Optimal Power Flow of Renewable-Integrated Power Systems Using a Gaussian Bare-Bones Levy-Flight Firefly Algorithm
This article proposes a Gaussian bare-bones Levy-flight firefly algorithm (GBLFA) and its modified version named MGBLFA for optimizing the various kinds of the different optimal power flow (OPF) problems in the presence of conventional thermal power generators and intermittent renewable energy resou...
Saved in:
| Published in: | Frontiers in energy research Vol. 10 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Frontiers Media S.A
26.05.2022
|
| Subjects: | |
| ISSN: | 2296-598X, 2296-598X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article proposes a Gaussian bare-bones Levy-flight firefly algorithm (GBLFA) and its modified version named MGBLFA for optimizing the various kinds of the different optimal power flow (OPF) problems in the presence of conventional thermal power generators and intermittent renewable energy resources such as solar photovoltaic (PV) and wind power (WE). Several objective functions, including fuel costs, emission, power loss, and voltage deviation, are considered in the OPF problem subject to economic, technical, and safety constraints. Also, the uncertainties of solar irradiance and wind speed are modeled using Weibull, lognormal probability distribution functions, and their influences are considered in the OPF problem. Proper cost functions associated with the power generation of PV and WE units are modeled. A comprehensive analysis of ten cases with various objectives on the IEEE 30-bus test system demonstrates the potential effects of renewable energies on the optimal scheduling of thermal power plants in a cost-emission-effective manner. Numerical results show the superiority of the proposed method over other state-of-the-art algorithms in finding optimal solutions for the OPF problems. |
|---|---|
| AbstractList | This article proposes a Gaussian bare-bones Levy-flight firefly algorithm (GBLFA) and its modified version named MGBLFA for optimizing the various kinds of the different optimal power flow (OPF) problems in the presence of conventional thermal power generators and intermittent renewable energy resources such as solar photovoltaic (PV) and wind power (WE). Several objective functions, including fuel costs, emission, power loss, and voltage deviation, are considered in the OPF problem subject to economic, technical, and safety constraints. Also, the uncertainties of solar irradiance and wind speed are modeled using Weibull, lognormal probability distribution functions, and their influences are considered in the OPF problem. Proper cost functions associated with the power generation of PV and WE units are modeled. A comprehensive analysis of ten cases with various objectives on the IEEE 30-bus test system demonstrates the potential effects of renewable energies on the optimal scheduling of thermal power plants in a cost-emission-effective manner. Numerical results show the superiority of the proposed method over other state-of-the-art algorithms in finding optimal solutions for the OPF problems. |
| Author | Alghamdi, Ali S. |
| Author_xml | – sequence: 1 givenname: Ali S. surname: Alghamdi fullname: Alghamdi, Ali S. |
| BookMark | eNp9kdtKJDEQhoO4sOrOA-xdXqDHnPqQSxVHBwZcdIW9CzlUt5FMR5LoMG9vjzOIeLFXVRT1f1TxnaLjMY6A0G9K5px38ryHMQ1zRhibS0Ylb47QCWOyqWrZ_Tv-0v9Es5yfCSGUs1pQcoLS3Uvxax3wn7iBhBchbnDs8T2MsNEmQLUcCwxJF3CHlYdtLrDO-DH7ccAa3-jXnL0e8aVOUF1Ol2W8grdttQh-eCp44RP0YYsvwhCTL0_rX-hHr0OG2aGeocfF9d-r22p1d7O8ulhVlteiVJZK6gRngtOWQS-MYcS20jpDDQUGxkrTEXBt7erOgIC6bVxjnbVaEN4ZfoaWe66L-lm9pOnNtFVRe_UxiGlQOhVvA6gWuGO86QiXVEhhNBUgaupqYLTtgEwsumfZFHOeHvrkUaJ2DtSHA7VzoPYOpkz7LWN90cXHsSTtw3-S7-PxkF0 |
| CitedBy_id | crossref_primary_10_1016_j_jestch_2023_101551 crossref_primary_10_1016_j_prime_2023_100370 crossref_primary_10_1080_23080477_2024_2360785 crossref_primary_10_1007_s00521_024_10312_0 crossref_primary_10_3390_en18030478 crossref_primary_10_1016_j_est_2025_115782 crossref_primary_10_1177_0309524X241253848 crossref_primary_10_1016_j_apenergy_2024_123499 crossref_primary_10_1016_j_heliyon_2024_e31755 crossref_primary_10_1049_gtd2_12900 crossref_primary_10_1109_ACCESS_2024_3363237 crossref_primary_10_3390_app12167959 crossref_primary_10_3389_fenrg_2023_1178521 crossref_primary_10_3390_app12147193 crossref_primary_10_3389_fenrg_2023_1293193 crossref_primary_10_1016_j_epsr_2025_111929 crossref_primary_10_1016_j_gloei_2025_05_006 |
| Cites_doi | 10.1016/j.asoc.2015.11.027 10.1007/s12652-021-03622-x 10.1016/j.ijepes.2015.12.021 10.1080/15325008.2021.1971331 10.1049/iet-gtd:20080273 10.1016/j.ijepes.2013.07.018 10.3390/en9090678 10.1016/j.enconman.2015.01.015 10.1016/j.ins.2014.09.051 10.1016/j.energy.2012.09.031 10.3390/en8042412 10.1016/j.eswa.2014.03.053 10.1109/JSYST.2014.2325967 10.1016/j.ijepes.2014.07.010 10.1049/iet-gtd.2019.1317 10.1016/j.eswa.2022.116776 10.1016/j.enconman.2017.06.071 10.1016/j.enconman.2013.12.028 10.1109/TPWRS.2010.2051168 10.1016/j.energy.2019.01.021 10.1016/j.ijepes.2014.07.018 10.22060/EEJ.2021.19203.5384 10.1007/s00500-016-2319-3 10.17775/cseejpes.2017.00280 10.1016/j.energy.2021.121478 10.1016/j.epsr.2016.09.025 10.1016/j.energy.2015.09.083 10.1016/j.energy.2017.02.090 10.1080/15325008.2015.1061620 10.1049/rpg2.12023 10.1016/j.engappai.2017.10.019 10.1016/j.epsr.2012.09.002 10.1016/j.renene.2015.04.034 10.1016/j.ijepes.2013.04.021 10.1016/j.ijepes.2006.03.024 10.1080/15325000252888425 10.1016/j.ejor.2008.02.035 10.1016/j.ins.2005.02.003 10.1016/j.asoc.2011.09.017 10.1109/ctpp.2016.7482931 10.1109/access.2021.3078115 10.1109/tii.2012.2210431 10.1016/j.enconman.2015.12.081 10.1016/j.engappai.2017.06.007 10.1016/j.ijepes.2014.12.057 10.1080/15325000691001458 10.1016/j.enconman.2008.06.014 10.1049/iet-gtd.2011.0055 10.1007/s00500-020-05431-4 10.1016/j.asoc.2015.10.057 10.1016/j.ijepes.2014.10.027 10.1007/s12652-020-02692-7 10.1016/j.asoc.2016.01.041 10.1109/TEVC.2010.2059031 10.1504/ijbic.2010.032124 10.1109/access.2019.2927193 10.1007/978-981-15-7241-8_20 10.1109/access.2021.3087626 10.1016/j.energy.2011.09.027 10.1016/j.ijepes.2009.09.013 10.1016/j.ijepes.2015.05.011 10.1016/j.ijepes.2016.02.004 10.1080/15325008.2015.1041625 10.1016/j.engappai.2013.11.003 10.1016/j.ijepes.2013.07.019 10.1016/j.energy.2014.10.007 10.1007/s00202-015-0357-y 10.1016/j.energy.2020.117314 10.1109/access.2021.3081374 10.1016/j.asoc.2021.108045 10.1016/j.prime.2022.100031 10.1016/j.eswa.2018.12.043 10.1016/j.eswa.2019.112968 10.3233/jifs-18631 10.1109/JSYST.2011.2162896 10.14257/ijhit.2012.5.3.11 10.1002/etep.474 10.1109/jsyst.2012.2225732 10.1080/15567036.2021.1957043 10.1016/j.epsr.2019.106018 10.1007/s42835-021-00739-z 10.1002/er.7928 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3389/fenrg.2022.921936 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2296-598X |
| ExternalDocumentID | oai_doaj_org_article_7e3d23680391494ba14e451d5e2178e0 10_3389_fenrg_2022_921936 |
| GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
| ID | FETCH-LOGICAL-c354t-c191d43243172ef4bb20c79cdb1b1e2ebc9b80ed75d58be4e576d6cdcca4038b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808249100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2296-598X |
| IngestDate | Fri Oct 03 12:52:46 EDT 2025 Sat Nov 29 04:19:18 EST 2025 Tue Nov 18 20:57:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c354t-c191d43243172ef4bb20c79cdb1b1e2ebc9b80ed75d58be4e576d6cdcca4038b3 |
| OpenAccessLink | https://doaj.org/article/7e3d23680391494ba14e451d5e2178e0 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7e3d23680391494ba14e451d5e2178e0 crossref_primary_10_3389_fenrg_2022_921936 crossref_citationtrail_10_3389_fenrg_2022_921936 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-26 |
| PublicationDateYYYYMMDD | 2022-05-26 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in energy research |
