Identification of early decayed oranges using structured-illumination reflectance imaging coupled with fast demodulation and improved image processing algorithms

Effective detection of decayed oranges (Citrus genus) at the early stage is challenging because there are no or few visual symptoms on the infected fruit. Structured-illumination reflectance imaging (SIRI) has been proven effective for enhanced detection of subsurface defects in fruit. Amplitude com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Postharvest biology and technology Jg. 207; S. 112627
Hauptverfasser: Li, Jiangbo, Lu, Yuzhen, Lu, Renfu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.01.2024
Schlagworte:
ISSN:0925-5214, 1873-2356
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Effective detection of decayed oranges (Citrus genus) at the early stage is challenging because there are no or few visual symptoms on the infected fruit. Structured-illumination reflectance imaging (SIRI) has been proven effective for enhanced detection of subsurface defects in fruit. Amplitude component (AC) images retrieved from the original SIRI patterned images are useful for defect detection, but generally require acquiring three phase-shifted pattern images, which limits the imaging and detection speed. Moreover, the AC images may also suffer from noticeable uneven brightness due to fruit curvature, which affects the identification of decayed areas. This study was therefore aimed to explore faster image demodulation, enhancement and processing algorithms, based on a specially developed SIRI technology, for effective identification of early decayed oranges. Pattern images were acquired, using three phase-shifted sinusoidal illumination patterns at the wavelength of 810 nm and a spatial frequency of 0.20 cycles mm−1, from the orange samples infected with Penicillium digitatum fungus, the most serious and devastating pathogen for orange fruit. Two-dimensional spiral phase transform was used to obtain AC images from one or two pattern images. The acquired AC images were then processed by using simple brightness adjustment and integral image-based fast average filtering for brightness correction, and improved watershed algorithm and global threshold for segmentation of decayed areas. Three different combinations of these image processing procedures for single and two pattern images were proposed to distinguish decayed oranges from sound ones. The three methodologies all achieved high overall identification rates of 97.5%, 95.0% and 95.3%, when the stem-end effect was also considered. This study showed that accurate detection of early decayed orange fruit can be achieved by using one or two phase-shifted pattern images, which would be beneficial for real-time implementation of the technique. •Pattern images were acquired from sound and early decayed orange by a SIRI system.•Improved image demodulation, enhancement and segmentation methods were proposed.•Three image processing strategies were proposed and showed superior detection results.•This study represents an important step towards fast detection of early decayed oranges.
AbstractList Effective detection of decayed oranges (Citrus genus) at the early stage is challenging because there are no or few visual symptoms on the infected fruit. Structured-illumination reflectance imaging (SIRI) has been proven effective for enhanced detection of subsurface defects in fruit. Amplitude component (AC) images retrieved from the original SIRI patterned images are useful for defect detection, but generally require acquiring three phase-shifted pattern images, which limits the imaging and detection speed. Moreover, the AC images may also suffer from noticeable uneven brightness due to fruit curvature, which affects the identification of decayed areas. This study was therefore aimed to explore faster image demodulation, enhancement and processing algorithms, based on a specially developed SIRI technology, for effective identification of early decayed oranges. Pattern images were acquired, using three phase-shifted sinusoidal illumination patterns at the wavelength of 810 nm and a spatial frequency of 0.20 cycles mm⁻¹, from the orange samples infected with Penicillium digitatum fungus, the most serious and devastating pathogen for orange fruit. Two-dimensional spiral phase transform was used to obtain AC images from one or two pattern images. The acquired AC images were then processed by using simple brightness adjustment and integral image-based fast average filtering for brightness correction, and improved watershed algorithm and global threshold for segmentation of decayed areas. Three different combinations of these image processing procedures for single and two pattern images were proposed to distinguish decayed oranges from sound ones. The three methodologies all achieved high overall identification rates of 97.5%, 95.0% and 95.3%, when the stem-end effect was also considered. This study showed that accurate detection of early decayed orange fruit can be achieved by using one or two phase-shifted pattern images, which would be beneficial for real-time implementation of the technique.
Effective detection of decayed oranges (Citrus genus) at the early stage is challenging because there are no or few visual symptoms on the infected fruit. Structured-illumination reflectance imaging (SIRI) has been proven effective for enhanced detection of subsurface defects in fruit. Amplitude component (AC) images retrieved from the original SIRI patterned images are useful for defect detection, but generally require acquiring three phase-shifted pattern images, which limits the imaging and detection speed. Moreover, the AC images may also suffer from noticeable uneven brightness due to fruit curvature, which affects the identification of decayed areas. This study was therefore aimed to explore faster image demodulation, enhancement and processing algorithms, based on a specially developed SIRI technology, for effective identification of early decayed oranges. Pattern images were acquired, using three phase-shifted sinusoidal illumination patterns at the wavelength of 810 nm and a spatial frequency of 0.20 cycles mm−1, from the orange samples infected with Penicillium digitatum fungus, the most serious and devastating pathogen for orange fruit. Two-dimensional spiral phase transform was used to obtain AC images from one or two pattern images. The acquired AC images were then processed by using simple brightness adjustment and integral image-based fast average filtering for brightness correction, and improved watershed algorithm and global threshold for segmentation of decayed areas. Three different combinations of these image processing procedures for single and two pattern images were proposed to distinguish decayed oranges from sound ones. The three methodologies all achieved high overall identification rates of 97.5%, 95.0% and 95.3%, when the stem-end effect was also considered. This study showed that accurate detection of early decayed orange fruit can be achieved by using one or two phase-shifted pattern images, which would be beneficial for real-time implementation of the technique. •Pattern images were acquired from sound and early decayed orange by a SIRI system.•Improved image demodulation, enhancement and segmentation methods were proposed.•Three image processing strategies were proposed and showed superior detection results.•This study represents an important step towards fast detection of early decayed oranges.
ArticleNumber 112627
Author Lu, Yuzhen
Li, Jiangbo
Lu, Renfu
Author_xml – sequence: 1
  givenname: Jiangbo
  surname: Li
  fullname: Li, Jiangbo
  organization: Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
– sequence: 2
  givenname: Yuzhen
  surname: Lu
  fullname: Lu, Yuzhen
  organization: Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
– sequence: 3
  givenname: Renfu
  surname: Lu
  fullname: Lu, Renfu
  email: renfu.lu@usda.gov
  organization: United States Department of Agriculture Agricultural Research Service, East Lansing, MI 48824, USA
BookMark eNqNkc1uGyEUhVGUSHWSvsNk1824wAzzs6oqqz-RImXTrtE1XBwsBlxgXPlx-qbBni6qrrICpHM-7j3nllz74JGQB0bXjLLu4359CCm_QDxubVhzyps1Y7zj_RVZsaFvat6I7pqs6MhFLThr35HblPaUUiHEsCJ_HjX6bI1VkG3wVTAVQnSnSqOCE-oqRPA7TNWcrN9VKcdZ5Tmirq1z82T9YotoHKoMXmFlJ9idtSrMB1cIv21-qQykXJhT0LNbLOB1kR5iOKK-eLAqD4Xp8hG4XYjFOKV7cmPAJXz_97wjP79--bH5Xj89f3vcfH6qVSPaXG9Vzwwb9LYD3lLBwfBe0F4wuh2NaJENyASYTgkQba_7BjQ0vOXNMCqD5X5HPizcMsWvGVOWk00KnQOPYU6yYaJl_cgaUaTjIlUxpFR2l4dYNognyag81yL38p9a5LkWudRSvJ_-8yqbL4nkCNa9ibBZCFjSOFqMMimLJXltY-lA6mDfQHkFhN26CA
CitedBy_id crossref_primary_10_1016_j_postharvbio_2024_113095
crossref_primary_10_1016_j_postharvbio_2024_113194
crossref_primary_10_3390_spectroscj3030022
crossref_primary_10_1088_1361_6501_ae02b0
crossref_primary_10_1016_j_foodcont_2025_111488
crossref_primary_10_1016_j_postharvbio_2024_113121
crossref_primary_10_1016_j_jfoodeng_2024_112459
crossref_primary_10_3390_foods13233843
crossref_primary_10_1016_j_foodchem_2025_143239
crossref_primary_10_3389_fpls_2025_1492110
crossref_primary_10_1016_j_foodchem_2024_141944
crossref_primary_10_1016_j_postharvbio_2025_113576
crossref_primary_10_3389_fpls_2023_1324152
crossref_primary_10_1016_j_postharvbio_2025_113434
crossref_primary_10_1016_j_foodchem_2024_141535
crossref_primary_10_3389_fpls_2024_1428769
crossref_primary_10_3389_fpls_2024_1500819
crossref_primary_10_1016_j_postharvbio_2024_112788
Cites_doi 10.1109/TMI.2004.824224
10.1016/j.tifs.2021.12.021
10.1016/j.postharvbio.2022.112162
10.1016/j.jfoodeng.2015.01.004
10.1201/b20220-4
10.1016/j.compag.2016.07.012
10.1016/j.jfoodeng.2007.06.036
10.1117/12.159642
10.1002/jsfa.8865
10.1364/JOSAA.18.001862
10.1016/j.postharvbio.2019.111071
10.1109/TSMC.1979.4310076
10.1016/j.postharvbio.2013.02.011
10.13031/trans.12158
10.1016/j.postharvbio.2019.110986
10.1016/j.chemolab.2016.05.005
10.1016/j.compag.2016.07.016
10.1364/OL.37.000443
10.1016/j.compag.2018.07.025
10.1016/j.postharvbio.2021.111624
10.13031/trans.12243
10.17221/55/2016-PPS
10.1016/j.biosystemseng.2019.01.014
10.1016/j.postharvbio.2013.02.016
10.1094/PHYTO-97-11-1491
10.1016/j.compag.2017.03.021
10.1016/j.jfoodeng.2007.03.027
10.1007/s11947-012-0951-1
10.1016/j.postharvbio.2016.02.005
10.1016/j.postharvbio.2019.01.011
10.1016/B978-0-12-411552-1.00002-8
10.1016/j.patcog.2019.01.026
10.1111/jam.15769
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.postharvbio.2023.112627
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1873-2356
ExternalDocumentID 10_1016_j_postharvbio_2023_112627
S0925521423003885
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SPCBC
SSA
SSZ
T5K
WUQ
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c354t-bc71f18db6a24052af27507510b9f54e18e15af6c5a547d73ada3242389cfeda3
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001103718900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5214
IngestDate Thu Oct 02 21:41:32 EDT 2025
Sat Nov 29 07:10:37 EST 2025
Tue Nov 18 21:51:16 EST 2025
Fri Feb 23 02:35:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Brightness transformation
Defect segmentation
Citrus decay
Image enhancement
Classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c354t-bc71f18db6a24052af27507510b9f54e18e15af6c5a547d73ada3242389cfeda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3154179135
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3154179135
crossref_primary_10_1016_j_postharvbio_2023_112627
crossref_citationtrail_10_1016_j_postharvbio_2023_112627
elsevier_sciencedirect_doi_10_1016_j_postharvbio_2023_112627
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Postharvest biology and technology
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Grau, Mewes, Alcaniz, Kikinis, Warfield (bib9) 2004; 23
Macarisin, Cohen, Eick, Rafael, Belausov, Wisniewski, Droby (bib28) 2007; 97
Li, Huang, Tian, Wang, Fan, Zhao (bib13) 2016; 127
Lu, Lu (bib23) 2018; 152
Mohammadi, Tozlu, Kotan, Kotan (bib29) 2017; 53
Li, Rao, Wang, Wu, Ying, Y.B (bib12) 2013; 82
Li, Lu, Lu (bib15) 2018; 61
Vargas, Quiroga, Sorzano, Estrada, Carazo (bib40) 2012; 37
Lu, R., 2016. Chapter 3 - Theory of light transfer in food and biological materials, in: Lu, R., (Ed.), Light Scattering Technology for Food Property, Quality and Safety Assessment. CRC Press, Taylor & Francis Group, New York, pp. 43–78.
Ghooshkhaneh, Golzarian, Mamarabadi (bib5) 2018; 98
Li, Zhang, Li, Wang, Zhang, Zhan, Jiang (bib14) 2019; 158
Larkin, Bone, Oldfield (bib10) 2001; 18
Li, Lu, Lu (bib11) 2023; 196
Lu, Lu (bib24) 2018; 2018
Gómez-Sanchis, Moltó, Camps-Valls, Gómez-Chova, Aleixos, Blasco (bib7) 2008; 85
Du, Li, Tian, Cheng, Long (bib2) 2022
Lu, Li, Lu (bib20) 2016; 117
Lorente, Escandell-Montero, Cubero, Gomez-Sanchis, Blasco (bib16) 2015; 163
Lu, Lu, Zhang (bib26) 2021; 180
Lorente, Zude, Idler, Gomez-Sanchis, Blasco (bib17) 2015; 154
Momin, Kondo, Kuramoto, Ogawa, Yamamoto, Shiigi, T (bib30) 2012; 5
Gomez-Sanchis, Blasco, Soria-Olivas, Lorente, Escandell-Montero, Martinez-Martinez, Martinez-Sober, Aleixos (bib6) 2013; 82
Palou, L., 2014. Penicillium digitatum, Penicillium italicum (green mold, blue mold). Pages 45–102 in: Postharvest Decay: Control Strategies. S. Bautista Banos, ed. Academic Press, Elsevier, London, UK.
Eckert, Eaks (bib3) 1989
Lu, Li, Lu (bib21) 2016; 127
Mahanti, Pandiselvam, Kothakota, Ishwarya, Chakraborty, Kumar, Cozzolino (bib27) 2022; 120
Otsu (bib31) 1979; 9
Lu, Lu (bib25) 2019; 180
Rong, Ying, Rao (bib34) 2017; 138
Qureshi, Uzair, Khurshid, Yan (bib33) 2019; 90
Sun, Lu, Lu, Tu, Pan (bib38) 2019; 151
Lu, Lu (bib22) 2017; 60
Tian, Fan, Huang, Wan, Li (bib39) 2020; 161
Folch-Fortuny, Prats-Montalban, Cubero, Blasco, Ferrer (bib4) 2016; 156
Schreiber, Bruning (bib36) 2007
Soille (bib37) 2004
Rivest, Soille, Beucher (bib35) 1993; 2
Lorente, Blasco, Serrano, Soria-Olivas, Aleixos, Gomez-Sanchis (bib18) 2013; 6
Blasco, Aleixos, Gomez, Molto (bib1) 2007; 83
Gonzalez, R.C., Woods, R.E., 2010. Digital Image Processing (third ed). Publishing house of electronics industry, Beijing, China.
Lorente (10.1016/j.postharvbio.2023.112627_bib17) 2015; 154
Lu (10.1016/j.postharvbio.2023.112627_bib24) 2018; 2018
Mahanti (10.1016/j.postharvbio.2023.112627_bib27) 2022; 120
Li (10.1016/j.postharvbio.2023.112627_bib11) 2023; 196
Lu (10.1016/j.postharvbio.2023.112627_bib25) 2019; 180
Schreiber (10.1016/j.postharvbio.2023.112627_bib36) 2007
Lorente (10.1016/j.postharvbio.2023.112627_bib18) 2013; 6
Soille (10.1016/j.postharvbio.2023.112627_bib37) 2004
Li (10.1016/j.postharvbio.2023.112627_bib14) 2019; 158
Otsu (10.1016/j.postharvbio.2023.112627_bib31) 1979; 9
Macarisin (10.1016/j.postharvbio.2023.112627_bib28) 2007; 97
Lorente (10.1016/j.postharvbio.2023.112627_bib16) 2015; 163
Rong (10.1016/j.postharvbio.2023.112627_bib34) 2017; 138
Lu (10.1016/j.postharvbio.2023.112627_bib20) 2016; 117
Momin (10.1016/j.postharvbio.2023.112627_bib30) 2012; 5
Folch-Fortuny (10.1016/j.postharvbio.2023.112627_bib4) 2016; 156
Li (10.1016/j.postharvbio.2023.112627_bib13) 2016; 127
Qureshi (10.1016/j.postharvbio.2023.112627_bib33) 2019; 90
Du (10.1016/j.postharvbio.2023.112627_bib2) 2022
10.1016/j.postharvbio.2023.112627_bib8
Gómez-Sanchis (10.1016/j.postharvbio.2023.112627_bib7) 2008; 85
Rivest (10.1016/j.postharvbio.2023.112627_bib35) 1993; 2
Lu (10.1016/j.postharvbio.2023.112627_bib26) 2021; 180
Tian (10.1016/j.postharvbio.2023.112627_bib39) 2020; 161
Lu (10.1016/j.postharvbio.2023.112627_bib21) 2016; 127
Lu (10.1016/j.postharvbio.2023.112627_bib22) 2017; 60
Lu (10.1016/j.postharvbio.2023.112627_bib23) 2018; 152
Gomez-Sanchis (10.1016/j.postharvbio.2023.112627_bib6) 2013; 82
Eckert (10.1016/j.postharvbio.2023.112627_bib3) 1989
Grau (10.1016/j.postharvbio.2023.112627_bib9) 2004; 23
Mohammadi (10.1016/j.postharvbio.2023.112627_bib29) 2017; 53
Li (10.1016/j.postharvbio.2023.112627_bib12) 2013; 82
Li (10.1016/j.postharvbio.2023.112627_bib15) 2018; 61
Ghooshkhaneh (10.1016/j.postharvbio.2023.112627_bib5) 2018; 98
Vargas (10.1016/j.postharvbio.2023.112627_bib40) 2012; 37
10.1016/j.postharvbio.2023.112627_bib19
Sun (10.1016/j.postharvbio.2023.112627_bib38) 2019; 151
Blasco (10.1016/j.postharvbio.2023.112627_bib1) 2007; 83
10.1016/j.postharvbio.2023.112627_bib32
Larkin (10.1016/j.postharvbio.2023.112627_bib10) 2001; 18
References_xml – volume: 120
  start-page: 418
  year: 2022
  end-page: 438
  ident: bib27
  article-title: Emerging non-destructive imaging techniques for fruit damage detection: image processing and analysis
  publication-title: Trends Food Sci. Technol.
– volume: 156
  start-page: 241
  year: 2016
  end-page: 248
  ident: bib4
  article-title: VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits
  publication-title: Chemom. Intell. Lab. Syst.
– start-page: 547
  year: 2007
  end-page: 666
  ident: bib36
  article-title: Phase shifting interferometry
  publication-title: Opitcal Shop Testing
– volume: 151
  start-page: 68
  year: 2019
  end-page: 78
  ident: bib38
  article-title: Detection of early decay in peaches by structured-illumination reflectance imaging
  publication-title: Postharvest Biol. Technol.
– volume: 82
  start-page: 76
  year: 2013
  end-page: 86
  ident: bib6
  article-title: Hyperspectral LCTF-based system for classification of decay in mandarins caused by penicillium digitatum and Penicillium Italicum using the most relevant bands and non-linear classifiers
  publication-title: Postharvest Biol. Technol.
– volume: 61
  start-page: 809
  year: 2018
  end-page: 819
  ident: bib15
  article-title: Structured illumination reflectance imaging for enhanced detection of subsurface tissue bruising in apples
  publication-title: Trans. ASABE, 2018
– volume: 85
  start-page: 191
  year: 2008
  end-page: 200
  ident: bib7
  article-title: Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits
  publication-title: J. Food Eng.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bib31
  article-title: Threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst., Man Cybern.
– volume: 154
  start-page: 76
  year: 2015
  end-page: 85
  ident: bib17
  article-title: Laser-light backscattering imaging for early decay detection in citrus fruit using both a statistical and a physical model
  publication-title: J. Food Eng.
– volume: 97
  start-page: 1491
  year: 2007
  end-page: 1500
  ident: bib28
  article-title: Penicillium digitatum suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit
  publication-title: Phytopathology
– volume: 180
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib25
  article-title: Structured-illumination reflectance imaging for the detection of defects in fruit: analysis of resolution, contrast and depth-resolving features
  publication-title: Biosyst. Eng.
– volume: 37
  start-page: 443
  year: 2012
  end-page: 445
  ident: bib40
  article-title: Two-step demodulation based on the Gram-Schmidt orthonormalization method
  publication-title: Opt. Lett.
– volume: 83
  start-page: 384
  year: 2007
  end-page: 393
  ident: bib1
  article-title: Citrus sorting by identification of the most common defects using multispectral computer vision
  publication-title: J. Food Eng.
– start-page: 179
  year: 1989
  end-page: 260
  ident: bib3
  article-title: Postharvest disorders and diseases of citrus fruits
  publication-title: The Citrus Industry
– volume: 53
  start-page: 134
  year: 2017
  end-page: 143
  ident: bib29
  article-title: Potential of some bacteria for biological control of postharvest citrus green mould caused by penicillium digitatum
  publication-title: Plant Prot. Sci.
– volume: 82
  start-page: 59
  year: 2013
  end-page: 69
  ident: bib12
  article-title: Automatic detection of common surface defects on oranges using combined lighting transform and image ratio methods
  publication-title: Postharvest Biol. Technol.
– volume: 6
  start-page: 3613
  year: 2013
  end-page: 3619
  ident: bib18
  article-title: Comparison of ROC feature selection method for the detection of decay in citrus fruit using hyperspectral images
  publication-title: Food Bioprocess Technol.
– volume: 60
  start-page: 1379
  year: 2017
  end-page: 1389
  ident: bib22
  article-title: Development of a multispectral structured illumination reflectance imaging (SIRI) system and its application to bruise detection of apples
  publication-title: Trans. ASABE
– volume: 127
  start-page: 582
  year: 2016
  end-page: 592
  ident: bib13
  article-title: Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging
  publication-title: Comput. Electron. Agric.
– volume: 117
  start-page: 89
  year: 2016
  end-page: 93
  ident: bib20
  article-title: Structured-illumination reflectance imaging (SIRI) for enhanced detection of fresh bruises in apples
  publication-title: Postharvest Biol. Technol.
– volume: 23
  start-page: 447
  year: 2004
  end-page: 458
  ident: bib9
  article-title: Improved watershed transform for medical image segmentation using prior information
  publication-title: IEEE Trans. Med. Imaging
– volume: 98
  start-page: 3542
  year: 2018
  end-page: 3550
  ident: bib5
  article-title: Detection and classification of citrus green mold caused by
  publication-title: J. Sci. Food Agric.
– volume: 163
  start-page: 17
  year: 2015
  end-page: 24
  ident: bib16
  article-title: Visible-NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit
– reference: Palou, L., 2014. Penicillium digitatum, Penicillium italicum (green mold, blue mold). Pages 45–102 in: Postharvest Decay: Control Strategies. S. Bautista Banos, ed. Academic Press, Elsevier, London, UK.
– volume: 158
  year: 2019
  ident: bib14
  article-title: Detection of early decayed oranges based on multispectral principal component image combining both bi-dimensional empirical mode decomposition and watershed segmentation method
  publication-title: Postharvest Biol. Technol.
– year: 2022
  ident: bib2
  article-title: Natamycin as a safe food additive to control postharvest green mould and sour rot in citrus
  publication-title: J. Appl. Microbiol.
– volume: 2
  start-page: 326
  year: 1993
  end-page: 336
  ident: bib35
  article-title: Morphological gradients
  publication-title: J. Electron. Imaging
– volume: 152
  start-page: 314
  year: 2018
  end-page: 323
  ident: bib23
  article-title: Fast Bi-dimensional empirical mode decomposition as an image enhancement technique for fruit defect detection
  publication-title: Comput. Electron. Agric.
– volume: 90
  start-page: 12
  year: 2019
  end-page: 22
  ident: bib33
  article-title: Hyperspectral document image processing: applications, challenges and future prospects
  publication-title: Pattern Recognit.
– reference: Gonzalez, R.C., Woods, R.E., 2010. Digital Image Processing (third ed). Publishing house of electronics industry, Beijing, China.
– volume: 138
  start-page: 48
  year: 2017
  end-page: 59
  ident: bib34
  article-title: Embedded vision detection of defective orange by fast adaptive lightness correction algorithm
  publication-title: Comput. Electron. Agric.
– volume: 2018
  year: 2018
  ident: bib24
  article-title: Detection of surface and subsurface defects of apples using structured-illumination reflectance imaging with machine learning algorithm. 2018 ASABE Annual International Meeting, etroit
  publication-title: Mich., July 29-August 1
– reference: Lu, R., 2016. Chapter 3 - Theory of light transfer in food and biological materials, in: Lu, R., (Ed.), Light Scattering Technology for Food Property, Quality and Safety Assessment. CRC Press, Taylor & Francis Group, New York, pp. 43–78.
– volume: 18
  start-page: 1862
  year: 2001
  end-page: 1870
  ident: bib10
  article-title: Natural demodulation of two dimensional fringe patterns. I. General background of the spiral phase quadrature transform
  publication-title: J. Opt. Soc. Am., A. Opt., Image Sci., Vis.
– volume: 180
  year: 2021
  ident: bib26
  article-title: Detection of subsurface bruising in fresh pickling cucumbers using structured-illumination reflectance imaging
  publication-title: Postharvest Biol. Technol.
– volume: 5
  start-page: 126
  year: 2012
  end-page: 132
  ident: bib30
  article-title: Investigation of excitation wavelength for fluorescence emission of citrus peels based on UV–VIS spectra
  publication-title: Eng. Agric. Environ. Food
– volume: 127
  start-page: 652
  year: 2016
  end-page: 658
  ident: bib21
  article-title: Fast demodulation of pattern images by spiral phase transform in structured-illumination reflectance imaging for detection of bruises in apples
  publication-title: Comput. Electron. Agric.
– volume: 196
  year: 2023
  ident: bib11
  article-title: Detection of early decay in navel oranges by structured-illumination reflectance imaging combined with image enhancement and segmentation
  publication-title: Postharvest Biol. Technol.
– year: 2004
  ident: bib37
  article-title: Morphological image analysis: Principles and applications, 2nd ed
– volume: 161
  year: 2020
  ident: bib39
  article-title: Detection of early decay on citrus using hyperspectral transmittance imaging technology coupled with principal component analysis and improved watershed segmentation algorithms
  publication-title: Postharvest Biol. Technol.
– volume: 23
  start-page: 447
  issue: 4
  year: 2004
  ident: 10.1016/j.postharvbio.2023.112627_bib9
  article-title: Improved watershed transform for medical image segmentation using prior information
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.824224
– start-page: 179
  year: 1989
  ident: 10.1016/j.postharvbio.2023.112627_bib3
  article-title: Postharvest disorders and diseases of citrus fruits
– volume: 120
  start-page: 418
  year: 2022
  ident: 10.1016/j.postharvbio.2023.112627_bib27
  article-title: Emerging non-destructive imaging techniques for fruit damage detection: image processing and analysis
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2021.12.021
– volume: 196
  year: 2023
  ident: 10.1016/j.postharvbio.2023.112627_bib11
  article-title: Detection of early decay in navel oranges by structured-illumination reflectance imaging combined with image enhancement and segmentation
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2022.112162
– volume: 154
  start-page: 76
  year: 2015
  ident: 10.1016/j.postharvbio.2023.112627_bib17
  article-title: Laser-light backscattering imaging for early decay detection in citrus fruit using both a statistical and a physical model
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2015.01.004
– ident: 10.1016/j.postharvbio.2023.112627_bib19
  doi: 10.1201/b20220-4
– volume: 127
  start-page: 652
  year: 2016
  ident: 10.1016/j.postharvbio.2023.112627_bib21
  article-title: Fast demodulation of pattern images by spiral phase transform in structured-illumination reflectance imaging for detection of bruises in apples
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.07.012
– volume: 85
  start-page: 191
  issue: 2
  year: 2008
  ident: 10.1016/j.postharvbio.2023.112627_bib7
  article-title: Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2007.06.036
– volume: 2
  start-page: 326
  issue: 4
  year: 1993
  ident: 10.1016/j.postharvbio.2023.112627_bib35
  article-title: Morphological gradients
  publication-title: J. Electron. Imaging
  doi: 10.1117/12.159642
– volume: 98
  start-page: 3542
  issue: 9
  year: 2018
  ident: 10.1016/j.postharvbio.2023.112627_bib5
  article-title: Detection and classification of citrus green mold caused by Penicillium digitatum using multispectral imaging
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.8865
– volume: 18
  start-page: 1862
  issue: 8
  year: 2001
  ident: 10.1016/j.postharvbio.2023.112627_bib10
  article-title: Natural demodulation of two dimensional fringe patterns. I. General background of the spiral phase quadrature transform
  publication-title: J. Opt. Soc. Am., A. Opt., Image Sci., Vis.
  doi: 10.1364/JOSAA.18.001862
– volume: 161
  year: 2020
  ident: 10.1016/j.postharvbio.2023.112627_bib39
  article-title: Detection of early decay on citrus using hyperspectral transmittance imaging technology coupled with principal component analysis and improved watershed segmentation algorithms
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2019.111071
– volume: 9
  start-page: 62
  year: 1979
  ident: 10.1016/j.postharvbio.2023.112627_bib31
  article-title: Threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst., Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 82
  start-page: 76
  year: 2013
  ident: 10.1016/j.postharvbio.2023.112627_bib6
  article-title: Hyperspectral LCTF-based system for classification of decay in mandarins caused by penicillium digitatum and Penicillium Italicum using the most relevant bands and non-linear classifiers
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2013.02.011
– volume: 60
  start-page: 1379
  issue: 4
  year: 2017
  ident: 10.1016/j.postharvbio.2023.112627_bib22
  article-title: Development of a multispectral structured illumination reflectance imaging (SIRI) system and its application to bruise detection of apples
  publication-title: Trans. ASABE
  doi: 10.13031/trans.12158
– volume: 158
  year: 2019
  ident: 10.1016/j.postharvbio.2023.112627_bib14
  article-title: Detection of early decayed oranges based on multispectral principal component image combining both bi-dimensional empirical mode decomposition and watershed segmentation method
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2019.110986
– volume: 156
  start-page: 241
  year: 2016
  ident: 10.1016/j.postharvbio.2023.112627_bib4
  article-title: VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.05.005
– volume: 127
  start-page: 582
  year: 2016
  ident: 10.1016/j.postharvbio.2023.112627_bib13
  article-title: Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.07.016
– volume: 37
  start-page: 443
  issue: 3
  year: 2012
  ident: 10.1016/j.postharvbio.2023.112627_bib40
  article-title: Two-step demodulation based on the Gram-Schmidt orthonormalization method
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.000443
– volume: 152
  start-page: 314
  year: 2018
  ident: 10.1016/j.postharvbio.2023.112627_bib23
  article-title: Fast Bi-dimensional empirical mode decomposition as an image enhancement technique for fruit defect detection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.07.025
– volume: 163
  start-page: 17
  year: 2015
  ident: 10.1016/j.postharvbio.2023.112627_bib16
  article-title: Visible-NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit
– volume: 180
  year: 2021
  ident: 10.1016/j.postharvbio.2023.112627_bib26
  article-title: Detection of subsurface bruising in fresh pickling cucumbers using structured-illumination reflectance imaging
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2021.111624
– year: 2004
  ident: 10.1016/j.postharvbio.2023.112627_bib37
– ident: 10.1016/j.postharvbio.2023.112627_bib8
– volume: 61
  start-page: 809
  issue: 3
  year: 2018
  ident: 10.1016/j.postharvbio.2023.112627_bib15
  article-title: Structured illumination reflectance imaging for enhanced detection of subsurface tissue bruising in apples
  publication-title: Trans. ASABE, 2018
  doi: 10.13031/trans.12243
– volume: 53
  start-page: 134
  issue: 3
  year: 2017
  ident: 10.1016/j.postharvbio.2023.112627_bib29
  article-title: Potential of some bacteria for biological control of postharvest citrus green mould caused by penicillium digitatum
  publication-title: Plant Prot. Sci.
  doi: 10.17221/55/2016-PPS
– volume: 2018
  year: 2018
  ident: 10.1016/j.postharvbio.2023.112627_bib24
  article-title: Detection of surface and subsurface defects of apples using structured-illumination reflectance imaging with machine learning algorithm. 2018 ASABE Annual International Meeting, etroit
  publication-title: Mich., July 29-August 1
– volume: 180
  start-page: 1
  year: 2019
  ident: 10.1016/j.postharvbio.2023.112627_bib25
  article-title: Structured-illumination reflectance imaging for the detection of defects in fruit: analysis of resolution, contrast and depth-resolving features
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.01.014
– volume: 82
  start-page: 59
  year: 2013
  ident: 10.1016/j.postharvbio.2023.112627_bib12
  article-title: Automatic detection of common surface defects on oranges using combined lighting transform and image ratio methods
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2013.02.016
– volume: 97
  start-page: 1491
  issue: 11
  year: 2007
  ident: 10.1016/j.postharvbio.2023.112627_bib28
  article-title: Penicillium digitatum suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-97-11-1491
– volume: 138
  start-page: 48
  year: 2017
  ident: 10.1016/j.postharvbio.2023.112627_bib34
  article-title: Embedded vision detection of defective orange by fast adaptive lightness correction algorithm
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.03.021
– volume: 5
  start-page: 126
  issue: 4
  year: 2012
  ident: 10.1016/j.postharvbio.2023.112627_bib30
  article-title: Investigation of excitation wavelength for fluorescence emission of citrus peels based on UV–VIS spectra
  publication-title: Eng. Agric. Environ. Food
– volume: 83
  start-page: 384
  issue: 3
  year: 2007
  ident: 10.1016/j.postharvbio.2023.112627_bib1
  article-title: Citrus sorting by identification of the most common defects using multispectral computer vision
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2007.03.027
– volume: 6
  start-page: 3613
  issue: 12
  year: 2013
  ident: 10.1016/j.postharvbio.2023.112627_bib18
  article-title: Comparison of ROC feature selection method for the detection of decay in citrus fruit using hyperspectral images
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-012-0951-1
– volume: 117
  start-page: 89
  year: 2016
  ident: 10.1016/j.postharvbio.2023.112627_bib20
  article-title: Structured-illumination reflectance imaging (SIRI) for enhanced detection of fresh bruises in apples
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2016.02.005
– volume: 151
  start-page: 68
  year: 2019
  ident: 10.1016/j.postharvbio.2023.112627_bib38
  article-title: Detection of early decay in peaches by structured-illumination reflectance imaging
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2019.01.011
– start-page: 547
  year: 2007
  ident: 10.1016/j.postharvbio.2023.112627_bib36
  article-title: Phase shifting interferometry
– ident: 10.1016/j.postharvbio.2023.112627_bib32
  doi: 10.1016/B978-0-12-411552-1.00002-8
– volume: 90
  start-page: 12
  year: 2019
  ident: 10.1016/j.postharvbio.2023.112627_bib33
  article-title: Hyperspectral document image processing: applications, challenges and future prospects
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.01.026
– year: 2022
  ident: 10.1016/j.postharvbio.2023.112627_bib2
  article-title: Natamycin as a safe food additive to control postharvest green mould and sour rot in citrus
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.15769
SSID ssj0005558
Score 2.5173538
Snippet Effective detection of decayed oranges (Citrus genus) at the early stage is challenging because there are no or few visual symptoms on the infected fruit....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112627
SubjectTerms algorithms
Brightness transformation
Citrus
Citrus decay
Classification
Defect segmentation
fruits
fungi
genus
Image enhancement
lighting
pathogens
Penicillium digitatum
reflectance
wavelengths
Title Identification of early decayed oranges using structured-illumination reflectance imaging coupled with fast demodulation and improved image processing algorithms
URI https://dx.doi.org/10.1016/j.postharvbio.2023.112627
https://www.proquest.com/docview/3154179135
Volume 207
WOSCitedRecordID wos001103718900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2356
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005558
  issn: 0925-5214
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZOsb6MHYr626oMPYSXOqLIhv2EkbKVkI2Rgp5E7IlpSmp7SVxafc79gf2T3d0cexdAtnDXowjchzB98Xn6EjnfAi90V6sT4O-l5yIzIvAx3gJeFqvr0LqpzyMCM-M2AQdj-PpNPnc6Xyva2GuFzTP45ubpPyvUMMYgK1LZ_8B7s1DYQDuAXS4Auxw3Ql4W3qrXC5OB4PSNDEWMuO3EF4C5rlu7FCtbCpB94-tllJ4cy16PLfZwR44Tp3QNwUF8ysrZZQVVbmoj6srvlrDM68K4QTA7DaEyVFIYWx0DZYpQzCFkItZsQRD1x3dxcNaK_iCL3Wvj167H9T6j4z_yBw7OAM2z9JiM1gZF1J9u2gq2uzYF5mrqp3SCKJWSsPlJgMCK2RbXVq_poMT2itNxVNAvb--_G0e4vK4dFOHaR9rdXhn1Hi8epd__Imdno9GbDKcTt6WXz2tRab37J0wyx20F1CSxF20N_g4nJ41R4eI0X3dTPMeOmrODW759W1xz28RgAlrJg_RA7cewQPLo0eoI_PHaH8wW7qeLBI-tXpWPkE_fuUXLhQ2_MKOX9jxCxt-4S38wi1-Yccv7PiFNb-w5hdu8wsDL3DNL2MjccMv3PDrKTo_HU7ef_CczoeXhSRae2lGfeXHIu1ziC9JwJUWHaDgLdJEkUj6sfQJV_2McBJRQUMuuFkHxEmmJNwfoG5e5PIZwiFVYcSVCBQ8mfs8gXg7FL4SRKUxTZJDFNcosMw1wddaLAtWn3a8ZC0AmQaQWQAPUbAxLW0nmF2M3tVQMxfS2lCVAWl3MT-q6cHgta_38ngui2rFQlj66M7CIXm-w3deoPvN_-wl6gL08hW6m12v56vla0fvn3SG3WE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+early+decayed+oranges+using+structured-illumination+reflectance+imaging+coupled+with+fast+demodulation+and+improved+image+processing+algorithms&rft.jtitle=Postharvest+biology+and+technology&rft.au=Li%2C+Jiangbo&rft.au=Lu%2C+Yuzhen&rft.au=Lu%2C+Renfu&rft.date=2024-01-01&rft.issn=0925-5214&rft.volume=207+p.112627-&rft_id=info:doi/10.1016%2Fj.postharvbio.2023.112627&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5214&client=summon