A nearly optimal randomized algorithm for explorable heap selection
Explorable heap selection is the problem of selecting the n th smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has uni...
Uložené v:
| Vydané v: | Mathematical programming Ročník 210; číslo 1-2; s. 75 - 96 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Springer Berlin Heidelberg
01.03.2025
|
| Predmet: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Explorable heap selection is the problem of selecting the n th smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS ’86), who gave deterministic and randomized $$n\cdot \exp (O(\sqrt{\log {n}}))$$ n · exp ( O ( log n ) ) time algorithms using $$O(\log (n)^{2.5})$$ O ( log ( n ) 2.5 ) and $$O(\sqrt{\log n})$$ O ( log n ) space respectively. We present a new randomized algorithm with running time $$O(n\log (n)^3)$$ O ( n log ( n ) 3 ) against an oblivious adversary using $$O(\log n)$$ O ( log n ) space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an $$\Omega (\log (n)n/\log (\log (n)))$$ Ω ( log ( n ) n / log ( log ( n ) ) ) lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal. |
|---|---|
| AbstractList | Explorable heap selection is the problem of selecting the nth smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS ’86), who gave deterministic and randomized $$n\cdot \exp (O(\sqrt{\log {n}}))$$ n·exp(O(logn)) time algorithms using $$O(\log (n)^{2.5})$$ O(log(n)2.5) and $$O(\sqrt{\log n})$$ O(logn) space respectively. We present a new randomized algorithm with running time $$O(n\log (n)^3)$$ O(nlog(n)3) against an oblivious adversary using $$O(\log n)$$ O(logn) space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an $$\Omega (\log (n)n/\log (\log (n)))$$ Ω(log(n)n/log(log(n))) lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal. Explorable heap selection is the problem of selecting the n th smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS ’86), who gave deterministic and randomized $$n\cdot \exp (O(\sqrt{\log {n}}))$$ n · exp ( O ( log n ) ) time algorithms using $$O(\log (n)^{2.5})$$ O ( log ( n ) 2.5 ) and $$O(\sqrt{\log n})$$ O ( log n ) space respectively. We present a new randomized algorithm with running time $$O(n\log (n)^3)$$ O ( n log ( n ) 3 ) against an oblivious adversary using $$O(\log n)$$ O ( log n ) space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an $$\Omega (\log (n)n/\log (\log (n)))$$ Ω ( log ( n ) n / log ( log ( n ) ) ) lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal. Explorable heap selection is the problem of selecting the nth smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS '86), who gave deterministic and randomized n · exp ( O ( log n ) ) time algorithms using O ( log ( n ) 2.5 ) and O ( log n ) space respectively. We present a new randomized algorithm with running time O ( n log ( n ) 3 ) against an oblivious adversary using O ( log n ) space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an Ω ( log ( n ) n / log ( log ( n ) ) ) lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal.Explorable heap selection is the problem of selecting the nth smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS '86), who gave deterministic and randomized n · exp ( O ( log n ) ) time algorithms using O ( log ( n ) 2.5 ) and O ( log n ) space respectively. We present a new randomized algorithm with running time O ( n log ( n ) 3 ) against an oblivious adversary using O ( log n ) space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an Ω ( log ( n ) n / log ( log ( n ) ) ) lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal. Explorable heap selection is the problem of selecting the th smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS '86), who gave deterministic and randomized time algorithms using and space respectively. We present a new randomized algorithm with running time against an oblivious adversary using space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal. |
| Author | Huiberts, Sophie Kashaev, Danish Dadush, Daniel Borst, Sander |
| Author_xml | – sequence: 1 givenname: Sander orcidid: 0000-0003-4001-6675 surname: Borst fullname: Borst, Sander – sequence: 2 givenname: Daniel orcidid: 0000-0001-5577-5012 surname: Dadush fullname: Dadush, Daniel – sequence: 3 givenname: Sophie orcidid: 0000-0003-2633-014X surname: Huiberts fullname: Huiberts, Sophie – sequence: 4 givenname: Danish orcidid: 0000-0002-7999-4989 surname: Kashaev fullname: Kashaev, Danish |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40026603$$D View this record in MEDLINE/PubMed |
| BookMark | eNpVkctOwzAQRS1URB_wAyxQlmwCnthxkhWqKl5SJTbdW04yboOcONgponw9hpYKFqOR5l6dGc2dklFnOyTkEugNUJrdeqBAs5gmPBTwNE5PyAQ4EzEXXIzIhNIkDAXQMZl6_0opBZbnZ2TMgyIEZROymEcdKmd2ke2HplUmcqqrbdt8Yh0ps7auGTZtpK2L8KM31qnSYLRB1UceDVZDY7tzcqqV8Xhx6DOyerhfLZ7i5cvj82K-jCuW8iEuhGaQalViXeWoKwU5FzVyKDXkVHMNQuki1QVTWKLOOXBelgWKRPG0qtiM3O2x_bZsAwO7wSkjexfOdjtpVSP_K12zkWv7LgHyjBYJC4TrA8HZty36QbaNr9AY1aHdeskgYzy8k6fBevV32XHL7-eCIdkbKme9d6iPFqDyOx65j0cGnvyJR6bsC6QihD0 |
| Cites_doi | 10.1007/3-540-60692-0_38 10.1016/j.orl.2004.04.002 10.1007/BF02025534 10.1016/j.jalgor.2003.10.002 10.1016/0304-3975(80)90061-4 10.1017/CBO9780511813603 10.1016/0304-3975(94)90155-4 10.1016/j.disopt.2016.01.005 10.1016/j.jpdc.2014.09.007 10.1006/inco.1993.1030 10.1287/ijoc.11.2.173 10.1007/s11750-017-0451-6 10.4230/LIPIcs.ESA.2023.11 10.1023/A:1018952429396 10.1016/j.tcs.2012.06.034 10.1007/978-3-031-32726-1_3 10.1007/b100809 10.1109/SFCS.1986.34 10.1007/BFb0029571 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024. – notice: The Author(s) 2024 2024 |
| DBID | AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1007/s10107-024-02145-5 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 96 |
| ExternalDocumentID | PMC11870923 40026603 10_1007_s10107_024_02145_5 |
| Genre | Journal Article |
| GroupedDBID | --K --Z -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADXHL ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHQJS AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAYZH AESKC NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c354t-96f315fabedc8efca1846de41bf180f4f16af95f93aebef84144bb9e62a45cc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001350643800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Tue Nov 04 02:05:17 EST 2025 Fri Sep 05 08:29:32 EDT 2025 Mon Jul 21 06:06:21 EDT 2025 Sat Nov 29 08:14:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Online algorithm Branch and bound Graph exploration Node selection |
| Language | English |
| License | The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c354t-96f315fabedc8efca1846de41bf180f4f16af95f93aebef84144bb9e62a45cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5577-5012 0000-0003-2633-014X 0000-0003-4001-6675 0000-0002-7999-4989 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11870923 |
| PMID | 40026603 |
| PQID | 3173402445 |
| PQPubID | 23479 |
| PageCount | 22 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11870923 proquest_miscellaneous_3173402445 pubmed_primary_40026603 crossref_primary_10_1007_s10107_024_02145_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Berlin/Heidelberg |
| PublicationTitle | Mathematical programming |
| PublicationTitleAlternate | Math Program |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | B Kalyanasundaram (2145_CR20) 1994; 130 DR Morrison (2145_CR10) 2016; 19 2145_CR12 GN Frederickson (2145_CR3) 1993; 104 J Clausen (2145_CR8) 1999; 90 2145_CR17 JT Linderoth (2145_CR4) 1999; 2 LM Suhl (2145_CR11) 1993; 43 2145_CR18 2145_CR9 2145_CR15 M Mitzenmacher (2145_CR23) 2005 A Pietracaprina (2145_CR13) 2015; 76 2145_CR16 T Achterberg (2145_CR5) 2005; 33 2145_CR7 2145_CR14 N Megow (2145_CR19) 2012; 463 2145_CR2 2145_CR1 A Lodi (2145_CR6) 2017; 25 JI Munro (2145_CR22) 1980; 12 K Diks (2145_CR21) 2004; 51 |
| References_xml | – ident: 2145_CR15 doi: 10.1007/3-540-60692-0_38 – volume: 33 start-page: 42 issue: 1 year: 2005 ident: 2145_CR5 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2004.04.002 – volume: 43 start-page: 33 issue: 1 year: 1993 ident: 2145_CR11 publication-title: Ann. Oper. Res. doi: 10.1007/BF02025534 – volume: 51 start-page: 38 issue: 1 year: 2004 ident: 2145_CR21 publication-title: J. Algorithms doi: 10.1016/j.jalgor.2003.10.002 – volume: 12 start-page: 315 issue: 3 year: 1980 ident: 2145_CR22 publication-title: Theoret. Comput. Sci. doi: 10.1016/0304-3975(80)90061-4 – volume-title: Probability and Computing: An Introduction to Randomized Algorithms and Probabilistic Analysis year: 2005 ident: 2145_CR23 doi: 10.1017/CBO9780511813603 – ident: 2145_CR9 – volume: 130 start-page: 125 issue: 1 year: 1994 ident: 2145_CR20 publication-title: Theoret. Comput. Sci. doi: 10.1016/0304-3975(94)90155-4 – volume: 19 start-page: 79 year: 2016 ident: 2145_CR10 publication-title: Discret. Optim. doi: 10.1016/j.disopt.2016.01.005 – volume: 76 start-page: 58 year: 2015 ident: 2145_CR13 publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2014.09.007 – ident: 2145_CR7 – volume: 104 start-page: 197 issue: 2 year: 1993 ident: 2145_CR3 publication-title: Inf. Comput. doi: 10.1006/inco.1993.1030 – volume: 2 start-page: 173 year: 1999 ident: 2145_CR4 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.11.2.173 – volume: 25 start-page: 207 issue: 2 year: 2017 ident: 2145_CR6 publication-title: TOP doi: 10.1007/s11750-017-0451-6 – ident: 2145_CR18 doi: 10.4230/LIPIcs.ESA.2023.11 – volume: 90 start-page: 1 year: 1999 ident: 2145_CR8 publication-title: Ann. Oper. Res. doi: 10.1023/A:1018952429396 – volume: 463 start-page: 62 year: 2012 ident: 2145_CR19 publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2012.06.034 – ident: 2145_CR1 doi: 10.1007/978-3-031-32726-1_3 – ident: 2145_CR12 – ident: 2145_CR14 doi: 10.1007/b100809 – ident: 2145_CR2 doi: 10.1109/SFCS.1986.34 – ident: 2145_CR16 doi: 10.1007/BFb0029571 – ident: 2145_CR17 |
| SSID | ssj0001388 |
| Score | 2.442377 |
| Snippet | Explorable heap selection is the problem of selecting the n th smallest value in a binary heap. The key values can only be accessed by traversing through the... Explorable heap selection is the problem of selecting the th smallest value in a binary heap. The key values can only be accessed by traversing through the... Explorable heap selection is the problem of selecting the nth smallest value in a binary heap. The key values can only be accessed by traversing through the... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 75 |
| SubjectTerms | Full Length Paper |
| Title | A nearly optimal randomized algorithm for explorable heap selection |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40026603 https://www.proquest.com/docview/3173402445 https://pubmed.ncbi.nlm.nih.gov/PMC11870923 |
| Volume | 210 |
| WOSCitedRecordID | wos001350643800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGxAEOvB_jMQWJG1TqI2nT4zQxcWFCMKHdqjRNWCXWTmvHgV-P021l43HgWDWJUttyPjf2Z4BrGgQiUIlvCZf6FmVCW0KiM0RkQDXGK5wzUTWbCPp9PhyGjw24_fMG3xS5OeZ3mkstw-_FLFNR7viuaVfw9PxSu13H43zZn9WAgkWFzO9LrJ9CP6Dl9wzJlSOnt_u_ze7BzgJaks7cFvahobID2F4hHMSnh5qltTiEbodkyhAckxwdxxjn4sGV5OP0QyVEvL3m07QcjQnCWqKqVD1TZkXQe09IUbXPQZ0ewaB3N-jeW4umCpb0GC2t0Neew7SI8eO40lJgiOcnijqxdritqXZ8oUOmQ0-gfjWnGHHFcah8V1AmpXcMzSzP1CmQGN1BRQ8nWEwRZcWBDmwqNQ6U3E6SFtwsZRxN5tQZ0RdJspFThHKKKjlFrAVXSzVEaOHm2kJkKp8VESIcD62GUhxzMldLvR41MaRvey3gawqrBxj27PU3WTqqWLRNn3Ub4e3Zv7Z5DluusbAqC-0CmuV0pi5hU76XaTFtw0Yw5O3KLj8BX2nZ-g |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nearly+optimal+randomized+algorithm+for+explorable+heap+selection&rft.jtitle=Mathematical+programming&rft.au=Borst%2C+Sander&rft.au=Dadush%2C+Daniel&rft.au=Huiberts%2C+Sophie&rft.au=Kashaev%2C+Danish&rft.date=2025-03-01&rft.issn=0025-5610&rft.volume=210&rft.issue=1-2&rft.spage=75&rft_id=info:doi/10.1007%2Fs10107-024-02145-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |