Enhancing Spindle Precision: Thermal Error Modeling with Multi-parameter Optimization and Energy Consumption Data
Thermal error prediction models for key components in precision computer numerical control machine tools often fail to maintain high accuracy under varying working conditions, significantly impairing the effectiveness of error compensation. Furthermore, existing models frequently disregard correlati...
Uloženo v:
| Vydáno v: | International journal of precision engineering and manufacturing Ročník 26; číslo 8; s. 1837 - 1853 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Seoul
Korean Society for Precision Engineering
01.08.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 2234-7593, 2005-4602 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Thermal error prediction models for key components in precision computer numerical control machine tools often fail to maintain high accuracy under varying working conditions, significantly impairing the effectiveness of error compensation. Furthermore, existing models frequently disregard correlations between thermal errors and non-temperature-related variables. Therefore, an electric spindle thermal error modeling method based on energy consumption data and a multi-parameter optimization algorithm is proposed in this study. Based on energy consumption data(current, power), monitoring of eight key temperature points, and real-time thermal error data, a network model integrating the Bidirectional Inception-based Temporal Convolutional Network, the Bidirectional Gated Recurrent Unit (BIGRU), and the multi-head attention mechanism is established. The model's hyper-parameters and kernel density are dynamically optimized through the Modified Crested Porcupine Optimization algorithm and the Adaptive Kernel Density Estimation method. Through practical verification under variable working conditions (covering different rotational speeds), compared with the BIGRU model, the coefficient of determination (R
2
) of the proposed model is increased by 25%. Meanwhile, the Prediction Interval at 95% confidence level with Asymmetric Width of the proposed model is 23%, highlighting the superiority of this modeling method in terms of robustness and generalization ability. |
|---|---|
| AbstractList | Thermal error prediction models for key components in precision computer numerical control machine tools often fail to maintain high accuracy under varying working conditions, significantly impairing the effectiveness of error compensation. Furthermore, existing models frequently disregard correlations between thermal errors and non-temperature-related variables. Therefore, an electric spindle thermal error modeling method based on energy consumption data and a multi-parameter optimization algorithm is proposed in this study. Based on energy consumption data(current, power), monitoring of eight key temperature points, and real-time thermal error data, a network model integrating the Bidirectional Inception-based Temporal Convolutional Network, the Bidirectional Gated Recurrent Unit (BIGRU), and the multi-head attention mechanism is established. The model's hyper-parameters and kernel density are dynamically optimized through the Modified Crested Porcupine Optimization algorithm and the Adaptive Kernel Density Estimation method. Through practical verification under variable working conditions (covering different rotational speeds), compared with the BIGRU model, the coefficient of determination (R2) of the proposed model is increased by 25%. Meanwhile, the Prediction Interval at 95% confidence level with Asymmetric Width of the proposed model is 23%, highlighting the superiority of this modeling method in terms of robustness and generalization ability. Thermal error prediction models for key components in precision computer numerical control machine tools often fail to maintain high accuracy under varying working conditions, significantly impairing the effectiveness of error compensation. Furthermore, existing models frequently disregard correlations between thermal errors and non-temperature-related variables. Therefore, an electric spindle thermal error modeling method based on energy consumption data and a multi-parameter optimization algorithm is proposed in this study. Based on energy consumption data(current, power), monitoring of eight key temperature points, and real-time thermal error data, a network model integrating the Bidirectional Inception-based Temporal Convolutional Network, the Bidirectional Gated Recurrent Unit (BIGRU), and the multi-head attention mechanism is established. The model's hyper-parameters and kernel density are dynamically optimized through the Modified Crested Porcupine Optimization algorithm and the Adaptive Kernel Density Estimation method. Through practical verification under variable working conditions (covering different rotational speeds), compared with the BIGRU model, the coefficient of determination (R 2 ) of the proposed model is increased by 25%. Meanwhile, the Prediction Interval at 95% confidence level with Asymmetric Width of the proposed model is 23%, highlighting the superiority of this modeling method in terms of robustness and generalization ability. |
| Author | Li, Bo Li, Tao Mao, Jie Zhou, Bo Chen, Guo-hua Fu, Zhen-xin |
| Author_xml | – sequence: 1 givenname: Bo surname: Zhou fullname: Zhou, Bo organization: School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang Municipal Key Laboratory of Precision Manufacturing and Special Processing Technology – sequence: 2 givenname: Guo-hua surname: Chen fullname: Chen, Guo-hua organization: School of Mechanical Engineering, Hubei University of Arts and Science, XY-HUST Advanced Manufacturing Engineering Research Institute, Xiangyang Municipal Key Laboratory of Precision Manufacturing and Special Processing Technology – sequence: 3 givenname: Jie surname: Mao fullname: Mao, Jie organization: School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang Municipal Key Laboratory of Precision Manufacturing and Special Processing Technology – sequence: 4 givenname: Bo surname: Li fullname: Li, Bo organization: School of Mechanical Engineering, Hubei University of Arts and Science, XY-HUST Advanced Manufacturing Engineering Research Institute – sequence: 5 givenname: Zhen-xin surname: Fu fullname: Fu, Zhen-xin organization: School of Mechanical Engineering, Hubei University of Arts and Science – sequence: 6 givenname: Tao orcidid: 0009-0006-1883-9973 surname: Li fullname: Li, Tao email: 330966532@qq.com organization: School of Mechanical and Automotive Engineering, Science and Technology College of Hubei University of Arts and Science |
| BookMark | eNp9kMtKAzEUhoNU8NYXcBVwHc11Lu6k1gtYKljXIZPJtJGZzDRJEX1601YQXHRxOIfD_53LfwZGrncGgEuCrwnG-U0gVHCCMBUIE8owKo_AKcVYIJ5hOko1ZRzlomQnYByCrTAjNGOiyE7BeupWymnrlvBtsK5uDXz1Rttge3cLFyvjO9XCqfe9h7O-Nu1W-WnjCs42bbRoUF51JhoP50O0nf1WMZFQuRpOnfHLLzjpXdh0w659r6K6AMeNaoMZ_-Zz8P4wXUye0Mv88Xly94I0EzyiqqkqLVimacNqguuCYF6lKNOHBpec8LqhXBR1Ro0mGSEFa0qV5zjXIssqzc7B1X7u4Pv1xoQoP_qNd2mlZFSInHHOWVIVe5X2fQjeNFLbuPshemVbSbDceiz3Hsvksdx5LMuE0n_o4G2n_NdhiO2hkMRuafzfVQeoH91BkO4 |
| CitedBy_id | crossref_primary_10_1007_s12541_025_01308_4 crossref_primary_10_1007_s12541_025_01334_2 |
| Cites_doi | 10.1007/s40684-022-00449-5 10.1007/s00170-017-1096-1 10.1016/j.csite.2022.102432 10.1007/s40684-024-00642-8 10.1016/j.jmapro.2024.04.030 10.1007/s40430-020-02514-z 10.1007/s12541-024-01011-w 10.1007/s12541-024-01106-4 10.1007/s00170-024-13560-5 10.1016/j.asoc.2021.107094 10.1007/s10845-020-01733-4 10.1016/j.csite.2022.102504 10.1007/s10489-021-03080-0 10.1016/j.jmsy.2017.04.011 10.1016/j.measurement.2024.114183 10.1016/j.precisioneng.2022.05.008 10.1016/j.chaos.2022.112972 10.1016/j.cirp.2012.05.008 10.1016/j.jmapro.2022.11.015 10.1504/IJMMS.2019.097852 10.1016/j.advwatres.2020.103821 10.1016/j.precisioneng.2020.06.010 10.1016/j.knosys.2021.107704 10.1016/j.knosys.2023.111257 10.3115/v1/D14-1179 10.1007/s12541-024-01207-0 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Korean Society for Precision Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Korean Society for Precision Engineering 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Korean Society for Precision Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Korean Society for Precision Engineering 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s12541-025-01230-9 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2005-4602 |
| EndPage | 1853 |
| ExternalDocumentID | 10_1007_s12541_025_01230_9 |
| GrantInformation_xml | – fundername: Hubei Provincial Natural Science Foundation Joint Fund for Innovation and Development Project (No.: 2022CFD081) grantid: 2022CFD081 – fundername: Guided Project of Scientific Research Plan of Hubei Provincial Department of Education for 2023 (No.: B2023480) grantid: B2023480 – fundername: Major Science and Technology Projects of Hubei Province (No.: 2021AAA003) grantid: 2021AAA003 – fundername: XiangYang Science and Technology Project in 2022 (NO.: 2022ABH006436) grantid: 2022ABH006436 |
| GroupedDBID | 06D 0R~ 0VY 203 29J 29~ 2JY 2KG 2VQ 30V 4.4 406 408 5GY 5VS 67Z 8TC 96X 9ZL AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN BA0 BGNMA CAG COF CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 GW5 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P2P P9P PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~A9 AAYXX ABJCF AFFHD AFKRA ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c354t-bfbbc536c2f3d10d8104b1049123e09414df2458d62ec161183f9a7707c566bc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001432604200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2234-7593 |
| IngestDate | Wed Oct 01 06:59:34 EDT 2025 Tue Nov 18 21:24:05 EST 2025 Sat Nov 29 07:42:46 EST 2025 Fri Jul 25 01:21:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | MBSCPO Energy consumption data Electric spindle Thermal error modeling method Prediction interval |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c354t-bfbbc536c2f3d10d8104b1049123e09414df2458d62ec161183f9a7707c566bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0006-1883-9973 |
| PQID | 3255734443 |
| PQPubID | 2043903 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3255734443 crossref_citationtrail_10_1007_s12541_025_01230_9 crossref_primary_10_1007_s12541_025_01230_9 springer_journals_10_1007_s12541_025_01230_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20250800 2025-08-00 20250801 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 8 year: 2025 text: 20250800 |
| PublicationDecade | 2020 |
| PublicationPlace | Seoul |
| PublicationPlace_xml | – name: Seoul – name: Heidelberg |
| PublicationTitle | International journal of precision engineering and manufacturing |
| PublicationTitleAbbrev | Int. J. Precis. Eng. Manuf |
| PublicationYear | 2025 |
| Publisher | Korean Society for Precision Engineering Springer Nature B.V |
| Publisher_xml | – name: Korean Society for Precision Engineering – name: Springer Nature B.V |
| References | J Mayr (1230_CR6) 2012; 61 S Lahmiri (1230_CR12) 2023; 167 G Fu (1230_CR22) 2024; 226 HG Cho (1230_CR2) 2024 W Li (1230_CR16) 2022; 84 J Liu (1230_CR23) 2021; 102 J Liu (1230_CR19) 2022; 237 X Wei (1230_CR3) 2022; 77 M Abdel-Basset (1230_CR26) 2024; 284 A Świć (1230_CR10) 2021; 32 Z Li (1230_CR4) 2022; 39 Y Zheng (1230_CR1) 2023; 44 V Selvaraj (1230_CR15) 2023; 10 M Wang (1230_CR27) 2022; 52 Q Qian (1230_CR24) 2024; 120 X Thiem (1230_CR9) 2019; 12 Y Cheng (1230_CR13) 2024; 132 F Tan (1230_CR18) 2018; 94 A Ullah (1230_CR8) 2024 GW Gu (1230_CR7) 2024 J Carreau (1230_CR14) 2021; 147 K Cho (1230_CR25) 2014 HT Yue (1230_CR20) 2020; 42 M Mareš (1230_CR5) 2020; 66 M ALAtaiqeh (1230_CR11) 2025 P Blaser (1230_CR17) 2017; 44 Y Dai (1230_CR21) 2022; 40 |
| References_xml | – volume: 10 start-page: 59 issue: 1 year: 2023 ident: 1230_CR15 publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology doi: 10.1007/s40684-022-00449-5 – volume: 94 start-page: 2861 year: 2018 ident: 1230_CR18 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-017-1096-1 – volume: 44 start-page: 33 issue: 5 year: 2023 ident: 1230_CR1 publication-title: Chinese Journal of Scientific Instrument – volume: 39 start-page: 102432 year: 2022 ident: 1230_CR4 publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2022.102432 – year: 2024 ident: 1230_CR8 publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology doi: 10.1007/s40684-024-00642-8 – volume: 120 start-page: 272 year: 2024 ident: 1230_CR24 publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2024.04.030 – volume: 42 start-page: 1 year: 2020 ident: 1230_CR20 publication-title: Journal of the Brazilian Society of Mechanical Sciences and Engineering doi: 10.1007/s40430-020-02514-z – year: 2024 ident: 1230_CR7 publication-title: International Journal of Precision Engineering and Manufacturing doi: 10.1007/s12541-024-01011-w – year: 2024 ident: 1230_CR2 publication-title: International Journal of Precision Engineering and Manufacturing doi: 10.1007/s12541-024-01106-4 – volume: 132 start-page: 3333 issue: 7 year: 2024 ident: 1230_CR13 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-024-13560-5 – volume: 102 start-page: 107094 year: 2021 ident: 1230_CR23 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107094 – volume: 32 start-page: 1939 issue: 7 year: 2021 ident: 1230_CR10 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01733-4 – volume: 40 start-page: 102504 year: 2022 ident: 1230_CR21 publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2022.102504 – volume: 52 start-page: 10999 issue: 10 year: 2022 ident: 1230_CR27 publication-title: Applied Intelligence doi: 10.1007/s10489-021-03080-0 – volume: 44 start-page: 302 year: 2017 ident: 1230_CR17 publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2017.04.011 – volume: 226 start-page: 114183 year: 2024 ident: 1230_CR22 publication-title: Measurement doi: 10.1016/j.measurement.2024.114183 – volume: 77 start-page: 65 year: 2022 ident: 1230_CR3 publication-title: Precision Engineering doi: 10.1016/j.precisioneng.2022.05.008 – volume: 167 start-page: 1 issue: 112972 year: 2023 ident: 1230_CR12 publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2022.112972 – volume: 61 start-page: 771 issue: 2 year: 2012 ident: 1230_CR6 publication-title: CIRP Annals doi: 10.1016/j.cirp.2012.05.008 – volume: 84 start-page: 1362 year: 2022 ident: 1230_CR16 publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2022.11.015 – volume: 12 start-page: 49 issue: 1 year: 2019 ident: 1230_CR9 publication-title: International Journal of Mechatronics and Manufacturing Systems doi: 10.1504/IJMMS.2019.097852 – volume: 147 start-page: 103821 year: 2021 ident: 1230_CR14 publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2020.103821 – volume: 66 start-page: 21 year: 2020 ident: 1230_CR5 publication-title: Precision Engineering doi: 10.1016/j.precisioneng.2020.06.010 – volume: 237 start-page: 107704 year: 2022 ident: 1230_CR19 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107704 – volume: 284 start-page: 111257 year: 2024 ident: 1230_CR26 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2023.111257 – year: 2014 ident: 1230_CR25 publication-title: Computer Science doi: 10.3115/v1/D14-1179 – year: 2025 ident: 1230_CR11 publication-title: International Journal of Precision Engineering and Manufacturing doi: 10.1007/s12541-024-01207-0 |
| SSID | ssib031263586 ssib036278122 ssib053376809 ssj0068040 |
| Score | 2.3863459 |
| Snippet | Thermal error prediction models for key components in precision computer numerical control machine tools often fail to maintain high accuracy under varying... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1837 |
| SubjectTerms | Accuracy Adaptive algorithms Algorithms Boundary conditions Confidence intervals Density Design Energy consumption Engineering Error compensation Experiments Heat Industrial and Production Engineering Machine tools Materials Science Neural networks Numerical controls Optimization Parameter modification Prediction models Real time Regular Paper Sensors Software Spindles Working conditions |
| Title | Enhancing Spindle Precision: Thermal Error Modeling with Multi-parameter Optimization and Energy Consumption Data |
| URI | https://link.springer.com/article/10.1007/s12541-025-01230-9 https://www.proquest.com/docview/3255734443 |
| Volume | 26 |
| WOSCitedRecordID | wos001432604200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Online Journals customDbUrl: eissn: 2005-4602 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068040 issn: 2234-7593 databaseCode: RSV dateStart: 20090101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejBb3E6JQdvGmg-urTeZG54kDmcjt1Kk6YquG5207_fl6y1KirooVBo2pKX1_fRvN_vIXSsmKcTyhKSUh0QYSDdCRVtEqE9EftMBcLRLg6uZLcbDIdhrwCFTctq93JL0lnqCuwGuQykvswWm0HgTMJFtATuLrCf401_UGoRp5ZfpSJFAwstwYu9O3GIbyDEtqRVc3sN5w42CX5SEOmHvIDWfP_Oz-6rikm_bKM679RZ_9-8NtBaEY3i87n6bKIFk22h1Q8chdvouZ09WE6O7B73J4-WkgH38qIxzxkGLQPL_oTbeT7OsW2sZuHt2P7dxQ7bSyy3-MjW3OBrsE6jAvaJ4yzBbYc7xC2HAnWmC1_Es3gH3XXat61LUvRpIJr7YkZUqpT2eVOzlCfUSwJI8RQcIUzHQPpIRZIy4QdJkxkNESZYkTSMpfSkhmBSab6Latk4M3sIe0ZSagylMYSSMuGhpZ9TPjhysDvMM3VES_FHuiAxt700nqKKftmKMwJxRk6cUVhHJ-_3TOYUHr-ObpSrGhWf8zTikHhJLoTgdXRarmJ1-een7f9t-AFaYU4RbIFhA9Vm-Ys5RMv6dfY4zY-cmr8BcVzvvg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BggQcoC0gtjzqAzdqKX5knfSGlkUgtlsEFHGLYscBpN0A2YXfz9ibkLYqSHCIFClOIo8n84jn-wZgV_PAZIxnNGcmotJiuhNr1qHSBDINuY6kp1287KvBILq6ik8rUNi4rnavtyS9pW7AbpjLYOrLXbEZBs40noU5iR7LFfKdnV_WWiSY41dpSNHQQiv0Yi9OHOMbDLEdadXUXuO5h02in5RUhbGooDX_f-ff7quJSf_ZRvXe6XDlY_P6BMtVNEr2p-rzGWZs8QWW_uAoXIWHXnHjODmKa3J-f-soGchpWTXm-UFQy9CyD0mvLO9K4hqrOXg7cX93icf2UsctPnI1N-QXWqdRBfskaZGRnscdkq5HgXrTRQ7SSboGvw97F90jWvVpoEaEckJ1rrUJRcfwXGQsyCJM8TQeMU7HYvrIZJZzGUZZh1uDESZakTxOlQqUwWBSG7EOreKusBtAAqsYs5axFENJlYnY0c_pEB052h0e2DawWvyJqUjMXS-NYdLQLztxJijOxIsziduw93LP_ZTC483RW_WqJtXnPE4EJl5KSClFG77Xq9hcfv1pX983_BssHF387Cf948HJJixyrxSu2HALWpPy0W7DvHma3I7LHa_yz7Uc8qI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ8gGKMP4mc4BN0H33RD96O3LW8G7gKRnJeghLem-1EkgXKU6t_vzF5L0aiJ8aFJk27b7O505jfd_f0G4K2VifNCel4Jl3EdMN3JrRhz7RJdptJmOsounhyZ2Sw7Pc3nd1j8cbd7vyS55DSQSlPd7ix8tTMQ3zCvwTRY0sYzBNE8vwdrmooGUb5-fNJblBKktTIIpKG3NhjRbgM6Yh2E2yRgtfTdeB4plBgzNTdprjqaze_f-XMoG_DpL0uqMVJN1_-_j0_gcYdS2YelWT2FlVA_g0d3tAufw_Wk_kpaHfUZO16ck1QDmzddwZ5dhtaHHv-CTZrmqmFUcI1o74z--rLI-eWkOX5Je3HYJ_Ralx0dlJW1Z5PIR2R7kR0aXRrbL9vyBXyZTj7vHfCufgN3KtUtt5W1LlVjJyvlReIzTP0sHjl2J2BaKbSvpE4zP5bBIfJE71LlpTGJcQgyrVMvYbW-qsMGsCQYIUIQokSIabzKSZbOphjg0R_JJIxA9FNRuE7cnGpsXBSDLDMNZ4HDWcThLPIRvLu9Z7GU9vhr661-hovuM78pFCZkRmmt1Qje9zM6XP7z0zb_rfkbeDDfnxZHh7OPr-ChjDZBexC3YLVtvoVtuO--t-c3zeto_T8AaDD7hg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Spindle+Precision%3A+Thermal+Error+Modeling+with+Multi-parameter+Optimization+and+Energy+Consumption+Data&rft.jtitle=International+journal+of+precision+engineering+and+manufacturing&rft.au=Zhou%2C+Bo&rft.au=Chen%2C+Guo-hua&rft.au=Mao%2C+Jie&rft.au=Li%2C+Bo&rft.date=2025-08-01&rft.pub=Korean+Society+for+Precision+Engineering&rft.issn=2234-7593&rft.eissn=2005-4602&rft.volume=26&rft.issue=8&rft.spage=1837&rft.epage=1853&rft_id=info:doi/10.1007%2Fs12541-025-01230-9&rft.externalDocID=10_1007_s12541_025_01230_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-7593&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-7593&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-7593&client=summon |