A Deterministic Reduction for the Gap Minimum Distance Problem
Determining the minimum distance of a linear code is one of the most important problems in algorithmic coding theory. The exact version of the problem was shown to be NP-complete by Vardy. The gap version of the problem was shown to be NP-hard for any constant factor under a randomized reduction in...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 58; no. 11; pp. 6935 - 6941 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.11.2012
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Determining the minimum distance of a linear code is one of the most important problems in algorithmic coding theory. The exact version of the problem was shown to be NP-complete by Vardy. The gap version of the problem was shown to be NP-hard for any constant factor under a randomized reduction in an earlier work. It was shown in the same paper that the minimum distance problem is not approximable in randomized polynomial time to the factor 2 log1-ϵ n unless NP ⊆ RTIME (2polylog(n) ). In this paper, we derandomize the reduction and thus prove that there is no deterministic polynomial time algorithm to approximate the minimum distance to any constant factor unless P = NP . We also prove that the minimum distance is not approximable in deterministic polynomial time to the factor 2 log1-ϵ n unless NP ⊆ DTIME (2polylog(n) ). As the main technical contribution, for any constant 2/3 <; ρ <; 1, we present a deterministic algorithm that given a positive integer s , runs in time poly ( s ) and constructs a code C of length poly ( s ) with an explicit Hamming ball of radius ρ d ( C ), such that the projection at the first s coordinates sends the codewords in the ball surjectively onto a linear subspace of dimension s , where d ( C ) denotes the minimum distance of C . The codes are obtained by concatenating Reed-Solomon codes with Hadamard codes. |
|---|---|
| AbstractList | Determining the minimum distance of a linear code is one of the most important problems in algorithmic coding theory. The exact version of the problem was shown to be NP-complete by Vardy. The gap version of the problem was shown to be NP-hard for any constant factor under a randomized reduction in an earlier work. It was shown in the same paper that the minimum distance problem is not approximable in randomized polynomial time to the factor 2 log 1 - epsilon n unless NP [subE] RTIME ( 2 polylog ( n ) ) . In this paper, we derandomize the reduction and thus prove that there is no deterministic polynomial time algorithm to approximate the minimum distance to any constant factor unless P = NP . We also prove that the minimum distance is not approximable in deterministic polynomial time to the factor 2 log 1 - epsilon n unless NP [subE] DTIME ( 2 polylog ( n ) ) . As the main technical contribution, for any constant 2 / 3 < rho < 1 , we present a deterministic algorithm that given a positive integer s , runs in time poly ( s ) and constructs a code cal C of length poly ( s ) with an explicit Hamming ball of radius rho d ( cal C ) , such that the projection at the first s coordinates sends the codewords in the ball surjectively onto a linear subspace of dimension s , where d ( cal C ) denotes the minimum distance of cal C . The codes are obtained by concatenating Reed-Solomon codes with Hadamard codes. Determining the minimum distance of a linear code is one of the most important problems in algorithmic coding theory. The exact version of the problem was shown to be NP-complete by Vardy. The gap version of the problem was shown to be NP-hard for any constant factor under a randomized reduction in an earlier work. It was shown in the same paper that the minimum distance problem is not approximable in randomized polynomial time to the factor $2^{log^{1-epsilon}n}$ unless $NPsubseteq RTIME(2^{polylog(n)})$. In this paper, we derandomize the reduction and thus prove that there is no deterministic polynomial time algorithm to approximate the minimum distance to any constant factor unless $P=NP$. We also prove that the minimum distance is not approximable in deterministic polynomial time to the factor $2^{log^{1-epsilon}n}$ unless $NPsubseteq DTIME(2^{polylog(n)})$. As the main technical contribution, for any constant $2/3 < rho < 1$, we present a deterministic algorithm that given a positive integer $s$ , runs in time $poly(s)$ and constructs a code ${cal C}$ of length $poly(s)$ with an explicit Hamming ball of radius $rho d({cal C})$, such that the projection at the first $s$- /formula> coordinates sends the codewords in the ball surjectively onto a linear subspace of dimension $s$ , where $d({cal C})$ denotes the minimum distance of ${cal C}$. The codes are obtained by concatenating Reed-Solomon codes with Hadamard codes. [PUBLICATION ABSTRACT] Determining the minimum distance of a linear code is one of the most important problems in algorithmic coding theory. The exact version of the problem was shown to be NP-complete by Vardy. The gap version of the problem was shown to be NP-hard for any constant factor under a randomized reduction in an earlier work. It was shown in the same paper that the minimum distance problem is not approximable in randomized polynomial time to the factor 2 log1-ϵ n unless NP ⊆ RTIME (2polylog(n) ). In this paper, we derandomize the reduction and thus prove that there is no deterministic polynomial time algorithm to approximate the minimum distance to any constant factor unless P = NP . We also prove that the minimum distance is not approximable in deterministic polynomial time to the factor 2 log1-ϵ n unless NP ⊆ DTIME (2polylog(n) ). As the main technical contribution, for any constant 2/3 <; ρ <; 1, we present a deterministic algorithm that given a positive integer s , runs in time poly ( s ) and constructs a code C of length poly ( s ) with an explicit Hamming ball of radius ρ d ( C ), such that the projection at the first s coordinates sends the codewords in the ball surjectively onto a linear subspace of dimension s , where d ( C ) denotes the minimum distance of C . The codes are obtained by concatenating Reed-Solomon codes with Hadamard codes. |
| Author | Qi Cheng Daqing Wan |
| Author_xml | – sequence: 1 givenname: Qi surname: Cheng fullname: Cheng, Qi – sequence: 2 givenname: Daqing surname: Wan fullname: Wan, Daqing |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26625753$$DView record in Pascal Francis |
| BookMark | eNp9kDtrHDEURkWwIWs7fSDNQAikmbXu1WOkJmDsxDbYJIRNLTTaO0RmHhtppvC_t5ZdXLhIdfm459PjnLGTcRqJsY_A1wDcXm7uN2vkgGtEbsGad2wFSjW11UqesBXnYGorpXnPznJ-KlEqwBX7dlXd0ExpiGPMcwzVb9ouYY7TWHVTqua_VN36XfVY1sMyVDcF8mOg6lea2p6GC3ba-T7Th-M8Z39-fN9c39UPP2_vr68e6iCUnGtvMQBa7r0iaDyB2RJvtt4LbBsjG4FKtEIpJRA7WbLkvAWjwLTGd5rEOft6OHeXpn8L5dkNMQfqez_StGQHQitQ2kpT0M9v0KdpSWN5nQMAyVGhhUJ9OVI-B993qfwqZrdLcfDp2aHWqBolCscPXEhTzom6VwS424t3Rbzbi3dH8aWi31RCnP1e6Zx87P9X_HQoRiJ6vUejNkKieAFdRI59 |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1016_j_jnt_2019_05_004 crossref_primary_10_1109_TIT_2016_2616127 crossref_primary_10_1007_s00493_015_3330_5 crossref_primary_10_1137_23M1573021 crossref_primary_10_1007_s00453_015_0098_3 crossref_primary_10_1145_3444942 crossref_primary_10_1007_s00493_019_4113_1 crossref_primary_10_1016_j_jnt_2023_05_003 crossref_primary_10_1016_j_jnt_2016_10_008 crossref_primary_10_1145_3586165_3586172 crossref_primary_10_1109_TIT_2014_2340869 crossref_primary_10_1109_TIT_2019_2933625 |
| Cites_doi | 10.1006/jcss.1997.1472 10.1007/978-3-642-22006-7_40 10.1006/jcss.1999.1649 10.1145/800157.805047 10.1109/TIT.1978.1055873 10.1145/1089023.1089027 10.1090/S0025-5718-97-00835-1 10.1137/S0097539705447335 10.1145/276698.276705 10.1145/1250790.1250859 10.1007/978-3-540-70575-8_24 10.1090/S0025-5718-1990-0993933-0 10.1109/TIT.2002.806118 10.1137/S0097539700373039 10.1109/18.641542 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2012 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2012 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TIT.2012.2209198 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 1557-9654 |
| EndPage | 6941 |
| ExternalDocumentID | 2795063251 26625753 10_1109_TIT_2012_2209198 6268342 |
| Genre | orig-research Feature |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION AAYOK IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c354t-a92c1290aa5e17ae18de07daa32b78473253b3555322f4473400b18518b8af6e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310156500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9448 |
| IngestDate | Wed Oct 01 13:56:22 EDT 2025 Mon Jun 30 05:32:49 EDT 2025 Wed Apr 02 08:12:31 EDT 2025 Tue Nov 18 22:00:27 EST 2025 Sat Nov 29 03:53:15 EST 2025 Tue Aug 26 17:18:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Reed Solomon code Hamming distance Subspace method Carrier to noise ratio NP-complete Polynomial method Approximation algorithm Polynomial time Linear code coding theory Coding NP hard problem NP complete problem Minimal distance Deterministic approach minimum distance problem Hadamard codes Deterministic algorithms |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c354t-a92c1290aa5e17ae18de07daa32b78473253b3555322f4473400b18518b8af6e3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 1114025291 |
| PQPubID | 36024 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_1114025291 proquest_miscellaneous_1365156948 pascalfrancis_primary_26625753 crossref_primary_10_1109_TIT_2012_2209198 ieee_primary_6268342 crossref_citationtrail_10_1109_TIT_2012_2209198 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-11-01 |
| PublicationDateYYYYMMDD | 2012-11-01 |
| PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2012 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref11 ref10 ref2 ref1 ref16 ref8 ref7 ref9 van emde boas (ref14) 1981 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref2 doi: 10.1006/jcss.1997.1472 – year: 1981 ident: ref14 publication-title: Another NP-complete problem and the complexity of computing short vectors in a lattice – ident: ref3 doi: 10.1007/978-3-642-22006-7_40 – ident: ref5 doi: 10.1006/jcss.1999.1649 – ident: ref8 doi: 10.1145/800157.805047 – ident: ref4 doi: 10.1109/TIT.1978.1055873 – ident: ref11 doi: 10.1145/1089023.1089027 – ident: ref16 doi: 10.1090/S0025-5718-97-00835-1 – ident: ref6 doi: 10.1137/S0097539705447335 – ident: ref1 doi: 10.1145/276698.276705 – ident: ref10 doi: 10.1145/1250790.1250859 – ident: ref7 doi: 10.1007/978-3-540-70575-8_24 – ident: ref13 doi: 10.1090/S0025-5718-1990-0993933-0 – ident: ref9 doi: 10.1109/TIT.2002.806118 – ident: ref12 doi: 10.1137/S0097539700373039 – ident: ref15 doi: 10.1109/18.641542 |
| SSID | ssj0014512 |
| Score | 2.1991465 |
| Snippet | Determining the minimum distance of a linear code is one of the most important problems in algorithmic coding theory. The exact version of the problem was... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6935 |
| SubjectTerms | Algorithms Applied sciences Approximation Approximation algorithm Approximation algorithms Coding coding theory Coding, codes Error correcting codes Exact sciences and technology Hamming codes Information theory Information, signal and communications theory Lattices Linear code minimum distance problem NP-complete Polynomials Projection Reduction Reed-Solomon codes Signal and communications theory Subspaces Telecommunications and information theory Vectors |
| Title | A Deterministic Reduction for the Gap Minimum Distance Problem |
| URI | https://ieeexplore.ieee.org/document/6268342 https://www.proquest.com/docview/1114025291 https://www.proquest.com/docview/1365156948 |
| Volume | 58 |
| WOSCitedRecordID | wos000310156500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_m8EEfnE7F6hwRfBHstjRJm7wIok4FFZEpeytJm4LgNnGbf7-XtisORfCtJWkb7npfucv9AI6TTKah23pTloc-T1EP6kRSn6JtC7UVUubVhC930cODHA7VYw1Oq7Mw1tq8-Mx23GWey08nydxtlXXR-ZaMo8JdiaKwOKtVZQy4oEVncIoCjDHHIiXZU93B7cDVcAWdIEDrqOSSCcoxVVxFpJ4iUbICzeKHYs6tTb_xv3VuwkbpVZLz4jfYgpodN6GxQGwgpQA3Yf1b-8FtODsnl2U1TN6umTy5Pq6OUwRdWYKuIbnW7-Qeh0fzEbl0ria-hjwWIDQ78Ny_Glzc-CWegp8wwWe-VkHitp20FpZG2lKZ2l6Uas0CE6GVYoFgBnkkUMgzjvco3wbtOZVG6iy0bBfq48nY7gHJmBRZonkUmJRTI4wV2mRaKGEwwMsiD7oLEsdJ2WzcYV68xXnQ0VMxMiV2TIlLpnhwUj3xXjTa-GPutiN6Na-ktwftJS5W4-iEoGYSzIPWgq1xKapTFwJhDC0CRT04qoZRyFzmRI_tZI5zmEOMDxWX-79_-gDW3AKLQ4otqM8-5vYQVpPP2ev0o53_qV_vOONx |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB5EBfXBW6yuGsEXwbqbq01eBPHGdRFZxbeStCkIuit7-PudtN2iKIJvLUnbMNO5MpP5AA7SXGWR33rTTkShyFAPmlTRkKJti4yTShXVhE_tuNNRz8_6fgqO6rMwzrmi-Mwd-8sil5_107HfKmui8624QIU7I4VgrfK0Vp0zEJKWvcEpijBGHZOkZEs3uzddX8XFjhlD-6jVNyNUoKr4mkgzRLLkJZ7FD9Vc2JvLpf-tdBkWK7-SnJY_wgpMud4qLE0wG0glwquw8KUB4RqcnJLzqh6maNhMHnwnV88rgs4sQeeQXJl3cofDb-M3cu6dTXwNuS9haNbh8fKie3YdVogKYcqlGIVGs9RvPBkjHY2NoypzrTgzhjMbo53iTHKLXJIo5rnAe5RwixadKqtMHjm-AdO9fs9tAsm5knlqRMxsJqiV1kljcyO1tBji5XEAzQmJk7RqN-5RL16TIuxo6QSZknimJBVTAjisn3gvW238MXfNE72eV9E7gN1vXKzH0Q1B3SR5AI0JW5NKWIc-CMIoWjJNA9ivh1HMfO7E9Fx_jHO4x4yPtFBbv396D-auu3ftpH3Tud2Geb_Y8shiA6ZHg7Hbgdn0Y_QyHOwWf-0n6mDmuA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deterministic+Reduction+for+the+Gap+Minimum+Distance+Problem&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=QI+CHENG&rft.au=DAQING+WAN&rft.date=2012-11-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0018-9448&rft.volume=58&rft.issue=11&rft.spage=6935&rft.epage=6941&rft_id=info:doi/10.1109%2FTIT.2012.2209198&rft.externalDBID=n%2Fa&rft.externalDocID=26625753 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |