A Deterministic Reduction for the Gap Minimum Distance Problem

Determining the minimum distance of a linear code is one of the most important problems in algorithmic coding theory. The exact version of the problem was shown to be NP-complete by Vardy. The gap version of the problem was shown to be NP-hard for any constant factor under a randomized reduction in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 58; číslo 11; s. 6935 - 6941
Hlavní autoři: Cheng, Qi, Wan, Daqing
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.11.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Determining the minimum distance of a linear code is one of the most important problems in algorithmic coding theory. The exact version of the problem was shown to be NP-complete by Vardy. The gap version of the problem was shown to be NP-hard for any constant factor under a randomized reduction in an earlier work. It was shown in the same paper that the minimum distance problem is not approximable in randomized polynomial time to the factor 2 log1-ϵ n unless NP ⊆ RTIME (2polylog(n) ). In this paper, we derandomize the reduction and thus prove that there is no deterministic polynomial time algorithm to approximate the minimum distance to any constant factor unless P = NP . We also prove that the minimum distance is not approximable in deterministic polynomial time to the factor 2 log1-ϵ n unless NP ⊆ DTIME (2polylog(n) ). As the main technical contribution, for any constant 2/3 <; ρ <; 1, we present a deterministic algorithm that given a positive integer s , runs in time poly ( s ) and constructs a code C of length poly ( s ) with an explicit Hamming ball of radius ρ d ( C ), such that the projection at the first s coordinates sends the codewords in the ball surjectively onto a linear subspace of dimension s , where d ( C ) denotes the minimum distance of C . The codes are obtained by concatenating Reed-Solomon codes with Hadamard codes.
AbstractList Determining the minimum distance of a linear code is one of the most important problems in algorithmic coding theory. The exact version of the problem was shown to be NP-complete by Vardy. The gap version of the problem was shown to be NP-hard for any constant factor under a randomized reduction in an earlier work. It was shown in the same paper that the minimum distance problem is not approximable in randomized polynomial time to the factor 2 log 1 - epsilon n unless NP [subE] RTIME ( 2 polylog ( n ) ) . In this paper, we derandomize the reduction and thus prove that there is no deterministic polynomial time algorithm to approximate the minimum distance to any constant factor unless P = NP . We also prove that the minimum distance is not approximable in deterministic polynomial time to the factor 2 log 1 - epsilon n unless NP [subE] DTIME ( 2 polylog ( n ) ) . As the main technical contribution, for any constant 2 / 3 < rho < 1 , we present a deterministic algorithm that given a positive integer s , runs in time poly ( s ) and constructs a code cal C of length poly ( s ) with an explicit Hamming ball of radius rho d ( cal C ) , such that the projection at the first s coordinates sends the codewords in the ball surjectively onto a linear subspace of dimension s , where d ( cal C ) denotes the minimum distance of cal C . The codes are obtained by concatenating Reed-Solomon codes with Hadamard codes.
Determining the minimum distance of a linear code is one of the most important problems in algorithmic coding theory. The exact version of the problem was shown to be NP-complete by Vardy. The gap version of the problem was shown to be NP-hard for any constant factor under a randomized reduction in an earlier work. It was shown in the same paper that the minimum distance problem is not approximable in randomized polynomial time to the factor $2^{log^{1-epsilon}n}$ unless $NPsubseteq RTIME(2^{polylog(n)})$. In this paper, we derandomize the reduction and thus prove that there is no deterministic polynomial time algorithm to approximate the minimum distance to any constant factor unless $P=NP$. We also prove that the minimum distance is not approximable in deterministic polynomial time to the factor $2^{log^{1-epsilon}n}$ unless $NPsubseteq DTIME(2^{polylog(n)})$. As the main technical contribution, for any constant $2/3 < rho < 1$, we present a deterministic algorithm that given a positive integer $s$ , runs in time $poly(s)$ and constructs a code ${cal C}$ of length $poly(s)$ with an explicit Hamming ball of radius $rho d({cal C})$, such that the projection at the first $s$- /formula> coordinates sends the codewords in the ball surjectively onto a linear subspace of dimension $s$ , where $d({cal C})$ denotes the minimum distance of ${cal C}$. The codes are obtained by concatenating Reed-Solomon codes with Hadamard codes. [PUBLICATION ABSTRACT]
Determining the minimum distance of a linear code is one of the most important problems in algorithmic coding theory. The exact version of the problem was shown to be NP-complete by Vardy. The gap version of the problem was shown to be NP-hard for any constant factor under a randomized reduction in an earlier work. It was shown in the same paper that the minimum distance problem is not approximable in randomized polynomial time to the factor 2 log1-ϵ n unless NP ⊆ RTIME (2polylog(n) ). In this paper, we derandomize the reduction and thus prove that there is no deterministic polynomial time algorithm to approximate the minimum distance to any constant factor unless P = NP . We also prove that the minimum distance is not approximable in deterministic polynomial time to the factor 2 log1-ϵ n unless NP ⊆ DTIME (2polylog(n) ). As the main technical contribution, for any constant 2/3 <; ρ <; 1, we present a deterministic algorithm that given a positive integer s , runs in time poly ( s ) and constructs a code C of length poly ( s ) with an explicit Hamming ball of radius ρ d ( C ), such that the projection at the first s coordinates sends the codewords in the ball surjectively onto a linear subspace of dimension s , where d ( C ) denotes the minimum distance of C . The codes are obtained by concatenating Reed-Solomon codes with Hadamard codes.
Author Qi Cheng
Daqing Wan
Author_xml – sequence: 1
  givenname: Qi
  surname: Cheng
  fullname: Cheng, Qi
– sequence: 2
  givenname: Daqing
  surname: Wan
  fullname: Wan, Daqing
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26625753$$DView record in Pascal Francis
BookMark eNp9kDtrHDEURkWwIWs7fSDNQAikmbXu1WOkJmDsxDbYJIRNLTTaO0RmHhtppvC_t5ZdXLhIdfm459PjnLGTcRqJsY_A1wDcXm7uN2vkgGtEbsGad2wFSjW11UqesBXnYGorpXnPznJ-KlEqwBX7dlXd0ExpiGPMcwzVb9ouYY7TWHVTqua_VN36XfVY1sMyVDcF8mOg6lea2p6GC3ba-T7Th-M8Z39-fN9c39UPP2_vr68e6iCUnGtvMQBa7r0iaDyB2RJvtt4LbBsjG4FKtEIpJRA7WbLkvAWjwLTGd5rEOft6OHeXpn8L5dkNMQfqez_StGQHQitQ2kpT0M9v0KdpSWN5nQMAyVGhhUJ9OVI-B993qfwqZrdLcfDp2aHWqBolCscPXEhTzom6VwS424t3Rbzbi3dH8aWi31RCnP1e6Zx87P9X_HQoRiJ6vUejNkKieAFdRI59
CODEN IETTAW
CitedBy_id crossref_primary_10_1016_j_jnt_2019_05_004
crossref_primary_10_1109_TIT_2016_2616127
crossref_primary_10_1007_s00493_015_3330_5
crossref_primary_10_1137_23M1573021
crossref_primary_10_1007_s00453_015_0098_3
crossref_primary_10_1145_3444942
crossref_primary_10_1007_s00493_019_4113_1
crossref_primary_10_1016_j_jnt_2023_05_003
crossref_primary_10_1016_j_jnt_2016_10_008
crossref_primary_10_1145_3586165_3586172
crossref_primary_10_1109_TIT_2014_2340869
crossref_primary_10_1109_TIT_2019_2933625
Cites_doi 10.1006/jcss.1997.1472
10.1007/978-3-642-22006-7_40
10.1006/jcss.1999.1649
10.1145/800157.805047
10.1109/TIT.1978.1055873
10.1145/1089023.1089027
10.1090/S0025-5718-97-00835-1
10.1137/S0097539705447335
10.1145/276698.276705
10.1145/1250790.1250859
10.1007/978-3-540-70575-8_24
10.1090/S0025-5718-1990-0993933-0
10.1109/TIT.2002.806118
10.1137/S0097539700373039
10.1109/18.641542
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TIT.2012.2209198
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1557-9654
EndPage 6941
ExternalDocumentID 2795063251
26625753
10_1109_TIT_2012_2209198
6268342
Genre orig-research
Feature
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
AAYOK
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c354t-a92c1290aa5e17ae18de07daa32b78473253b3555322f4473400b18518b8af6e3
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310156500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Wed Oct 01 13:56:22 EDT 2025
Mon Jun 30 05:32:49 EDT 2025
Wed Apr 02 08:12:31 EDT 2025
Tue Nov 18 22:00:27 EST 2025
Sat Nov 29 03:53:15 EST 2025
Tue Aug 26 17:18:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Reed Solomon code
Hamming distance
Subspace method
Carrier to noise ratio
NP-complete
Polynomial method
Approximation algorithm
Polynomial time
Linear code
coding theory
Coding
NP hard problem
NP complete problem
Minimal distance
Deterministic approach
minimum distance problem
Hadamard codes
Deterministic algorithms
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-a92c1290aa5e17ae18de07daa32b78473253b3555322f4473400b18518b8af6e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1114025291
PQPubID 36024
PageCount 7
ParticipantIDs proquest_journals_1114025291
proquest_miscellaneous_1365156948
pascalfrancis_primary_26625753
crossref_primary_10_1109_TIT_2012_2209198
ieee_primary_6268342
crossref_citationtrail_10_1109_TIT_2012_2209198
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref2
ref1
ref16
ref8
ref7
ref9
van emde boas (ref14) 1981
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1006/jcss.1997.1472
– year: 1981
  ident: ref14
  publication-title: Another NP-complete problem and the complexity of computing short vectors in a lattice
– ident: ref3
  doi: 10.1007/978-3-642-22006-7_40
– ident: ref5
  doi: 10.1006/jcss.1999.1649
– ident: ref8
  doi: 10.1145/800157.805047
– ident: ref4
  doi: 10.1109/TIT.1978.1055873
– ident: ref11
  doi: 10.1145/1089023.1089027
– ident: ref16
  doi: 10.1090/S0025-5718-97-00835-1
– ident: ref6
  doi: 10.1137/S0097539705447335
– ident: ref1
  doi: 10.1145/276698.276705
– ident: ref10
  doi: 10.1145/1250790.1250859
– ident: ref7
  doi: 10.1007/978-3-540-70575-8_24
– ident: ref13
  doi: 10.1090/S0025-5718-1990-0993933-0
– ident: ref9
  doi: 10.1109/TIT.2002.806118
– ident: ref12
  doi: 10.1137/S0097539700373039
– ident: ref15
  doi: 10.1109/18.641542
SSID ssj0014512
Score 2.1991465
Snippet Determining the minimum distance of a linear code is one of the most important problems in algorithmic coding theory. The exact version of the problem was...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6935
SubjectTerms Algorithms
Applied sciences
Approximation
Approximation algorithm
Approximation algorithms
Coding
coding theory
Coding, codes
Error correcting codes
Exact sciences and technology
Hamming codes
Information theory
Information, signal and communications theory
Lattices
Linear code
minimum distance problem
NP-complete
Polynomials
Projection
Reduction
Reed-Solomon codes
Signal and communications theory
Subspaces
Telecommunications and information theory
Vectors
Title A Deterministic Reduction for the Gap Minimum Distance Problem
URI https://ieeexplore.ieee.org/document/6268342
https://www.proquest.com/docview/1114025291
https://www.proquest.com/docview/1365156948
Volume 58
WOSCitedRecordID wos000310156500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-m-KAPfk2xOiWCL4J1bZO0yYsw_H5QhkzwrVzbFATXjX3493tpu-JQBN9akqbhLpf7Xe5yB3DGw0QierkbGjJRhEjR1QKli3mqpJf4GIikLDYRPT-rtzfdb8FFcxfGGFMGn5lL-1j68rNROrdHZV0C34oL2nBXoiis7mo1HgMh_SozuE8CTDbHwiXp6e7gcWBjuILLICDtqNWSCiprqtiISJwSUfKqmsWPjbnUNndb_5vnNmzWqJL1qmWwAy1T7MLWomIDqwV4Fza-pR9sw1WP3dTRMGW6ZvZi87haTjGCsoygIbvHMXui5uF8yG4s1KRhWL8qQrMHr3e3g-sHt66n4KZcipmLOkjtsROiNH6ExleZ8aIMkQdJRFqKB5InhD8kCXku6J3kOyF97qtEYR4avg-rxagwB8AiY-wgmlhJrE0EEkpUhrCXwMzjInWguyBxnNbJxm3Ni4-4NDo8HRNTYsuUuGaKA-fNF-Mq0cYffduW6E2_mt4OnCxxsWknEEI7k-QOdBZsjWtRnVoTiGxoGWjfgdOmmYTMek6wMKM59eG2YnyohTr8_ddHsG4nWF1S7MDqbDI3x7CWfs7ep5OTcqV-AdXj47Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-GCuqDU6dYP2YEXwTr2nysyYsgzi_UITLBt3LtUhB0k33493tpu6Iogm8tSdNwl8v9Lne5AzgU7UQhBpnftmSiSJmibyQqH7NUqyAJkcskLzYRdbv6-dk81OC4ugtjrc2Dz-yJe8x9-f1hOnVHZS0C31pI2nDnlZQ8KG5rVT4DqcIiN3hIIkxWx8wpGZhW76bnorj4CeekH43-poTyqiouJhLHRJasqGfxY2vO9c1l_X8zXYWVEleys2IhrEHNDtahPqvZwEoRXoflLwkIG3B6xjplPEyesJk9ukyujleMwCwjcMiu8J3dU_Pb9I11HNikYdhDUYZmA54uL3rn135ZUcFPhZITHw1P3cETorJhhDbUfRtEfUTBk4j0lOBKJIRAFIl5JumdJDwhjR7qRGPWtmIT5gbDgd0CFlnrBjHETGJuIpFworaEviT2AyFTD1ozEsdpmW7cVb14jXOzIzAxMSV2TIlLpnhwVH3xXqTa-KNvwxG96lfS24PmNy5W7QRDaG9SwoPdGVvjUljHzggiK1pxE3pwUDWTmDnfCQ7scEp9hKsZ3zZSb__-631YvO7d38V3N93bHVhyky2uLO7C3GQ0tXuwkH5MXsajZr5qPwHV6eb7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deterministic+Reduction+for+the+Gap+Minimum+Distance+Problem&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Cheng%2C+Qi&rft.au=Wan%2C+Daqing&rft.date=2012-11-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=58&rft.issue=11&rft.spage=6935&rft.epage=6941&rft_id=info:doi/10.1109%2FTIT.2012.2209198&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon