Enhancing Spindle Precision: Thermal Error Modeling with Multi-parameter Optimization and Energy Consumption Data

Thermal error prediction models for key components in precision computer numerical control machine tools often fail to maintain high accuracy under varying working conditions, significantly impairing the effectiveness of error compensation. Furthermore, existing models frequently disregard correlati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of precision engineering and manufacturing Ročník 26; číslo 8; s. 1837 - 1853
Hlavní autoři: Zhou, Bo, Chen, Guo-hua, Mao, Jie, Li, Bo, Fu, Zhen-xin, Li, Tao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Seoul Korean Society for Precision Engineering 01.08.2025
Springer Nature B.V
Témata:
ISSN:2234-7593, 2005-4602
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Thermal error prediction models for key components in precision computer numerical control machine tools often fail to maintain high accuracy under varying working conditions, significantly impairing the effectiveness of error compensation. Furthermore, existing models frequently disregard correlations between thermal errors and non-temperature-related variables. Therefore, an electric spindle thermal error modeling method based on energy consumption data and a multi-parameter optimization algorithm is proposed in this study. Based on energy consumption data(current, power), monitoring of eight key temperature points, and real-time thermal error data, a network model integrating the Bidirectional Inception-based Temporal Convolutional Network, the Bidirectional Gated Recurrent Unit (BIGRU), and the multi-head attention mechanism is established. The model's hyper-parameters and kernel density are dynamically optimized through the Modified Crested Porcupine Optimization algorithm and the Adaptive Kernel Density Estimation method. Through practical verification under variable working conditions (covering different rotational speeds), compared with the BIGRU model, the coefficient of determination (R 2 ) of the proposed model is increased by 25%. Meanwhile, the Prediction Interval at 95% confidence level with Asymmetric Width of the proposed model is 23%, highlighting the superiority of this modeling method in terms of robustness and generalization ability.
AbstractList Thermal error prediction models for key components in precision computer numerical control machine tools often fail to maintain high accuracy under varying working conditions, significantly impairing the effectiveness of error compensation. Furthermore, existing models frequently disregard correlations between thermal errors and non-temperature-related variables. Therefore, an electric spindle thermal error modeling method based on energy consumption data and a multi-parameter optimization algorithm is proposed in this study. Based on energy consumption data(current, power), monitoring of eight key temperature points, and real-time thermal error data, a network model integrating the Bidirectional Inception-based Temporal Convolutional Network, the Bidirectional Gated Recurrent Unit (BIGRU), and the multi-head attention mechanism is established. The model's hyper-parameters and kernel density are dynamically optimized through the Modified Crested Porcupine Optimization algorithm and the Adaptive Kernel Density Estimation method. Through practical verification under variable working conditions (covering different rotational speeds), compared with the BIGRU model, the coefficient of determination (R2) of the proposed model is increased by 25%. Meanwhile, the Prediction Interval at 95% confidence level with Asymmetric Width of the proposed model is 23%, highlighting the superiority of this modeling method in terms of robustness and generalization ability.
Thermal error prediction models for key components in precision computer numerical control machine tools often fail to maintain high accuracy under varying working conditions, significantly impairing the effectiveness of error compensation. Furthermore, existing models frequently disregard correlations between thermal errors and non-temperature-related variables. Therefore, an electric spindle thermal error modeling method based on energy consumption data and a multi-parameter optimization algorithm is proposed in this study. Based on energy consumption data(current, power), monitoring of eight key temperature points, and real-time thermal error data, a network model integrating the Bidirectional Inception-based Temporal Convolutional Network, the Bidirectional Gated Recurrent Unit (BIGRU), and the multi-head attention mechanism is established. The model's hyper-parameters and kernel density are dynamically optimized through the Modified Crested Porcupine Optimization algorithm and the Adaptive Kernel Density Estimation method. Through practical verification under variable working conditions (covering different rotational speeds), compared with the BIGRU model, the coefficient of determination (R 2 ) of the proposed model is increased by 25%. Meanwhile, the Prediction Interval at 95% confidence level with Asymmetric Width of the proposed model is 23%, highlighting the superiority of this modeling method in terms of robustness and generalization ability.
Author Li, Bo
Li, Tao
Mao, Jie
Zhou, Bo
Chen, Guo-hua
Fu, Zhen-xin
Author_xml – sequence: 1
  givenname: Bo
  surname: Zhou
  fullname: Zhou, Bo
  organization: School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang Municipal Key Laboratory of Precision Manufacturing and Special Processing Technology
– sequence: 2
  givenname: Guo-hua
  surname: Chen
  fullname: Chen, Guo-hua
  organization: School of Mechanical Engineering, Hubei University of Arts and Science, XY-HUST Advanced Manufacturing Engineering Research Institute, Xiangyang Municipal Key Laboratory of Precision Manufacturing and Special Processing Technology
– sequence: 3
  givenname: Jie
  surname: Mao
  fullname: Mao, Jie
  organization: School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang Municipal Key Laboratory of Precision Manufacturing and Special Processing Technology
– sequence: 4
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  organization: School of Mechanical Engineering, Hubei University of Arts and Science, XY-HUST Advanced Manufacturing Engineering Research Institute
– sequence: 5
  givenname: Zhen-xin
  surname: Fu
  fullname: Fu, Zhen-xin
  organization: School of Mechanical Engineering, Hubei University of Arts and Science
– sequence: 6
  givenname: Tao
  orcidid: 0009-0006-1883-9973
  surname: Li
  fullname: Li, Tao
  email: 330966532@qq.com
  organization: School of Mechanical and Automotive Engineering, Science and Technology College of Hubei University of Arts and Science
BookMark eNp9kMtKAzEUhoNU8NYXcBVwHc11Lu6k1gtYKljXIZPJtJGZzDRJEX1601YQXHRxOIfD_53LfwZGrncGgEuCrwnG-U0gVHCCMBUIE8owKo_AKcVYIJ5hOko1ZRzlomQnYByCrTAjNGOiyE7BeupWymnrlvBtsK5uDXz1Rttge3cLFyvjO9XCqfe9h7O-Nu1W-WnjCs42bbRoUF51JhoP50O0nf1WMZFQuRpOnfHLLzjpXdh0w659r6K6AMeNaoMZ_-Zz8P4wXUye0Mv88Xly94I0EzyiqqkqLVimacNqguuCYF6lKNOHBpec8LqhXBR1Ro0mGSEFa0qV5zjXIssqzc7B1X7u4Pv1xoQoP_qNd2mlZFSInHHOWVIVe5X2fQjeNFLbuPshemVbSbDceiz3Hsvksdx5LMuE0n_o4G2n_NdhiO2hkMRuafzfVQeoH91BkO4
CitedBy_id crossref_primary_10_1007_s12541_025_01308_4
crossref_primary_10_1007_s12541_025_01334_2
Cites_doi 10.1007/s40684-022-00449-5
10.1007/s00170-017-1096-1
10.1016/j.csite.2022.102432
10.1007/s40684-024-00642-8
10.1016/j.jmapro.2024.04.030
10.1007/s40430-020-02514-z
10.1007/s12541-024-01011-w
10.1007/s12541-024-01106-4
10.1007/s00170-024-13560-5
10.1016/j.asoc.2021.107094
10.1007/s10845-020-01733-4
10.1016/j.csite.2022.102504
10.1007/s10489-021-03080-0
10.1016/j.jmsy.2017.04.011
10.1016/j.measurement.2024.114183
10.1016/j.precisioneng.2022.05.008
10.1016/j.chaos.2022.112972
10.1016/j.cirp.2012.05.008
10.1016/j.jmapro.2022.11.015
10.1504/IJMMS.2019.097852
10.1016/j.advwatres.2020.103821
10.1016/j.precisioneng.2020.06.010
10.1016/j.knosys.2021.107704
10.1016/j.knosys.2023.111257
10.3115/v1/D14-1179
10.1007/s12541-024-01207-0
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Korean Society for Precision Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Korean Society for Precision Engineering 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Korean Society for Precision Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Korean Society for Precision Engineering 2025.
DBID AAYXX
CITATION
DOI 10.1007/s12541-025-01230-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4602
EndPage 1853
ExternalDocumentID 10_1007_s12541_025_01230_9
GrantInformation_xml – fundername: Hubei Provincial Natural Science Foundation Joint Fund for Innovation and Development Project (No.: 2022CFD081)
  grantid: 2022CFD081
– fundername: Guided Project of Scientific Research Plan of Hubei Provincial Department of Education for 2023 (No.: B2023480)
  grantid: B2023480
– fundername: Major Science and Technology Projects of Hubei Province (No.: 2021AAA003)
  grantid: 2021AAA003
– fundername: XiangYang Science and Technology Project in 2022 (NO.: 2022ABH006436)
  grantid: 2022ABH006436
GroupedDBID 06D
0R~
0VY
203
29J
29~
2JY
2KG
2VQ
30V
4.4
406
408
5GY
5VS
67Z
8TC
96X
9ZL
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
BA0
BGNMA
CAG
COF
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
GW5
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TDB
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~A9
AAYXX
ABJCF
AFFHD
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c354t-bfbbc536c2f3d10d8104b1049123e09414df2458d62ec161183f9a7707c566bc3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001432604200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2234-7593
IngestDate Wed Oct 01 06:59:34 EDT 2025
Tue Nov 18 21:24:05 EST 2025
Sat Nov 29 07:42:46 EST 2025
Fri Jul 25 01:21:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords MBSCPO
Energy consumption data
Electric spindle
Thermal error modeling method
Prediction interval
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-bfbbc536c2f3d10d8104b1049123e09414df2458d62ec161183f9a7707c566bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-1883-9973
PQID 3255734443
PQPubID 2043903
PageCount 17
ParticipantIDs proquest_journals_3255734443
crossref_citationtrail_10_1007_s12541_025_01230_9
crossref_primary_10_1007_s12541_025_01230_9
springer_journals_10_1007_s12541_025_01230_9
PublicationCentury 2000
PublicationDate 20250800
2025-08-00
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 8
  year: 2025
  text: 20250800
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle International journal of precision engineering and manufacturing
PublicationTitleAbbrev Int. J. Precis. Eng. Manuf
PublicationYear 2025
Publisher Korean Society for Precision Engineering
Springer Nature B.V
Publisher_xml – name: Korean Society for Precision Engineering
– name: Springer Nature B.V
References J Mayr (1230_CR6) 2012; 61
S Lahmiri (1230_CR12) 2023; 167
G Fu (1230_CR22) 2024; 226
HG Cho (1230_CR2) 2024
W Li (1230_CR16) 2022; 84
J Liu (1230_CR23) 2021; 102
J Liu (1230_CR19) 2022; 237
X Wei (1230_CR3) 2022; 77
M Abdel-Basset (1230_CR26) 2024; 284
A Świć (1230_CR10) 2021; 32
Z Li (1230_CR4) 2022; 39
Y Zheng (1230_CR1) 2023; 44
V Selvaraj (1230_CR15) 2023; 10
M Wang (1230_CR27) 2022; 52
Q Qian (1230_CR24) 2024; 120
X Thiem (1230_CR9) 2019; 12
Y Cheng (1230_CR13) 2024; 132
F Tan (1230_CR18) 2018; 94
A Ullah (1230_CR8) 2024
GW Gu (1230_CR7) 2024
J Carreau (1230_CR14) 2021; 147
K Cho (1230_CR25) 2014
HT Yue (1230_CR20) 2020; 42
M Mareš (1230_CR5) 2020; 66
M ALAtaiqeh (1230_CR11) 2025
P Blaser (1230_CR17) 2017; 44
Y Dai (1230_CR21) 2022; 40
References_xml – volume: 10
  start-page: 59
  issue: 1
  year: 2023
  ident: 1230_CR15
  publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology
  doi: 10.1007/s40684-022-00449-5
– volume: 94
  start-page: 2861
  year: 2018
  ident: 1230_CR18
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-017-1096-1
– volume: 44
  start-page: 33
  issue: 5
  year: 2023
  ident: 1230_CR1
  publication-title: Chinese Journal of Scientific Instrument
– volume: 39
  start-page: 102432
  year: 2022
  ident: 1230_CR4
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2022.102432
– year: 2024
  ident: 1230_CR8
  publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology
  doi: 10.1007/s40684-024-00642-8
– volume: 120
  start-page: 272
  year: 2024
  ident: 1230_CR24
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2024.04.030
– volume: 42
  start-page: 1
  year: 2020
  ident: 1230_CR20
  publication-title: Journal of the Brazilian Society of Mechanical Sciences and Engineering
  doi: 10.1007/s40430-020-02514-z
– year: 2024
  ident: 1230_CR7
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-024-01011-w
– year: 2024
  ident: 1230_CR2
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-024-01106-4
– volume: 132
  start-page: 3333
  issue: 7
  year: 2024
  ident: 1230_CR13
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-024-13560-5
– volume: 102
  start-page: 107094
  year: 2021
  ident: 1230_CR23
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107094
– volume: 32
  start-page: 1939
  issue: 7
  year: 2021
  ident: 1230_CR10
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01733-4
– volume: 40
  start-page: 102504
  year: 2022
  ident: 1230_CR21
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2022.102504
– volume: 52
  start-page: 10999
  issue: 10
  year: 2022
  ident: 1230_CR27
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-021-03080-0
– volume: 44
  start-page: 302
  year: 2017
  ident: 1230_CR17
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2017.04.011
– volume: 226
  start-page: 114183
  year: 2024
  ident: 1230_CR22
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.114183
– volume: 77
  start-page: 65
  year: 2022
  ident: 1230_CR3
  publication-title: Precision Engineering
  doi: 10.1016/j.precisioneng.2022.05.008
– volume: 167
  start-page: 1
  issue: 112972
  year: 2023
  ident: 1230_CR12
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2022.112972
– volume: 61
  start-page: 771
  issue: 2
  year: 2012
  ident: 1230_CR6
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2012.05.008
– volume: 84
  start-page: 1362
  year: 2022
  ident: 1230_CR16
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2022.11.015
– volume: 12
  start-page: 49
  issue: 1
  year: 2019
  ident: 1230_CR9
  publication-title: International Journal of Mechatronics and Manufacturing Systems
  doi: 10.1504/IJMMS.2019.097852
– volume: 147
  start-page: 103821
  year: 2021
  ident: 1230_CR14
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2020.103821
– volume: 66
  start-page: 21
  year: 2020
  ident: 1230_CR5
  publication-title: Precision Engineering
  doi: 10.1016/j.precisioneng.2020.06.010
– volume: 237
  start-page: 107704
  year: 2022
  ident: 1230_CR19
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107704
– volume: 284
  start-page: 111257
  year: 2024
  ident: 1230_CR26
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2023.111257
– year: 2014
  ident: 1230_CR25
  publication-title: Computer Science
  doi: 10.3115/v1/D14-1179
– year: 2025
  ident: 1230_CR11
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-024-01207-0
SSID ssib031263586
ssib036278122
ssib053376809
ssj0068040
Score 2.3863459
Snippet Thermal error prediction models for key components in precision computer numerical control machine tools often fail to maintain high accuracy under varying...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1837
SubjectTerms Accuracy
Adaptive algorithms
Algorithms
Boundary conditions
Confidence intervals
Density
Design
Energy consumption
Engineering
Error compensation
Experiments
Heat
Industrial and Production Engineering
Machine tools
Materials Science
Neural networks
Numerical controls
Optimization
Parameter modification
Prediction models
Real time
Regular Paper
Sensors
Software
Spindles
Working conditions
Title Enhancing Spindle Precision: Thermal Error Modeling with Multi-parameter Optimization and Energy Consumption Data
URI https://link.springer.com/article/10.1007/s12541-025-01230-9
https://www.proquest.com/docview/3255734443
Volume 26
WOSCitedRecordID wos001432604200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Online Journals
  customDbUrl:
  eissn: 2005-4602
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068040
  issn: 2234-7593
  databaseCode: RSV
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejBb3E6JQdvGmg-urTeZG54kDmcjt1Kk6YquG5207_fl6y1KirooVBo2pKX1_fRvN_vIXSsmKcTyhKSUh0QYSDdCRVtEqE9EftMBcLRLg6uZLcbDIdhrwCFTctq93JL0lnqCuwGuQykvswWm0HgTMJFtATuLrCf401_UGoRp5ZfpSJFAwstwYu9O3GIbyDEtqRVc3sN5w42CX5SEOmHvIDWfP_Oz-6rikm_bKM679RZ_9-8NtBaEY3i87n6bKIFk22h1Q8chdvouZ09WE6O7B73J4-WkgH38qIxzxkGLQPL_oTbeT7OsW2sZuHt2P7dxQ7bSyy3-MjW3OBrsE6jAvaJ4yzBbYc7xC2HAnWmC1_Es3gH3XXat61LUvRpIJr7YkZUqpT2eVOzlCfUSwJI8RQcIUzHQPpIRZIy4QdJkxkNESZYkTSMpfSkhmBSab6Latk4M3sIe0ZSagylMYSSMuGhpZ9TPjhysDvMM3VES_FHuiAxt700nqKKftmKMwJxRk6cUVhHJ-_3TOYUHr-ObpSrGhWf8zTikHhJLoTgdXRarmJ1-een7f9t-AFaYU4RbIFhA9Vm-Ys5RMv6dfY4zY-cmr8BcVzvvg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BggQcoC0gtjzqAzdqKX5knfSGlkUgtlsEFHGLYscBpN0A2YXfz9ibkLYqSHCIFClOIo8n84jn-wZgV_PAZIxnNGcmotJiuhNr1qHSBDINuY6kp1287KvBILq6ik8rUNi4rnavtyS9pW7AbpjLYOrLXbEZBs40noU5iR7LFfKdnV_WWiSY41dpSNHQQiv0Yi9OHOMbDLEdadXUXuO5h02in5RUhbGooDX_f-ff7quJSf_ZRvXe6XDlY_P6BMtVNEr2p-rzGWZs8QWW_uAoXIWHXnHjODmKa3J-f-soGchpWTXm-UFQy9CyD0mvLO9K4hqrOXg7cX93icf2UsctPnI1N-QXWqdRBfskaZGRnscdkq5HgXrTRQ7SSboGvw97F90jWvVpoEaEckJ1rrUJRcfwXGQsyCJM8TQeMU7HYvrIZJZzGUZZh1uDESZakTxOlQqUwWBSG7EOreKusBtAAqsYs5axFENJlYnY0c_pEB052h0e2DawWvyJqUjMXS-NYdLQLztxJijOxIsziduw93LP_ZTC483RW_WqJtXnPE4EJl5KSClFG77Xq9hcfv1pX983_BssHF387Cf948HJJixyrxSu2HALWpPy0W7DvHma3I7LHa_yz7Uc8qI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ8gGKMP4mc4BN0H33RD96O3LW8G7gKRnJeghLem-1EkgXKU6t_vzF5L0aiJ8aFJk27b7O505jfd_f0G4K2VifNCel4Jl3EdMN3JrRhz7RJdptJmOsounhyZ2Sw7Pc3nd1j8cbd7vyS55DSQSlPd7ix8tTMQ3zCvwTRY0sYzBNE8vwdrmooGUb5-fNJblBKktTIIpKG3NhjRbgM6Yh2E2yRgtfTdeB4plBgzNTdprjqaze_f-XMoG_DpL0uqMVJN1_-_j0_gcYdS2YelWT2FlVA_g0d3tAufw_Wk_kpaHfUZO16ck1QDmzddwZ5dhtaHHv-CTZrmqmFUcI1o74z--rLI-eWkOX5Je3HYJ_Ralx0dlJW1Z5PIR2R7kR0aXRrbL9vyBXyZTj7vHfCufgN3KtUtt5W1LlVjJyvlReIzTP0sHjl2J2BaKbSvpE4zP5bBIfJE71LlpTGJcQgyrVMvYbW-qsMGsCQYIUIQokSIabzKSZbOphjg0R_JJIxA9FNRuE7cnGpsXBSDLDMNZ4HDWcThLPIRvLu9Z7GU9vhr661-hovuM78pFCZkRmmt1Qje9zM6XP7z0zb_rfkbeDDfnxZHh7OPr-ChjDZBexC3YLVtvoVtuO--t-c3zeto_T8AaDD7hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Spindle+Precision%3A+Thermal+Error+Modeling+with+Multi-parameter+Optimization+and+Energy+Consumption+Data&rft.jtitle=International+journal+of+precision+engineering+and+manufacturing&rft.au=Zhou%2C+Bo&rft.au=Chen%2C+Guo-hua&rft.au=Mao%2C+Jie&rft.au=Li%2C+Bo&rft.date=2025-08-01&rft.pub=Korean+Society+for+Precision+Engineering&rft.issn=2234-7593&rft.eissn=2005-4602&rft.volume=26&rft.issue=8&rft.spage=1837&rft.epage=1853&rft_id=info:doi/10.1007%2Fs12541-025-01230-9&rft.externalDocID=10_1007_s12541_025_01230_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-7593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-7593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-7593&client=summon