the fastest to the smallest. In: Rao, J.R., Sunar, B. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2005. Lecture Notes in Computer Science, vol. 3659, pp. 427–440. Springer, New York (2005)
Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID systems using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2004. Lecture Notes in Computer Science, vol. 3156, pp. 357–370. Springer, New York (2004)
Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M., Seurin, Y.: SHA-3 proposal: ECHO. http://crypto.rd.francetelecom.com/echo (2009)
Järvinen, K.: Sharing resources between AES and the SHA-3 second round candidates Fugue and Grøstl. In: The Second SHA-3 Candidate Conference (2010)
Aranha, D.F., Beuchat, J.-L., Detrey, J., Estibals, N.: Optimal Eta pairing on supersingular genus-2 binary hyperelliptic curves. Cryptology ePrint Archive, Report 2010/559 (2010)
Feron, R., Francq, J.: FPGA implementation of Shabal: Our first results. http://www.shabal.com (2010)
DaemenJ.RijmenV.The Design of Rijndael2002New YorkSpringer1065.94005
Detrey, J., Gaudry, P., Khalfallah, K.: A low-area yet performant FPGA implementation of Shabal. Cryptology ePrint Archive, Report 2010/292 (2010)
Estibals, N.: Compact hardware for computing the Tate pairing over 128-bit-security supersingular curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing-Based Cryptography—Pairing 2010. Lecture Notes in Computer Science. Springer, New York (2010, to appear)
Baldwin, B., Byrne, A., Hamilton, M., Hanley, N., McEvoy, R.P., Pan, W., Marnane, W.P.: FPGA implementations of SHA-3 candidates: CubeHash, Grøstl, LANE, Shabal and Spectral Hash. Cryptology ePrint Archive, Report 2009/342 (2009)
Helion Technology: FULL DATASHEET—Tiny hash core family for Xilinx FPGA. Revision 2.0 (11 July 2010)
Homsirikamol, E., Rogawski, M., Gaj, K.: Comparing hardware performance of fourteen round two SHA-3 candidates using FPGAs. Cryptology ePrint Archive, Report 2010/445 (2010)
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function family main document (version 2.0). http://keccak.noekeon.org (2009)
Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Grøstl—a SHA-3 candidate. http://www.groestl.info (2008)
Beuchat, J.-L., Okamoto, E., Yamazaki, T.: Compact implementations of BLAKE-32 and BLAKE-64 on FPGA. In: Bian, J., Zhou, Q., Zhao, K. (eds.) Proceedings of the 2010 International Conference on Field-Programmable Technology—FPT 2010, pp. 170–177. IEEE Press (2010)
Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget, A., Icart, T., Misarsky, J.F., Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard, J.R., Thuillet, C., Videau, M.: Shabal, a submission to NIST’s cryptographic hash algorithm competition. http://www.shabal.com (2008)
Helion Technology: OVERVIEW DATASHEET—Ultra-low resource AES (Rijndael) cores for Xilinx FPGA. Revision 1.3.0
Beuchat, J.-L., Okamoto, E., Yamazaki, T.: A compact FPGA implementation of the SHA-3 candidate ECHO. Cryptology ePrint Archive, Report 2010/364 (2010)
Zhai, J., Park, C.M., Wang, G.-N.: Hash-based RFID security protocol using randomly key-changed identification procedure. In: Gavrilova, M., Gervasi, O., Kumar, V., Kenneth Tan, C.J., Taniar, D., Laganà, A., Mun, Y., Choo, H. (eds.) Computational Science and its Applications—ICCSA 2006. Lecture Notes in Computer Science, vol. 3983, pp. 296–305. Springer, New York (2006)
GoodT.BenaissaM.Very small FPGA application-specific instruction processor for AESIEEE Trans. Circuits Syst. I: Regular Papers20065371477148610.1109/TCSI.2006.875179
T. Good (9_CR23) 2006; 53
9_CR18
9_CR19
9_CR16
9_CR17
9_CR14
9_CR15
9_CR12
9_CR10
9_CR11
9_CR30
9_CR4
9_CR3
9_CR2
9_CR1
K. Gaj (9_CR20) 2009
9_CR29
9_CR27
9_CR28
9_CR25
9_CR26
J. Daemen (9_CR13) 2002
9_CR24
9_CR21
9_CR9
9_CR22
9_CR8
9_CR7
9_CR6
9_CR5
References_xml – reference: Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) Advances in Cryptology—ASIACRYPT 2001. Lecture Notes in Computer Science, vol. 2248, pp. 514–532. Springer, New York (2001)
– reference: Wolkerstorfer, J.: An ASIC implementation of the AES-MixColumn operation. In: Rössler, P., Döderlein, A. (eds.) Proceedings of Austrochip 2001, pp. 129–132 (2001)
– reference: Beuchat, J.-L., Okamoto, E., Yamazaki, T.: Compact implementations of BLAKE-32 and BLAKE-64 on FPGA. In: Bian, J., Zhou, Q., Zhao, K. (eds.) Proceedings of the 2010 International Conference on Field-Programmable Technology—FPT 2010, pp. 170–177. IEEE Press (2010)
– reference: GoodT.BenaissaM.Very small FPGA application-specific instruction processor for AESIEEE Trans. Circuits Syst. I: Regular Papers20065371477148610.1109/TCSI.2006.875179
– reference: Feron, R., Francq, J.: FPGA implementation of Shabal: Our first results. http://www.shabal.com (2010)
– reference: Helion Technology: OVERVIEW DATASHEET—Ultra-low resource AES (Rijndael) cores for Xilinx FPGA. Revision 1.3.0
– reference: Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function family main document (version 2.0). http://keccak.noekeon.org (2009)
– reference: Helion Technology: FULL DATASHEET—Tiny hash core family for Xilinx FPGA. Revision 2.0 (11 July 2010)
– reference: Good, T., Benaissa, M.: AES on FPGA from the fastest to the smallest. In: Rao, J.R., Sunar, B. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2005. Lecture Notes in Computer Science, vol. 3659, pp. 427–440. Springer, New York (2005)
– reference: Beuchat, J.-L., Okamoto, E., Yamazaki, T.: A compact FPGA implementation of the SHA-3 candidate ECHO. Cryptology ePrint Archive, Report 2010/364 (2010)
– reference: Zhai, J., Park, C.M., Wang, G.-N.: Hash-based RFID security protocol using randomly key-changed identification procedure. In: Gavrilova, M., Gervasi, O., Kumar, V., Kenneth Tan, C.J., Taniar, D., Laganà, A., Mun, Y., Choo, H. (eds.) Computational Science and its Applications—ICCSA 2006. Lecture Notes in Computer Science, vol. 3983, pp. 296–305. Springer, New York (2006)
– reference: Benadjila, R., Billet, O., Gueron, S., Robshaw, M.J.B.: The Intel AES instructions set and the SHA-3 candidates. In: Matsui, M. (ed.) Advances in Cryptology—ASIACRYPT 2009. Lecture Notes in Computer Science, vol. 5912, pp. 162–178. Springer, New York (2009)
– reference: Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M., Seurin, Y.: SHA-3 proposal: ECHO. http://crypto.rd.francetelecom.com/echo (2009)
– reference: Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE (version 1.3). http://www.131002.net/blake (2009)
– reference: Baldwin, B., Byrne, A., Lu, L., Hamilton, M., Hanley, N., O’Neill, N., Marnane, W.P.: A hardware wrapper for the SHA-3 hash algorithms. Cryptology ePrint Archive, Report 2010/124 (2010)
– reference: Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID systems using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2004. Lecture Notes in Computer Science, vol. 3156, pp. 357–370. Springer, New York (2004)
– reference: DaemenJ.RijmenV.The Design of Rijndael2002New YorkSpringer1065.94005
– reference: Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Grøstl—a SHA-3 candidate. http://www.groestl.info (2008)
– reference: Aranha, D.F., Beuchat, J.-L., Detrey, J., Estibals, N.: Optimal Eta pairing on supersingular genus-2 binary hyperelliptic curves. Cryptology ePrint Archive, Report 2010/559 (2010)
– reference: Baldwin, B., Byrne, A., Hamilton, M., Hanley, N., McEvoy, R.P., Pan, W., Marnane, W.P.: FPGA implementations of SHA-3 candidates: CubeHash, Grøstl, LANE, Shabal and Spectral Hash. Cryptology ePrint Archive, Report 2009/342 (2009)
– reference: GajK.ChodowiecP.KocÇ.K.FPGA and ASIC implementations of the AESCryptographic Engineering2009New YorkSpringer23529410.1007/978-0-387-71817-0_10
– reference: Detrey, J., Gaudry, P., Khalfallah, K.: A low-area yet performant FPGA implementation of Shabal. Cryptology ePrint Archive, Report 2010/292 (2010)
– reference: Estibals, N.: Compact hardware for computing the Tate pairing over 128-bit-security supersingular curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing-Based Cryptography—Pairing 2010. Lecture Notes in Computer Science. Springer, New York (2010, to appear)
– reference: Järvinen, K.: Sharing resources between AES and the SHA-3 second round candidates Fugue and Grøstl. In: The Second SHA-3 Candidate Conference (2010)
– reference: Homsirikamol, E., Rogawski, M., Gaj, K.: Comparing hardware performance of fourteen round two SHA-3 candidates using FPGAs. Cryptology ePrint Archive, Report 2010/445 (2010)
– reference: Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and implementation of low-area and low-power AES encryption hardware core. In: Ninth Euromicro Conference on Digital System Design: Architectures, Methods and Tools—DSD’06, pp. 577–583. IEEE Computer Society (2006)
– reference: Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget, A., Icart, T., Misarsky, J.F., Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard, J.R., Thuillet, C., Videau, M.: Shabal, a submission to NIST’s cryptographic hash algorithm competition. http://www.shabal.com (2008)
– reference: Bulens, P., Standaert, F.-X., Quisquater, J.-J., Pellegrin, P., Rouvroy, G.: Implementation of the AES-128 on Virtex-5 FPGAs. In: Vaudenay, S. (ed.) Progress in Cryptology—AFRICACRYPT 2008. Lecture Notes in Computer Science, vol. 5023, pp. 16–26. Springer, New York (2008)
– reference: El-Hadedy, M., Gligoroski, D., Knapskog, S.J.: Single core implementation of Blue Midnight Wish hash function on VIRTEX 5 platform. http://tinyurl.com/3xhvx6c (2010)
– reference: El-Hadedy, M., Margala, M., Gligoroski, D., Knapskog, S.J.: Resource-efficient implementation of Blue Midnight Wish-256 hash function on Xilinx FPGA platform. In: The Second SHA-3 Candidate Conference, August 2010
– ident: 9_CR6
  doi: 10.1007/978-3-642-10366-7_10
– ident: 9_CR7
– ident: 9_CR11
– ident: 9_CR4
  doi: 10.1049/cp.2010.0478
– ident: 9_CR24
  doi: 10.1109/DSD.2006.40
– ident: 9_CR15
  doi: 10.1109/ReConFig.2010.44
– start-page: 235
  volume-title: Cryptographic Engineering
  year: 2009
  ident: 9_CR20
  doi: 10.1007/978-0-387-71817-0_10
– ident: 9_CR30
  doi: 10.1007/11751632_32
– ident: 9_CR18
  doi: 10.1007/978-3-540-28632-5_26
– ident: 9_CR1
– ident: 9_CR9
  doi: 10.1109/FPT.2010.5681776
– ident: 9_CR26
– ident: 9_CR5
– ident: 9_CR28
– ident: 9_CR10
  doi: 10.1007/3-540-45682-1_30
– ident: 9_CR8
– ident: 9_CR17
  doi: 10.1007/978-3-642-17455-1_25
– ident: 9_CR16
  doi: 10.1109/ISIAS.2010.5604066
– ident: 9_CR12
  doi: 10.1007/978-3-540-68164-9_2
– ident: 9_CR14
  doi: 10.1007/978-3-642-19574-7_7
– ident: 9_CR19
– ident: 9_CR21
– ident: 9_CR2
– ident: 9_CR3
  doi: 10.1109/DSD.2009.162
– volume: 53
  start-page: 1477
  issue: 7
  year: 2006
  ident: 9_CR23
  publication-title: IEEE Trans. Circuits Syst. I: Regular Papers
  doi: 10.1109/TCSI.2006.875179
– ident: 9_CR25
– volume-title: The Design of Rijndael
  year: 2002
  ident: 9_CR13
  doi: 10.1007/978-3-662-04722-4
– ident: 9_CR22
  doi: 10.1007/11545262_31
– ident: 9_CR27
– ident: 9_CR29
SSID ssib033405573
ssib031263732
ssj0002140048
Score 1.8449655
Snippet We propose a compact coprocessor for the AES (encryption, decryption, and key expansion) and the cryptographic hash function ECHO on Virtex-5 and Virtex-6...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 101
SubjectTerms Circuits and Systems
Communications Engineering
Computer Communication Networks
Computer Science
Cryptology
Data Structures and Information Theory
Networks
Operating Systems
Regular Paper
Title A low-area unified hardware architecture for the AES and the cryptographic hash function ECHO
URI https://link.springer.com/article/10.1007/s13389-011-0009-8
Volume 1
WOSCitedRecordID wos000218889000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 2190-8516
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140048
  issn: 2190-8508
  databaseCode: RSV
  dateStart: 20110401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60evBifWJ9sQdPykKSfWRzLKWlpypUpRcJm31gocTSpBb_vbtptrWggt5CmE3C7Gzmm539ZgC4oVjbSFZlKJAEI-uvDeLYMMRYlGmdWEwiVNVsIh4M-GiUPNQ87sKfdvcpyepPvSa72WjKne0JHRM6QXwb7FBXbMaF6MNnb0Q4jBiO12RJjIkrM4VXGy9RWJmtazpX0agtQvHZzu_esumvNpOllQ_qNf_19Qdgv4acsL20kUOwpfMj0PTtHGC9uo_BSxtO3hZIWBgJ5_nYWHAKHSdrYe_ArwkHaIEutMARtrtDKHJVXcvZx7Rc1r8eSzuueIXOZ7p5h91O__4EPPW6j50-qrsvIIkpKZFkjrNKM2b9VRBpjbGJA6VUpsOMqoyKWBFDKGEmEJwzIS3wFIHQTHARc5HgU9DI33J9BqCyj8CGiMTCO2IUSVRIpc5ELHgsqIlaIPA6TmVdmtx1yJik66LKTn2pVZ_Llicpb4Hb1ZDpsi7Hb8J3flLSeokWP0uf_0n6Auz5beYgvASNcjbXV2BXvpfjYnZdmeYnSkfZAQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BX1xfuL8zINPSqBd0jR9HDKZOKfgB75ISfOBg9GNtXP433vpWqeggr6VkmvL5dL7XS6_O4ROAmogktUJ8RSjBPy1JYJaTjhvJsZEgEmkLppNhL2eeHqKbksed1addq9SksWfek52g2jKne3xHRM6ImIRLTHXZceF6HePlRFRv8lpOCdLUspcmSn6sfECIs5sXdO5gkYNCKXKdn73lq_-6muytPBBF_V_ff06WishJ27NbGQDLZh0E9Wrdg64XN1b6LmFB8MpkQAj8STtWwCn2HGypnAHf044YAC6GIAjbrXvsEx1ca3Gb6N8Vv-6r0Aue8HOZ7p5x-3zzs02erho3593SNl9gSgasJwo7jirQcLBX3lNYyi1oae1ToyfBDoJZKiZZQHj1pNCcKkAeEpPGi6FDIWM6A6qpcPU7CKs4RHUMhkBvGNWs0j7gTKJDKUIZWCbDeRVOo5VWZrcdcgYxPOiyk59MajPZcujWDTQ6YfIaFaX47fBZ9WkxOUSzX4evfen0cdopXN_3Y27l72rfbRabTl7_gGq5eOJOUTL6jXvZ-OjwkzfAX8g2-U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXzxW_w2Dz4pwbZJ0_Rx6IaizOFUfJGS5gMHUsdWHf73Xrp2c6CC-FbKpaXXC_e73P3uEDoKqYFIVqfEU4wS8NeWCGo54TxIjYkBk0hdDJuIWi3x-Bi3yzmng6ravUpJjjgNrktTlp_2tD2dEN8gsnJ1Pr5jRcdEzKI5BoGMq-m67TxUBkX9gNNoQpyklLmWU3R8CBP4hQm7AXQFpRrQSpX5_O4t075rOnFa-KPm8r-_ZAUtlVAU10e2s4pmTLaGlqsxD7jc9evoqY5fXodEArzEb1nXAmjFjqs1hDv4ayICAwDGAChxvdHBMtPFtep_9PJRX-yugnWDZ-x8qbMH3Di7uNlA983G3dkFKacyEEVDlhPFHZc1TDn4MS8whlIbeVrr1PhpqNNQRppZFjJuPSkElwoAqfSk4VLISMiYbqJa9pqZLYQ1PIJaJmOAfcxqFms_VCaVkRSRDG2wjbxK34kqW5a7yRkvyaTZslNfAupzWfQ4EdvoeLykN-rX8ZvwSfWDknLrDn6W3vmT9CFaaJ83k-vL1tUuWqxOoj1_D9Xy_pvZR_PqPe8O-geFxX4CqIvkyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+low-area+unified+hardware+architecture+for+the+AES+and+the+cryptographic+hash+function+ECHO&rft.jtitle=Journal+of+cryptographic+engineering&rft.au=Beuchat%2C+Jean-Luc&rft.au=Okamoto%2C+Eiji&rft.au=Yamazaki%2C+Teppei&rft.date=2011-08-01&rft.issn=2190-8508&rft.eissn=2190-8516&rft.volume=1&rft.issue=2&rft.spage=101&rft.epage=121&rft_id=info:doi/10.1007%2Fs13389-011-0009-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13389_011_0009_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-8508&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-8508&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-8508&client=summon