| PublicationYear | 2022 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Mahdad (B46) 2010; 32 Ghasemi (B25); 65 Venkateswara Rao (B79) 2015; 68 El-Fergany (B19) 2015; 43 Jabr (B32) 2008; 3 Mishra (B47) 2011 Hassan (B29) 2022 Zimmerman (B88) 2011; 26 Ramesh Kumar (B63) 2015; 73 Rezaei Adaryani (B66) 2013; 53 Reddy (B64); 54 He (B30) 2015; 8 Warid (B81) 2016; 9 Bentouati (B5) 2021; 12 Vandenbergh (B78) 2006; 176 Panda (B58) 2014; 54 Dhivya (B15) 2021 Duman (B18) 2019 Elattar (B21) 2019; 7 Zargar (B86) 2020; 14 Biswas (B6) 2017; 148 Kusakana (B41) 2016; 111 Radosavljević (B62) 2015; 43 El-Sehiemy (B20) 2022; 13 Niknam (B52) 2013; 7 Biswas (B7) 2018; 68 Nguyen (B51) 2019; 171 Langari (B42) 2020; 141 Mostafa (B49) 2021; 9 Omran (B55) 2009; 196 Narimani (B50) 2013; 49 Akbari (B3) 2022; 49 Jain (B33) 2019; 122 Abaci (B1) 2016; 79 Güçyetmez (B27) 2016; 98 Kavousi-Fard (B37) 2014; 41 Bouchekara (B8) 2016; 42 Kennedy (B39) 1995 Farsani (B22) 2021; 53 Saeidi (B68) 2019; 36 Wang (B80) 2012; 5 Mohamed (B48) 2017; 142 Ma (B45) 2019; 5 Ghasemi (B24); 78 Pravina (B60) 2021; 16 Ghasemi (B23); 29 Zhou (B87) 2011; 21 Tazvinga (B77) 2015; 102 Yang (B82) 2012; 12 Sood (B75) 2007; 29 Abido (B2) 2002; 30 Khorsandi (B40) 2013; 95 Singh (B74) 2016; 40 Chaib (B9) 2016; 81 Li (B43) 2022; 114 Ayan (B4) 2015; 64 Ghasemi (B26); 294 Reddy (B65); 9 Home-Ortiz (B31) 2021; 9 Panda (B57) 2017; 124 Sayah (B70) 2008; 49 Sánchez (B69) 2017; 64 Dasgupta (B13) 2020; 178 Jeddi (B35) 2016 Roy (B67) 2015; 64 Shi (B73) 2011; 6 Kamel (B36) 2021; 25 Panda (B59) 2015; 93 Niknam (B54); 5 Daghan (B10) 2021 Swief (B76) 2021; 9 Dubey (B16) 2015; 83 Kennedy (B38) 2003 Duman (B17) 2021; 15 Li (B44) 2020; 198 Pulluri (B61) 2018; 22 Yang (B83) Gupta (B28) 2021 Niknam (B53); 36 Shaheen (B71) 2021; 237 Yao (B85) 2012; 8 Ongsakul (B56) 2006; 34 Das (B12) 2010; 15 Dash (B14) 2022; 200 Daryani (B11) 2016; 38 Shayeghi (B72) 2014; 79 Jebaraj (B34) 2022; 2 Yang (B84); 2 |
| References_xml | – volume: 40 start-page: 161 year: 2016 ident: B74 article-title: Particle Swarm Optimization with an Aging Leader and Challengers Algorithm for the Solution of Optimal Power Flow Problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.11.027 – volume: 13 start-page: 1 year: 2022 ident: B20 article-title: A Novel Single/multi-Objective Frameworks for Techno-Economic Operation in Power Systems Using Tunicate Swarm Optimization Technique publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-021-03622-x – volume: 79 start-page: 1 year: 2016 ident: B1 article-title: Differential Search Algorithm for Solving Multi-Objective Optimal Power Flow Problem publication-title: Int. J. Electr. Power & Energy Syst. doi: 10.1016/j.ijepes.2015.12.021 – volume: 49 start-page: 584 year: 2022 ident: B3 article-title: Optimal Power Flow via Teaching-Learning-Studying-Based Optimization Algorithm publication-title: Electr. Power Components Syst. doi: 10.1080/15325008.2021.1971331 – volume: 3 start-page: 66 year: 2008 ident: B32 article-title: Intermittent Wind Generation in Optimal Power Flow Dispatching publication-title: IET Generation, Transm. Distribution doi: 10.1049/iet-gtd:20080273 – volume: 54 start-page: 306 year: 2014 ident: B58 article-title: Optimal Power Flow Solution of Wind Integrated Power System Using Modified Bacteria Foraging Algorithm publication-title: Int. J. Electr. Power & Energy Syst. doi: 10.1016/j.ijepes.2013.07.018 – volume: 9 start-page: 678 year: 2016 ident: B81 article-title: Optimal Power Flow Using the Jaya Algorithm publication-title: Energies doi: 10.3390/en9090678 – volume: 102 start-page: 104 year: 2015 ident: B77 article-title: Optimal Power Flow Management for Distributed Energy Resources with Batteries publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.01.015 – volume: 294 start-page: 286 ident: B26 article-title: Multi-objective Optimal Electric Power Planning in the Power System Using Gaussian Bare-Bones Imperialist Competitive Algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.09.051 – volume: 49 start-page: 119 year: 2013 ident: B50 article-title: A Novel Approach to Multi-Objective Optimal Power Flow by a New Hybrid Optimization Algorithm Considering Generator Constraints and Multi-Fuel Type publication-title: Energy doi: 10.1016/j.energy.2012.09.031 – volume: 8 start-page: 2412 year: 2015 ident: B30 article-title: An Improved Artificial Bee Colony Algorithm and its Application to Multi-Objective Optimal Power Flow publication-title: Energies doi: 10.3390/en8042412 – volume: 41 start-page: 6047 year: 2014 ident: B37 article-title: A New Hybrid Modified Firefly Algorithm and Support Vector Regression Model for Accurate Short Term Load Forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.03.053 – volume: 9 start-page: 1440 ident: B65 article-title: Real-time Economic Dispatch Considering Renewable Power Generation Variability and Uncertainty over Scheduling Period publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2014.2325967 – volume: 64 start-page: 562 year: 2015 ident: B67 article-title: Optimal Power Flow Solution of Power System Incorporating Stochastic Wind Power Using Gbest Guided Artificial Bee Colony Algorithm publication-title: Int. J. Electr. Power & Energy Syst. doi: 10.1016/j.ijepes.2014.07.010 – volume: 14 start-page: 3042 year: 2020 ident: B86 article-title: Probabilistic Multi-Objective State Estimation-Based PMU Placement in the Presence of Bad Data and Missing Measurements publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2019.1317 – start-page: 80 year: 2003 ident: B38 article-title: Bare Bones Particle Swarms – volume: 200 start-page: 116776 year: 2022 ident: B14 article-title: Development of a Boundary Assigned Animal Migration Optimization Algorithm and its Application to Optimal Power Flow Study publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116776 – volume: 148 start-page: 1194 year: 2017 ident: B6 article-title: Optimal Power Flow Solutions Incorporating Stochastic Wind and Solar Power publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.06.071 – volume: 79 start-page: 344 year: 2014 ident: B72 article-title: A Modified Artificial Bee Colony Based on Chaos Theory for Solving Non-convex Emission/economic Dispatch publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.12.028 – volume: 26 start-page: 12 year: 2011 ident: B88 article-title: MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2010.2051168 – volume: 171 start-page: 218 year: 2019 ident: B51 article-title: A High Performance Social Spider Optimization Algorithm for Optimal Power Flow Solution with Single Objective Optimization publication-title: Energy doi: 10.1016/j.energy.2019.01.021 – volume: 64 start-page: 136 year: 2015 ident: B4 article-title: Chaotic Artificial Bee Colony Algorithm Based Solution of Security and Transient Stability Constrained Optimal Power Flow publication-title: Int. J. Electr. Power & Energy Syst. doi: 10.1016/j.ijepes.2014.07.018 – volume: 53 start-page: 11 year: 2021 ident: B22 article-title: Stochastic Multi-Objective Distribution Network Reconfiguration Considering Wind Turbines publication-title: AUT J. Electr. Eng. doi: 10.22060/EEJ.2021.19203.5384 – volume: 22 start-page: 159 year: 2018 ident: B61 article-title: A Solution Network Based on Stud Krill Herd Algorithm for Optimal Power Flow Problems publication-title: Soft Comput. doi: 10.1007/s00500-016-2319-3 – volume: 5 start-page: 466 year: 2019 ident: B45 article-title: Multi-objective Dynamic Optimal Power Flow of Wind Integrated Power Systems Considering Demand Response publication-title: CSEE J. Power Energy Syst. doi: 10.17775/cseejpes.2017.00280 – volume: 237 start-page: 121478 year: 2021 ident: B71 article-title: Multi-objective Jellyfish Search Optimizer for Efficient Power System Operation Based on Multi-Dimensional OPF Framework publication-title: Energy doi: 10.1016/j.energy.2021.121478 – start-page: 1942 year: 1995 ident: B39 article-title: Particle Swarm Optimization – volume: 142 start-page: 190 year: 2017 ident: B48 article-title: Optimal Power Flow Using Moth Swarm Algorithm publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2016.09.025 – start-page: 725 year: 2021 ident: B10 article-title: Chaos Embedded Particle Swarm Optimization Technique for Solving Optimal Power Flow Problem – volume: 93 start-page: 816 year: 2015 ident: B59 article-title: Security Constrained Optimal Power Flow Solution of Wind-Thermal Generation System Using Modified Bacteria Foraging Algorithm publication-title: Energy doi: 10.1016/j.energy.2015.09.083 – volume: 124 start-page: 720 year: 2017 ident: B57 article-title: A Modified Bacteria Foraging Based Optimal Power Flow Framework for Hydro-Thermal-Wind Generation System in the Presence of STATCOM publication-title: Energy doi: 10.1016/j.energy.2017.02.090 – volume: 43 start-page: 1958 year: 2015 ident: B62 article-title: Optimal Power Flow Using a Hybrid Optimization Algorithm of Particle Swarm Optimization and Gravitational Search Algorithm publication-title: Electr. Power Components Syst. doi: 10.1080/15325008.2015.1061620 – volume: 15 start-page: 278 year: 2021 ident: B17 article-title: AC Optimal Power Flow with Thermal-Wind-Solar-Tidal Systems Using the Symbiotic Organisms Search Algorithm publication-title: IET Renew. Power Gener. doi: 10.1049/rpg2.12023 – volume: 68 start-page: 81 year: 2018 ident: B7 article-title: Optimal Power Flow Solutions Using Differential Evolution Algorithm Integrated with Effective Constraint Handling Techniques publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.10.019 – volume: 95 start-page: 206 year: 2013 ident: B40 article-title: Modified Artificial Bee Colony Algorithm Based on Fuzzy Multi-Objective Technique for Optimal Power Flow Problem publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2012.09.002 – volume: 83 start-page: 188 year: 2015 ident: B16 article-title: Hybrid Flower Pollination Algorithm with Time-Varying Fuzzy Selection Mechanism for Wind Integrated Multi-Objective Dynamic Economic Dispatch publication-title: Renew. Energy doi: 10.1016/j.renene.2015.04.034 – volume: 53 start-page: 219 year: 2013 ident: B66 article-title: Artificial Bee Colony Algorithm for Solving Multi-Objective Optimal Power Flow Problem publication-title: Int. J. Electr. Power & Energy Syst. doi: 10.1016/j.ijepes.2013.04.021 – volume: 29 start-page: 65 year: 2007 ident: B75 article-title: Evolutionary Programming Based Optimal Power Flow and its Validation for Deregulated Power System Analysis publication-title: Int. J. Electr. Power & Energy Syst. doi: 10.1016/j.ijepes.2006.03.024 – volume: 30 start-page: 469 year: 2002 ident: B2 article-title: Optimal Power Flow Using Tabu Search Algorithm publication-title: Electr. Power Components Syst. doi: 10.1080/15325000252888425 – volume: 196 start-page: 128 year: 2009 ident: B55 article-title: Bare Bones Differential Evolution publication-title: Eur. J. Operational Res. doi: 10.1016/j.ejor.2008.02.035 – volume: 176 start-page: 937 year: 2006 ident: B78 article-title: A Study of Particle Swarm Optimization Particle Trajectories publication-title: Inf. Sci. doi: 10.1016/j.ins.2005.02.003 – volume: 12 start-page: 1180 year: 2012 ident: B82 article-title: Firefly Algorithm for Solving Non-convex Economic Dispatch Problems with Valve Loading Effect publication-title: Appl. soft Comput. doi: 10.1016/j.asoc.2011.09.017 – start-page: 38 year: 2016 ident: B35 article-title: Optimal Power Flow Problem Considering the Cost, Loss, and Emission by Multi-Objective Electromagnetism-like Algorithm publication-title: IEEE doi: 10.1109/ctpp.2016.7482931 – volume: 9 start-page: 69985 year: 2021 ident: B49 article-title: Optimal Power Flow Solution Using Levy Spiral Flight Equilibrium Optimizer with Incorporating CUPFC publication-title: IEEE Access doi: 10.1109/access.2021.3078115 – volume: 8 start-page: 880 year: 2012 ident: B85 article-title: Quantum-inspired Particle Swarm Optimization for Power System Operations Considering Wind Power Uncertainty and Carbon Tax in Australia publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/tii.2012.2210431 – volume-title: ‘Firefly Algorithm, Lévy Distributions and Global Optimization’, ident: B83 – volume: 111 start-page: 253 year: 2016 ident: B41 article-title: Optimal Scheduling for Distributed Hybrid System with Pumped Hydro Storage publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.12.081 – volume: 64 start-page: 172 year: 2017 ident: B69 article-title: Optimization of Modular Granular Neural Networks Using a Firefly Algorithm for Human Recognition publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.06.007 – volume: 68 start-page: 81 year: 2015 ident: B79 article-title: Optimal Power Flow by BAT Search Algorithm for Generation Reallocation with Unified Power Flow Controller publication-title: Int. J. Electr. Power & Energy Syst. doi: 10.1016/j.ijepes.2014.12.057 – volume: 34 start-page: 79 year: 2006 ident: B56 article-title: Optimal Power Flow by Improved Evolutionary Programming publication-title: Electr. Power Components Syst. doi: 10.1080/15325000691001458 – volume: 49 start-page: 3036 year: 2008 ident: B70 article-title: Modified Differential Evolution Algorithm for Optimal Power Flow with Non-smooth Cost Functions publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2008.06.014 – volume: 5 start-page: 989 ident: B54 article-title: Modified Honey Bee Mating Optimisation to Solve Dynamic Optimal Power Flow Considering Generator Constraints publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2011.0055 – volume: 25 start-page: 4027 year: 2021 ident: B36 article-title: An Improved Version of Salp Swarm Algorithm for Solving Optimal Power Flow Problem publication-title: Soft Comput. doi: 10.1007/s00500-020-05431-4 – volume: 38 start-page: 1012 year: 2016 ident: B11 article-title: Adaptive Group Search Optimization Algorithm for Multi-Objective Optimal Power Flow Problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.057 – volume: 65 start-page: 375 ident: B25 article-title: An Improved Teaching-Learning-Based Optimization Algorithm Using Lévy Mutation Strategy for Non-Smooth Optimal Power Flow publication-title: Int. J. Electr. Power & Energy Syst. doi: 10.1016/j.ijepes.2014.10.027 – volume: 12 start-page: 9499 year: 2021 ident: B5 article-title: An Enhanced Moth-Swarm Algorithm for Efficient Energy Management Based Multi Dimensions OPF Problem publication-title: J. Ambient. Intell. Hum. Comput. doi: 10.1007/s12652-020-02692-7 – volume: 42 start-page: 119 year: 2016 ident: B8 article-title: Optimal Power Flow Using an Improved Colliding Bodies Optimization Algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.01.041 – volume: 15 start-page: 4 year: 2010 ident: B12 article-title: Differential Evolution: A Survey of the State-Of-The-Art publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2059031 – volume: 2 start-page: 78 ident: B84 article-title: Firefly Algorithm, Stochastic Test Functions and Design Optimisation publication-title: Int. J. bio-inspired Comput. doi: 10.1504/ijbic.2010.032124 – volume: 7 start-page: 89581 year: 2019 ident: B21 article-title: Optimal Power Flow of a Power System Incorporating Stochastic Wind Power Based on Modified Moth Swarm Algorithm publication-title: IEEE Access doi: 10.1109/access.2019.2927193 – start-page: 830 year: 2019 ident: B18 article-title: Moth Swarm Algorithm Based Approach for the ACOPF Considering Wind and Tidal Energy – start-page: 275 volume-title: Advances in Smart Grid Technology year: 2021 ident: B15 article-title: Delicate Flower Pollination Algorithm for Optimal Power Flow doi: 10.1007/978-981-15-7241-8_20 – volume: 9 start-page: 84576 year: 2021 ident: B31 article-title: Optimal Power Flow Problem Solution through a Matheuristic Approach publication-title: IEEE Access doi: 10.1109/access.2021.3087626 – volume: 36 start-page: 6420 ident: B53 article-title: A Modified Shuffle Frog Leaping Algorithm for Multi-Objective Optimal Power Flow publication-title: Energy doi: 10.1016/j.energy.2011.09.027 – volume: 32 start-page: 507 year: 2010 ident: B46 article-title: Optimal Power Flow for Large-Scale Power System with Shunt FACTS Using Efficient Parallel GA publication-title: Int. J. Electr. Power & Energy Syst. doi: 10.1016/j.ijepes.2009.09.013 – start-page: 1 year: 2011 ident: B47 article-title: Security Constrained Economic Dispatch Considering Wind Energy Conversion Systems – volume: 73 start-page: 393 year: 2015 ident: B63 article-title: Optimal Power Flow for a Deregulated Power System Using Adaptive Real Coded Biogeography-Based Optimization publication-title: Int. J. Electr. Power & Energy Syst. doi: 10.1016/j.ijepes.2015.05.011 – volume: 81 start-page: 64 year: 2016 ident: B9 article-title: Optimal Power Flow with Emission and Non-smooth Cost Functions Using Backtracking Search Optimization Algorithm publication-title: Int. J. Electr. Power & Energy Syst. doi: 10.1016/j.ijepes.2016.02.004 – volume: 43 start-page: 1548 year: 2015 ident: B19 article-title: Single and Multi-Objective Optimal Power Flow Using Grey Wolf Optimizer and Differential Evolution Algorithms publication-title: Electr. Power Components Syst. doi: 10.1080/15325008.2015.1041625 – volume: 29 start-page: 54 ident: B23 article-title: A Novel Hybrid Algorithm of Imperialist Competitive Algorithm and Teaching Learning Algorithm for Optimal Power Flow Problem with Non-smooth Cost Functions publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.11.003 – volume: 54 start-page: 198 ident: B64 article-title: Faster Evolutionary Algorithm Based Optimal Power Flow Using Incremental Variables publication-title: Int. J. Electr. Power & Energy Syst. doi: 10.1016/j.ijepes.2013.07.019 – volume: 78 start-page: 276 ident: B24 article-title: Multi-objective Optimal Power Flow Considering the Cost, Emission, Voltage Deviation and Power Losses Using Multi-Objective Modified Imperialist Competitive Algorithm publication-title: Energy doi: 10.1016/j.energy.2014.10.007 – volume: 98 start-page: 145 year: 2016 ident: B27 article-title: A New Hybrid Algorithm with Genetic-Teaching Learning Optimization (G-TLBO) Technique for Optimizing of Power Flow in Wind-Thermal Power Systems publication-title: Electr. Eng. doi: 10.1007/s00202-015-0357-y – volume: 198 start-page: 117314 year: 2020 ident: B44 article-title: Optimal Power Flow by Means of Improved Adaptive Differential Evolution publication-title: Energy doi: 10.1016/j.energy.2020.117314 – volume: 9 start-page: 74600 year: 2021 ident: B76 article-title: Multi-regional Optimal Power Flow Using Marine Predators Algorithm Considering Load and Generation Variability publication-title: IEEE Access doi: 10.1109/access.2021.3081374 – volume: 114 start-page: 108045 year: 2022 ident: B43 article-title: Multi-objective Optimal Power Flow with Stochastic Wind and Solar Power publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108045 – volume: 2 start-page: 100031 year: 2022 ident: B34 article-title: A New Swarm Intelligence Optimization Approach to Solve Power Flow Optimization Problem Incorporating Conflicting and Fuel Cost Based Objective Functions’ publication-title: e-Prime-Advances Electr. Eng. Electron. Energy doi: 10.1016/j.prime.2022.100031 – volume: 122 start-page: 1 year: 2019 ident: B33 article-title: Discover Opinion Leader in Online Social Network Using Firefly Algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.043 – volume: 141 start-page: 112968 year: 2020 ident: B42 article-title: Combined Fuzzy Clustering and Firefly Algorithm for Privacy Preserving in Social Networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112968 – volume: 36 start-page: 6605 year: 2019 ident: B68 article-title: Multi-Objective Coordination of Local and Centralized Volt/Var Control with Optimal Switch and Distributed Generations Placement publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/jifs-18631 – volume: 6 start-page: 233 year: 2011 ident: B73 article-title: Optimal Power Flow Solution Incorporating Wind Power publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2011.2162896 – volume: 5 start-page: 123 year: 2012 ident: B80 article-title: A Modified Firefly Algorithm for UCAV Path Planning publication-title: Int. J. Hybrid Inf. Technol. doi: 10.14257/ijhit.2012.5.3.11 – volume: 21 start-page: 740 year: 2011 ident: B87 article-title: Optimal Wind-Thermal Coordination Dispatch Based on Risk Reserve Constraints publication-title: Euro. Trans. Electr. Power doi: 10.1002/etep.474 – volume: 7 start-page: 763 year: 2013 ident: B52 article-title: Reserve Constrained Dynamic Environmental/Economic Dispatch: A New Multiobjective Self-Adaptive Learning Bat Algorithm publication-title: IEEE Syst. J. doi: 10.1109/jsyst.2012.2225732 – start-page: 1 year: 2021 ident: B28 article-title: Solution of Optimal Power Flow Problem Using Sine-Cosine Mutation Based Modified Jaya Algorithm: a Case Study publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. doi: 10.1080/15567036.2021.1957043 – volume: 178 start-page: 106018 year: 2020 ident: B13 article-title: Power Flow Based Hydro-Thermal-Wind Scheduling of Hybrid Power System Using Sine Cosine Algorithm publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2019.106018 – volume: 16 start-page: 1891 year: 2021 ident: B60 article-title: Solving Optimal Power Flow Problems Using Adaptive Quasi-Oppositional Differential Migrated Biogeography-Based Optimization publication-title: J. Electr. Eng. Technol. doi: 10.1007/s42835-021-00739-z – start-page: 1 year: 2022 ident: B29 article-title: Developing Chaotic Bonobo Optimizer for Optimal Power Flow Analysis Considering Stochastic Renewable Energy Resources publication-title: Int. J. Energy Res. doi: 10.1002/er.7928 |
| SSID | ssj0001325410 |
| Score | 2.3184402 |
| Snippet | This article proposes a Gaussian bare-bones Levy-flight firefly algorithm (GBLFA) and its modified version named MGBLFA for optimizing the various kinds of the... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| SubjectTerms | Gaussian bare-bones levy-flight firefly algorithm (GBLFA) modified GBLFA nonsmooth cost functions OPF problem wind and solar energy systems |
| Title | Optimal Power Flow of Renewable-Integrated Power Systems Using a Gaussian Bare-Bones Levy-Flight Firefly Algorithm |
| URI | https://doaj.org/article/7e3d23680391494ba14e451d5e2178e0 |
| Volume | 10 |
| WOSCitedRecordID | wos000808249100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-598X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325410 issn: 2296-598X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-598X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325410 issn: 2296-598X databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUq1AMcEC2toKXIh56QDPFH7Pi4WxHaQ2FVgbS3KP4IIGV30e4C4sJvZ8YJsCd64ZJDNEmsmbE9z7HfI-SnCLqQmjtmgjRMaemZ1cIyrwJvrMxE8HUSmzCnp8V4bEcrUl-4J6yjB-4cd2SiDELqApnMlVWu5iqqnIc8QjFdxITWoepZAVNpdUUC8OH9b0xAYfaogXBcAh4U4tBCL02UzK8T0Qpff5pYyi2y2VeEdNC15BP5EKefycYKT-A2mZ9Bx56A0Qg1zWjZzu7prKH_YJy6x6NP7M8z6UPoTXoicpp2BNCantS3CzwuSVHfgA2RoJ-iXDErW0TntISRr2kf6KC9nM2vl1eTL-SiPD7_9Zv1YgnMy1wtmQfgFZBeDwoCERvlnMi8sT447ngU0XnriiwGk4e8cFFFABpB-wARVJksnPxK1qbw9R1Cc608F7UtBHdKGO2ghMit8KbOeCMM3yXZs-cq3zOJo6BFWwGiQGdXydkVOrvqnL1LDl4eueloNN4yHmI4XgyRATvdgLyo-ryo_pcX397jJd_JOrYLdwsIvUfWlvPb-IN89HfL68V8P6UcXP8-Hj8BzWzaew |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Power+Flow+of+Renewable-Integrated+Power+Systems+Using+a+Gaussian+Bare-Bones+Levy-Flight+Firefly+Algorithm&rft.jtitle=Frontiers+in+energy+research&rft.au=Ali+S.+Alghamdi&rft.date=2022-05-26&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-598X&rft.volume=10&rft_id=info:doi/10.3389%2Ffenrg.2022.921936&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7e3d23680391494ba14e451d5e2178e0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |