A nearly optimal randomized algorithm for explorable heap selection

Explorable heap selection is the problem of selecting the n th smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has uni...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 210; číslo 1-2; s. 75 - 96
Hlavní autori: Borst, Sander, Dadush, Daniel, Huiberts, Sophie, Kashaev, Danish
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Springer Berlin Heidelberg 01.03.2025
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Explorable heap selection is the problem of selecting the n th smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS ’86), who gave deterministic and randomized $$n\cdot \exp (O(\sqrt{\log {n}}))$$ n · exp ( O ( log n ) ) time algorithms using $$O(\log (n)^{2.5})$$ O ( log ( n ) 2.5 ) and $$O(\sqrt{\log n})$$ O ( log n ) space respectively. We present a new randomized algorithm with running time $$O(n\log (n)^3)$$ O ( n log ( n ) 3 ) against an oblivious adversary using $$O(\log n)$$ O ( log n ) space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an $$\Omega (\log (n)n/\log (\log (n)))$$ Ω ( log ( n ) n / log ( log ( n ) ) ) lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal.
AbstractList Explorable heap selection is the problem of selecting the nth smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS ’86), who gave deterministic and randomized $$n\cdot \exp (O(\sqrt{\log {n}}))$$ n·exp(O(logn)) time algorithms using $$O(\log (n)^{2.5})$$ O(log(n)2.5) and $$O(\sqrt{\log n})$$ O(logn) space respectively. We present a new randomized algorithm with running time $$O(n\log (n)^3)$$ O(nlog(n)3) against an oblivious adversary using $$O(\log n)$$ O(logn) space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an $$\Omega (\log (n)n/\log (\log (n)))$$ Ω(log(n)n/log(log(n))) lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal.
Explorable heap selection is the problem of selecting the n th smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS ’86), who gave deterministic and randomized $$n\cdot \exp (O(\sqrt{\log {n}}))$$ n · exp ( O ( log n ) ) time algorithms using $$O(\log (n)^{2.5})$$ O ( log ( n ) 2.5 ) and $$O(\sqrt{\log n})$$ O ( log n ) space respectively. We present a new randomized algorithm with running time $$O(n\log (n)^3)$$ O ( n log ( n ) 3 ) against an oblivious adversary using $$O(\log n)$$ O ( log n ) space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an $$\Omega (\log (n)n/\log (\log (n)))$$ Ω ( log ( n ) n / log ( log ( n ) ) ) lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal.
Explorable heap selection is the problem of selecting the nth smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS '86), who gave deterministic and randomized n · exp ( O ( log n ) ) time algorithms using O ( log ( n ) 2.5 ) and O ( log n ) space respectively. We present a new randomized algorithm with running time O ( n log ( n ) 3 ) against an oblivious adversary using O ( log n ) space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an Ω ( log ( n ) n / log ( log ( n ) ) ) lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal.Explorable heap selection is the problem of selecting the nth smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS '86), who gave deterministic and randomized n · exp ( O ( log n ) ) time algorithms using O ( log ( n ) 2.5 ) and O ( log n ) space respectively. We present a new randomized algorithm with running time O ( n log ( n ) 3 ) against an oblivious adversary using O ( log n ) space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an Ω ( log ( n ) n / log ( log ( n ) ) ) lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal.
Explorable heap selection is the problem of selecting the th smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS '86), who gave deterministic and randomized time algorithms using and space respectively. We present a new randomized algorithm with running time against an oblivious adversary using space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal.
Author Huiberts, Sophie
Kashaev, Danish
Dadush, Daniel
Borst, Sander
Author_xml – sequence: 1
  givenname: Sander
  orcidid: 0000-0003-4001-6675
  surname: Borst
  fullname: Borst, Sander
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0001-5577-5012
  surname: Dadush
  fullname: Dadush, Daniel
– sequence: 3
  givenname: Sophie
  orcidid: 0000-0003-2633-014X
  surname: Huiberts
  fullname: Huiberts, Sophie
– sequence: 4
  givenname: Danish
  orcidid: 0000-0002-7999-4989
  surname: Kashaev
  fullname: Kashaev, Danish
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40026603$$D View this record in MEDLINE/PubMed
BookMark eNpVkctOwzAQRS1URB_wAyxQlmwCnthxkhWqKl5SJTbdW04yboOcONgponw9hpYKFqOR5l6dGc2dklFnOyTkEugNUJrdeqBAs5gmPBTwNE5PyAQ4EzEXXIzIhNIkDAXQMZl6_0opBZbnZ2TMgyIEZROymEcdKmd2ke2HplUmcqqrbdt8Yh0ps7auGTZtpK2L8KM31qnSYLRB1UceDVZDY7tzcqqV8Xhx6DOyerhfLZ7i5cvj82K-jCuW8iEuhGaQalViXeWoKwU5FzVyKDXkVHMNQuki1QVTWKLOOXBelgWKRPG0qtiM3O2x_bZsAwO7wSkjexfOdjtpVSP_K12zkWv7LgHyjBYJC4TrA8HZty36QbaNr9AY1aHdeskgYzy8k6fBevV32XHL7-eCIdkbKme9d6iPFqDyOx65j0cGnvyJR6bsC6QihD0
Cites_doi 10.1007/3-540-60692-0_38
10.1016/j.orl.2004.04.002
10.1007/BF02025534
10.1016/j.jalgor.2003.10.002
10.1016/0304-3975(80)90061-4
10.1017/CBO9780511813603
10.1016/0304-3975(94)90155-4
10.1016/j.disopt.2016.01.005
10.1016/j.jpdc.2014.09.007
10.1006/inco.1993.1030
10.1287/ijoc.11.2.173
10.1007/s11750-017-0451-6
10.4230/LIPIcs.ESA.2023.11
10.1023/A:1018952429396
10.1016/j.tcs.2012.06.034
10.1007/978-3-031-32726-1_3
10.1007/b100809
10.1109/SFCS.1986.34
10.1007/BFb0029571
ContentType Journal Article
Copyright The Author(s) 2024.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024.
– notice: The Author(s) 2024 2024
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s10107-024-02145-5
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 96
ExternalDocumentID PMC11870923
40026603
10_1007_s10107_024_02145_5
Genre Journal Article
GroupedDBID --K
--Z
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADXHL
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAYZH
AESKC
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c354t-96f315fabedc8efca1846de41bf180f4f16af95f93aebef84144bb9e62a45cc3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001350643800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Tue Nov 04 02:05:17 EST 2025
Fri Sep 05 08:29:32 EDT 2025
Mon Jul 21 06:06:21 EDT 2025
Sat Nov 29 08:14:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Online algorithm
Branch and bound
Graph exploration
Node selection
Language English
License The Author(s) 2024.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-96f315fabedc8efca1846de41bf180f4f16af95f93aebef84144bb9e62a45cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5577-5012
0000-0003-2633-014X
0000-0003-4001-6675
0000-0002-7999-4989
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11870923
PMID 40026603
PQID 3173402445
PQPubID 23479
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11870923
proquest_miscellaneous_3173402445
pubmed_primary_40026603
crossref_primary_10_1007_s10107_024_02145_5
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Berlin/Heidelberg
PublicationTitle Mathematical programming
PublicationTitleAlternate Math Program
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References B Kalyanasundaram (2145_CR20) 1994; 130
DR Morrison (2145_CR10) 2016; 19
2145_CR12
GN Frederickson (2145_CR3) 1993; 104
J Clausen (2145_CR8) 1999; 90
2145_CR17
JT Linderoth (2145_CR4) 1999; 2
LM Suhl (2145_CR11) 1993; 43
2145_CR18
2145_CR9
2145_CR15
M Mitzenmacher (2145_CR23) 2005
A Pietracaprina (2145_CR13) 2015; 76
2145_CR16
T Achterberg (2145_CR5) 2005; 33
2145_CR7
2145_CR14
N Megow (2145_CR19) 2012; 463
2145_CR2
2145_CR1
A Lodi (2145_CR6) 2017; 25
JI Munro (2145_CR22) 1980; 12
K Diks (2145_CR21) 2004; 51
References_xml – ident: 2145_CR15
  doi: 10.1007/3-540-60692-0_38
– volume: 33
  start-page: 42
  issue: 1
  year: 2005
  ident: 2145_CR5
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2004.04.002
– volume: 43
  start-page: 33
  issue: 1
  year: 1993
  ident: 2145_CR11
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02025534
– volume: 51
  start-page: 38
  issue: 1
  year: 2004
  ident: 2145_CR21
  publication-title: J. Algorithms
  doi: 10.1016/j.jalgor.2003.10.002
– volume: 12
  start-page: 315
  issue: 3
  year: 1980
  ident: 2145_CR22
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(80)90061-4
– volume-title: Probability and Computing: An Introduction to Randomized Algorithms and Probabilistic Analysis
  year: 2005
  ident: 2145_CR23
  doi: 10.1017/CBO9780511813603
– ident: 2145_CR9
– volume: 130
  start-page: 125
  issue: 1
  year: 1994
  ident: 2145_CR20
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(94)90155-4
– volume: 19
  start-page: 79
  year: 2016
  ident: 2145_CR10
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2016.01.005
– volume: 76
  start-page: 58
  year: 2015
  ident: 2145_CR13
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2014.09.007
– ident: 2145_CR7
– volume: 104
  start-page: 197
  issue: 2
  year: 1993
  ident: 2145_CR3
  publication-title: Inf. Comput.
  doi: 10.1006/inco.1993.1030
– volume: 2
  start-page: 173
  year: 1999
  ident: 2145_CR4
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.11.2.173
– volume: 25
  start-page: 207
  issue: 2
  year: 2017
  ident: 2145_CR6
  publication-title: TOP
  doi: 10.1007/s11750-017-0451-6
– ident: 2145_CR18
  doi: 10.4230/LIPIcs.ESA.2023.11
– volume: 90
  start-page: 1
  year: 1999
  ident: 2145_CR8
  publication-title: Ann. Oper. Res.
  doi: 10.1023/A:1018952429396
– volume: 463
  start-page: 62
  year: 2012
  ident: 2145_CR19
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2012.06.034
– ident: 2145_CR1
  doi: 10.1007/978-3-031-32726-1_3
– ident: 2145_CR12
– ident: 2145_CR14
  doi: 10.1007/b100809
– ident: 2145_CR2
  doi: 10.1109/SFCS.1986.34
– ident: 2145_CR16
  doi: 10.1007/BFb0029571
– ident: 2145_CR17
SSID ssj0001388
Score 2.442377
Snippet Explorable heap selection is the problem of selecting the n th smallest value in a binary heap. The key values can only be accessed by traversing through the...
Explorable heap selection is the problem of selecting the th smallest value in a binary heap. The key values can only be accessed by traversing through the...
Explorable heap selection is the problem of selecting the nth smallest value in a binary heap. The key values can only be accessed by traversing through the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 75
SubjectTerms Full Length Paper
Title A nearly optimal randomized algorithm for explorable heap selection
URI https://www.ncbi.nlm.nih.gov/pubmed/40026603
https://www.proquest.com/docview/3173402445
https://pubmed.ncbi.nlm.nih.gov/PMC11870923
Volume 210
WOSCitedRecordID wos001350643800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGxAEOvB_jMQWJG1TqI2nT4zQxcWFCMKHdqjRNWCXWTmvHgV-P021l43HgWDWJUttyPjf2Z4BrGgQiUIlvCZf6FmVCW0KiM0RkQDXGK5wzUTWbCPp9PhyGjw24_fMG3xS5OeZ3mkstw-_FLFNR7viuaVfw9PxSu13H43zZn9WAgkWFzO9LrJ9CP6Dl9wzJlSOnt_u_ze7BzgJaks7cFvahobID2F4hHMSnh5qltTiEbodkyhAckxwdxxjn4sGV5OP0QyVEvL3m07QcjQnCWqKqVD1TZkXQe09IUbXPQZ0ewaB3N-jeW4umCpb0GC2t0Neew7SI8eO40lJgiOcnijqxdritqXZ8oUOmQ0-gfjWnGHHFcah8V1AmpXcMzSzP1CmQGN1BRQ8nWEwRZcWBDmwqNQ6U3E6SFtwsZRxN5tQZ0RdJspFThHKKKjlFrAVXSzVEaOHm2kJkKp8VESIcD62GUhxzMldLvR41MaRvey3gawqrBxj27PU3WTqqWLRNn3Ub4e3Zv7Z5DluusbAqC-0CmuV0pi5hU76XaTFtw0Yw5O3KLj8BX2nZ-g
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nearly+optimal+randomized+algorithm+for+explorable+heap+selection&rft.jtitle=Mathematical+programming&rft.au=Borst%2C+Sander&rft.au=Dadush%2C+Daniel&rft.au=Huiberts%2C+Sophie&rft.au=Kashaev%2C+Danish&rft.date=2025-03-01&rft.issn=0025-5610&rft.volume=210&rft.issue=1-2&rft.spage=75&rft_id=info:doi/10.1007%2Fs10107-024-02145-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon