Surrogate Model Based on Data-Driven Model Reduction for Inelastic Behavior of Composite Microstructure

On the microscale, most composite materials are composed of heterogeneous materials comprising two or more different phases, such as matrices and inclusions. In addition, composite materials may exhibit high variability, depending on the material and amount of material used. Hence, the effect of mic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of aeronautical and space sciences Ročník 24; číslo 3; s. 732 - 752
Hlavní autoři: Kim, Hyejin, Jeong, Inho, Cho, Haeseong, Cho, Maenghyo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Seoul The Korean Society for Aeronautical & Space Sciences (KSAS) 01.07.2023
Springer Nature B.V
한국항공우주학회
Témata:
ISSN:2093-274X, 2093-2480
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract On the microscale, most composite materials are composed of heterogeneous materials comprising two or more different phases, such as matrices and inclusions. In addition, composite materials may exhibit high variability, depending on the material and amount of material used. Hence, the effect of microstructure on the macroscopic structural analysis of composite materials must be considered. Computational homogenization can be used to describe an effective constitutive model for heterogeneous composites at the microscopic level. However, a significant computational cost may be incurred owing to the iterative procedure when considering the inelastic behavior of composite materials. Hence, an efficient data-driven model reduction technique, i.e., a deep-learned surrogate model, is proposed. The key idea of the proposed framework is twofold: (1) Data-driven unsupervised model reduction for efficiently managing high-dimensional data from the microstructure and for extracting those features, and (2) the construction of parameterized constitutive models with inelastic behavior by connecting macro- and microscopic levels. Each aspect leverages a variational autoencoder and a gated recurrent unit, which are state-of-the-art components for deep learning. To demonstrate the efficiency and accuracy of the proposed model, the proposed model is applied to a two-dimensional microstructure problem involving inelastic behavior. Consequently, it is discovered that the present surrogate model can provide improved computational efficiency and accuracy within a prescribed parametric space.
AbstractList On the microscale, most composite materials are composed of heterogeneous materials comprising two or more different phases, such as matrices and inclusions. In addition, composite materials may exhibit high variability, depending on the material and amount of material used. Hence, the effect of microstructure on the macroscopic structural analysis of composite materials must be considered. Computational homogenization can be used to describe an effective constitutive model for heterogeneous composites at the microscopic level. However, a significant computational cost may be incurred owing to the iterative procedure when considering the inelastic behavior of composite materials. Hence, an efficient data-driven model reduction technique, i.e., a deep-learned surrogate model, is proposed. The key idea of the proposed framework is twofold: (1) Data-driven unsupervised model reduction for efficiently managing high-dimensional data from the microstructure and for extracting those features, and (2) the construction of parameterized constitutive models with inelastic behavior by connecting macro- and microscopic levels. Each aspect leverages a variational autoencoder and a gated recurrent unit, which are state-of-the-art components for deep learning. To demonstrate the efficiency and accuracy of the proposed model, the proposed model is applied to a two-dimensional microstructure problem involving inelastic behavior. Consequently, it is discovered that the present surrogate model can provide improved computational efficiency and accuracy within a prescribed parametric space.
On the microscale, most composite materials are composed of heterogeneous materials comprising two or more different phases, such as matrices and inclusions. In addition, composite materials may exhibit high variability, depending on the material and amount of material used. Hence, the effect of microstructure on the macroscopic structural analysis of composite materials must be considered. Computational homogenization can be used to describe an effective constitutive model for heterogeneous composites at the microscopic level. However, a significant computational cost may be incurred owing to the iterative procedure when considering the inelastic behavior of composite materials. Hence, an efficient data-driven model reduction technique, i.e., a deep-learned surrogate model, is proposed. The key idea of the proposed framework is twofold: (1) Data-driven unsupervised model reduction for efficiently managing high-dimensional data from the microstructure and for extracting those features, and (2) the construction of parameterized constitutive models with inelastic behavior by connecting macro- and microscopic levels. Each aspect leverages a variational autoencoder and a gated recurrent unit, which are state-of-the-art components for deep learning. To demonstrate the efficiency and accuracy of the proposed model, the proposed model is applied to a two-dimensional microstructure problem involving inelastic behavior. Consequently, it is discovered that the present surrogate model can provide improved computational efficiency and accuracy within a prescribed parametric space. KCI Citation Count: 0
Author Cho, Maenghyo
Jeong, Inho
Cho, Haeseong
Kim, Hyejin
Author_xml – sequence: 1
  givenname: Hyejin
  surname: Kim
  fullname: Kim, Hyejin
  organization: Department of Aerospace Engineering, Jeonbuk National University
– sequence: 2
  givenname: Inho
  surname: Jeong
  fullname: Jeong, Inho
  organization: Department of Aerospace Engineering, Jeonbuk National University
– sequence: 3
  givenname: Haeseong
  surname: Cho
  fullname: Cho, Haeseong
  email: hcho@jbnu.ac.kr
  organization: Department of Aerospace Engineering, Jeonbuk National University
– sequence: 4
  givenname: Maenghyo
  surname: Cho
  fullname: Cho, Maenghyo
  organization: Department of Mechanical Engineering, Seoul National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002984808$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kUtLxDAQx4Mo-PwCngrehGqaxzY96vpaUAQf4C1M28kaXZs1SRf89qZWETyYywyZ_29mkv82We9ch4TsF_SooLQ8DoIJKnPKWE6pFGXO18gWoxXPmVB0_ScvxdMm2QvhhaYjZaGo3CLz-957N4eI2Y1rcZGdQsA2c112BhHyM29X2H2X7rDtm2hTzTifzTpcQIi2yU7xGVY2XTmTTd3b0gU7tLONdyH6hPQed8mGgUXAve-4Qx4vzh-mV_n17eVsenKdN1yKmCvkbS1qoJWsq4lKuQAom0rBRHKQaLgpK4VlVbcIFa1bbrjCQpmSYwOTlu-Qw7Fv541-bax2YL_i3OlXr0_uHma6oExVnBVJfDCKl9699xiifnG979J-mjMpmeBC8KRio2p4T_Bo9NLbN_AfqZEeDNCjAToZoL8M0AOk_kCNjTB8XvRgF_-jfERDmtPN0f9u9Q_1CcFpnKM
CitedBy_id crossref_primary_10_1016_j_mechmat_2025_105389
crossref_primary_10_1177_09506608251363653
crossref_primary_10_1007_s00170_024_14661_x
crossref_primary_10_1007_s00366_025_02121_3
crossref_primary_10_1016_j_engfracmech_2024_110675
crossref_primary_10_1016_j_eswa_2024_126343
Cites_doi 10.3390/ma14112875
10.1016/j.cma.2020.113234
10.1016/0045-7949(92)90231-N
10.1016/B978-0-323-31150-2.00005-4
10.1162/neco.1997.9.8.1735
10.1016/j.compstruc.2019.05.006
10.1016/j.compstruct.2021.113688
10.1007/s00466-017-1428-x
10.1016/j.cma.2019.112652
10.1016/j.jmps.2021.104506
10.1016/j.jcp.2016.10.070
10.1016/j.jcp.2006.09.019
10.1016/j.compscitech.2019.03.015
10.1016/S0045-7825(99)00224-8
10.1016/j.cam.2009.08.077
10.1002/nme.6493
10.1016/S0927-0256(99)00077-4
10.1016/j.cma.2014.03.011
10.1007/s00466-018-1643-0
10.1016/j.cma.2019.112594
10.1016/j.cma.2016.04.004
10.1016/j.cma.2022.114726
10.1016/j.commatsci.2019.109099
10.1016/j.cma.2020.113482
10.1063/1.1712836
10.1002/nme.4953
10.1016/j.cma.2018.01.036
10.1007/s42405-021-00430-7
10.1016/j.jmps.2019.03.004
10.1098/rsta.1949.0009
10.1007/s004660000212
10.1016/j.cma.2017.03.037
10.1016/j.matdes.2020.108509
10.1016/S0045-7825(01)00179-7
10.1002/nme.1620050111
10.1016/j.cma.2020.113299
10.1002/nme.6925
10.1016/j.compscitech.2007.10.032
10.48550/arXiv.1511.07289
10.48550/arXiv.1412.6980
10.3115/v1/D14-1179
ContentType Journal Article
Copyright The Author(s), under exclusive licence to The Korean Society for Aeronautical & Space Sciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to The Korean Society for Aeronautical & Space Sciences 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to The Korean Society for Aeronautical & Space Sciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to The Korean Society for Aeronautical & Space Sciences 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ACYCR
DOI 10.1007/s42405-022-00547-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Korean Citation Index
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection


Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-2480
EndPage 752
ExternalDocumentID oai_kci_go_kr_ARTI_10289321
10_1007_s42405_022_00547_3
GroupedDBID -EM
.UV
0R~
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADRFC
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
DBRKI
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GW5
IKXTQ
IWAJR
J-C
JDI
JZLTJ
KOV
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
O9J
OK1
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TDB
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
AAFGU
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
ID FETCH-LOGICAL-c354t-8e3db4ba095b968db44aa7c98a653a5ef3f798e79bdea90bd3f38e18f73eca6d3
IEDL.DBID M7S
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903435900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2093-274X
IngestDate Sat Jun 01 03:12:57 EDT 2024
Wed Oct 08 04:49:47 EDT 2025
Sat Nov 29 02:32:18 EST 2025
Tue Nov 18 21:08:42 EST 2025
Fri Feb 21 02:44:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
Inelasticity
Model order reduction
Data-driven
Surrogate model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-8e3db4ba095b968db44aa7c98a653a5ef3f798e79bdea90bd3f38e18f73eca6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255243443
PQPubID 7435106
PageCount 21
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10289321
proquest_journals_3255243443
crossref_primary_10_1007_s42405_022_00547_3
crossref_citationtrail_10_1007_s42405_022_00547_3
springer_journals_10_1007_s42405_022_00547_3
PublicationCentury 2000
PublicationDate 20230700
2023-07-00
20230701
2023-07
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 7
  year: 2023
  text: 20230700
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle International journal of aeronautical and space sciences
PublicationTitleAbbrev Int. J. Aeronaut. Space Sci
PublicationYear 2023
Publisher The Korean Society for Aeronautical & Space Sciences (KSAS)
Springer Nature B.V
한국항공우주학회
Publisher_xml – name: The Korean Society for Aeronautical & Space Sciences (KSAS)
– name: Springer Nature B.V
– name: 한국항공우주학회
References Liu, Wu (CR20) 2019; 127
Wang, Sun (CR26) 2018; 334
Shin, Choi, Cho (CR43) 2019; 175
Qiao, Xu (CR6) 2022; 23
Soldner, Brands, Zabihyan, Steinmann, Mergheim (CR10) 2017; 60
CR35
Chen, Jia, Pang (CR31) 2021; 264
Liu, Bessa, Liu (CR13) 2016; 306
Terada, Kikuchi (CR3) 2001; 190
Wu, Nguyen, Kilingar, Noels (CR32) 2020; 369
CR30
Yang, Yu, Guo, Buehler (CR23) 2021; 154
Minh Nguyen-Thanh, Trong Khiem Nguyen, Rabczuk, Zhuang (CR18) 2020; 121
Frankel, Jones, Alleman, Templeton (CR27) 2019; 169
Lu, Giovanis, Yvonnet, Papadopoulos, Detrez, Bai (CR16) 2019; 64
Hernández, Oliver, Huespe, Caicedo, Cante (CR9) 2014; 276
Logarzo, Capuano, Rimoli (CR25) 2021; 373
Nayak, Zienkiewicz (CR38) 1972; 5
Feyel, Chaboche (CR2) 2000; 183
Feyel (CR1) 1999; 16
Benaimeche, Yvonnet, Bary, He (CR15) 2022; 123
Hochreiter, Schmidhuber (CR28) 1997; 9
Yang, Kim, Ryu, Gu (CR24) 2020; 189
Kouznetsova, Brekelmans, Baaijens (CR4) 2001; 27
Geers, Kouznetsova, Brekelmans (CR5) 2010; 234
Ferreira, Andrade Pires, Bessa (CR14) 2022; 393
Bergström, Bergström (CR46) 2015
Yvonnet, He (CR8) 2007; 223
Vlassis, Ma, Sun (CR22) 2020; 371
Bessa, Bostanabad, Liu, Hu, Apley, Brinson, Chen, Liu (CR19) 2017; 320
Lu, Yvonnet, Papadopoulos, Kalogeris, Papadopoulos (CR21) 2021
Ghavamian, Simone (CR34) 2019; 357
CR29
Le, Yvonnet, He (CR17) 2015; 104
van Tuijl, Remmers, Geers (CR11) 2020; 359
Mooney (CR44) 1940; 11
Abbo (CR37) 1997
CR42
Chen (CR36) 1992; 44
CR41
CR40
Matouš, Geers, Kouznetsova, Gillman (CR7) 2017; 330
de Souza Neto, Peric, Owen (CR39) 2011
Roussette, Michel, Suquet (CR12) 2009; 69
Rivlin, Rideal (CR45) 1949; 242
Zhang, Chen, Chen, Zheng, Büyüköztürk, Sun (CR33) 2019; 220
Z Liu (547_CR13) 2016; 306
AL Frankel (547_CR27) 2019; 169
547_CR42
Z Yang (547_CR23) 2021; 154
547_CR41
547_CR40
J Bergström (547_CR46) 2015
AJ Abbo (547_CR37) 1997
547_CR29
RA van Tuijl (547_CR11) 2020; 359
X Lu (547_CR16) 2019; 64
BA Le (547_CR17) 2015; 104
V Kouznetsova (547_CR4) 2001; 27
Z Liu (547_CR20) 2019; 127
X Lu (547_CR21) 2021
K Qiao (547_CR6) 2022; 23
C Yang (547_CR24) 2020; 189
Q Chen (547_CR31) 2021; 264
GC Nayak (547_CR38) 1972; 5
S Hochreiter (547_CR28) 1997; 9
HJ Logarzo (547_CR25) 2021; 373
MA Bessa (547_CR19) 2017; 320
H Shin (547_CR43) 2019; 175
NN Vlassis (547_CR22) 2020; 371
S Roussette (547_CR12) 2009; 69
MGD Geers (547_CR5) 2010; 234
M Mooney (547_CR44) 1940; 11
547_CR30
L Wu (547_CR32) 2020; 369
CN Chen (547_CR36) 1992; 44
K Terada (547_CR3) 2001; 190
K Wang (547_CR26) 2018; 334
V Minh Nguyen-Thanh (547_CR18) 2020; 121
K Matouš (547_CR7) 2017; 330
RS Rivlin (547_CR45) 1949; 242
547_CR35
F Feyel (547_CR1) 1999; 16
R Zhang (547_CR33) 2019; 220
D Soldner (547_CR10) 2017; 60
BP Ferreira (547_CR14) 2022; 393
F Feyel (547_CR2) 2000; 183
MA Benaimeche (547_CR15) 2022; 123
F Ghavamian (547_CR34) 2019; 357
EA de Souza Neto (547_CR39) 2011
JA Hernández (547_CR9) 2014; 276
J Yvonnet (547_CR8) 2007; 223
References_xml – year: 2021
  ident: CR21
  article-title: A stochastic FE2 data-driven method for nonlinear multiscale modeling
  publication-title: Materials
  doi: 10.3390/ma14112875
– volume: 369
  start-page: 113234
  year: 2020
  ident: CR32
  article-title: A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113234
– volume: 44
  start-page: 125
  issue: 1-2
  year: 1992
  end-page: 132
  ident: CR36
  article-title: An acceleration method in elasto-plastic finite element computation
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(92)90231-N
– start-page: 209
  year: 2015
  end-page: 307
  ident: CR46
  article-title: 5 Elasticity/hyperelasticity
  publication-title: Mechanics of solid polymers
  doi: 10.1016/B978-0-323-31150-2.00005-4
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: CR28
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 220
  start-page: 55
  year: 2019
  end-page: 68
  ident: CR33
  article-title: Deep long short-term memory networks for nonlinear structural seismic response prediction
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2019.05.006
– ident: CR30
– volume: 264
  start-page: 113688
  year: 2021
  ident: CR31
  article-title: Deep long short-term memory neural network for accelerated elastoplastic analysis of heterogeneous materials: an integrated data-driven surrogate approach
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2021.113688
– volume: 60
  start-page: 613
  issue: 4
  year: 2017
  end-page: 625
  ident: CR10
  article-title: A numerical study of different projection-based model reduction techniques applied to computational homogenisation
  publication-title: Comput Mech
  doi: 10.1007/s00466-017-1428-x
– ident: CR35
– volume: 359
  start-page: 112652
  year: 2020
  ident: CR11
  article-title: Multi-dimensional wavelet reduction for the homogenisation of microstructures
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.112652
– ident: CR29
– volume: 154
  start-page: 104506
  year: 2021
  ident: CR23
  article-title: End-to-end deep learning method to predict complete strain and stress tensors for complex hierarchical composite microstructures
  publication-title: J Mec Phys Solids
  doi: 10.1016/j.jmps.2021.104506
– year: 1997
  ident: CR37
  publication-title: Finite element algorithms for elastoplasticity and consolidation
– ident: CR40
– volume: 330
  start-page: 192
  year: 2017
  end-page: 220
  ident: CR7
  article-title: A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.10.070
– ident: CR42
– volume: 223
  start-page: 341
  issue: 1
  year: 2007
  end-page: 368
  ident: CR8
  article-title: The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2006.09.019
– volume: 175
  start-page: 128
  year: 2019
  end-page: 134
  ident: CR43
  article-title: An efficient multiscale homogenization modeling approach to describe hyperelastic behavior of polymer nanocomposites
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2019.03.015
– volume: 183
  start-page: 309
  issue: 3
  year: 2000
  end-page: 330
  ident: CR2
  article-title: FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(99)00224-8
– volume: 234
  start-page: 2175
  issue: 7
  year: 2010
  end-page: 2182
  ident: CR5
  article-title: Multi-scale computational homogenization: trends and challenges
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2009.08.077
– volume: 121
  start-page: 4811
  year: 2020
  end-page: 4842
  ident: CR18
  article-title: A surrogate model for computational homogenization of elastostatics at finite strain using high-dimensional model representation-based neural network
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6493
– year: 2011
  ident: CR39
  publication-title: Computational methods for plasticity: theory and applications
– volume: 16
  start-page: 344
  issue: 1
  year: 1999
  end-page: 354
  ident: CR1
  article-title: Multiscale FE2 elastoviscoplastic analysis of composite structures
  publication-title: Comput Mater Sci
  doi: 10.1016/S0927-0256(99)00077-4
– volume: 276
  start-page: 149
  year: 2014
  end-page: 189
  ident: CR9
  article-title: High-performance model reduction techniques in computational multiscale homogenization
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2014.03.011
– volume: 64
  start-page: 307
  issue: 2
  year: 2019
  end-page: 321
  ident: CR16
  article-title: A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites
  publication-title: Comput Mech
  doi: 10.1007/s00466-018-1643-0
– volume: 357
  start-page: 112594
  year: 2019
  ident: CR34
  article-title: Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.112594
– volume: 306
  start-page: 319
  year: 2016
  end-page: 341
  ident: CR13
  article-title: Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2016.04.004
– volume: 393
  year: 2022
  ident: CR14
  article-title: Adaptivity for clustering-based reduced-order modeling of localized history-dependent phenomena
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114726
– volume: 169
  start-page: 109099
  year: 2019
  ident: CR27
  article-title: Predicting the mechanical response of oligocrystals with deep learning
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2019.109099
– volume: 373
  start-page: 113482
  year: 2021
  ident: CR25
  article-title: Smart constitutive laws: inelastic homogenization through machine learning
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113482
– volume: 11
  start-page: 582
  issue: 9
  year: 1940
  end-page: 592
  ident: CR44
  article-title: A theory of large elastic deformation
  publication-title: J Appl Phys
  doi: 10.1063/1.1712836
– volume: 104
  start-page: 1061
  issue: 12
  year: 2015
  end-page: 1084
  ident: CR17
  article-title: Computational homogenization of nonlinear elastic materials using neural networks
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4953
– volume: 334
  start-page: 337
  year: 2018
  end-page: 380
  ident: CR26
  article-title: A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.01.036
– volume: 23
  start-page: 77
  issue: 1
  year: 2022
  end-page: 91
  ident: CR6
  article-title: Parallel multiscale numerical framework of the non-linear failure analysis for three-dimension composite structures
  publication-title: Int J Aeronaut Space Scie
  doi: 10.1007/s42405-021-00430-7
– volume: 127
  start-page: 20
  year: 2019
  end-page: 46
  ident: CR20
  article-title: Exploring the 3D architectures of deep material network in data-driven multiscale mechanics
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2019.03.004
– volume: 242
  start-page: 173
  issue: 845
  year: 1949
  end-page: 195
  ident: CR45
  article-title: Large elastic deformations of isotropic materials VI. Further results in the theory of torsion, shear and flexure
  publication-title: Philos Transact R Soc Lond
  doi: 10.1098/rsta.1949.0009
– volume: 27
  start-page: 37
  issue: 1
  year: 2001
  end-page: 48
  ident: CR4
  article-title: An approach to micro-macro modeling of heterogeneous materials
  publication-title: Comput Mech
  doi: 10.1007/s004660000212
– volume: 320
  start-page: 633
  year: 2017
  end-page: 667
  ident: CR19
  article-title: A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.03.037
– volume: 189
  start-page: 108509
  year: 2020
  ident: CR24
  article-title: Prediction of composite microstructure stress-strain curves using convolutional neural networks
  publication-title: Mater Design
  doi: 10.1016/j.matdes.2020.108509
– volume: 190
  start-page: 5427
  issue: 40
  year: 2001
  end-page: 5464
  ident: CR3
  article-title: A class of general algorithms for multi-scale analyses of heterogeneous media
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(01)00179-7
– volume: 5
  start-page: 113
  issue: 1
  year: 1972
  end-page: 135
  ident: CR38
  article-title: Elasto-plastic stress analysis. A generalization for various contitutive relations including strain softening
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620050111
– volume: 371
  start-page: 113299
  year: 2020
  ident: CR22
  article-title: Geometric deep learning for computational mechanics part I: anisotropic hyperelasticity
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113299
– ident: CR41
– volume: 123
  start-page: 2012
  issue: 9
  year: 2022
  end-page: 2041
  ident: CR15
  article-title: A K-means clustering machine learning-based multiscale method for anelastic heterogeneous structures with internal variables
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6925
– volume: 69
  start-page: 22
  issue: 1
  year: 2009
  end-page: 27
  ident: CR12
  article-title: Nonuniform transformation field analysis of elastic-viscoplastic composites
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2007.10.032
– volume: 371
  start-page: 113299
  year: 2020
  ident: 547_CR22
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113299
– volume: 104
  start-page: 1061
  issue: 12
  year: 2015
  ident: 547_CR17
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4953
– ident: 547_CR42
  doi: 10.48550/arXiv.1511.07289
– volume: 175
  start-page: 128
  year: 2019
  ident: 547_CR43
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2019.03.015
– volume: 189
  start-page: 108509
  year: 2020
  ident: 547_CR24
  publication-title: Mater Design
  doi: 10.1016/j.matdes.2020.108509
– volume: 369
  start-page: 113234
  year: 2020
  ident: 547_CR32
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113234
– ident: 547_CR41
  doi: 10.48550/arXiv.1412.6980
– volume: 393
  year: 2022
  ident: 547_CR14
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114726
– volume: 330
  start-page: 192
  year: 2017
  ident: 547_CR7
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.10.070
– volume: 190
  start-page: 5427
  issue: 40
  year: 2001
  ident: 547_CR3
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(01)00179-7
– volume: 359
  start-page: 112652
  year: 2020
  ident: 547_CR11
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.112652
– volume: 242
  start-page: 173
  issue: 845
  year: 1949
  ident: 547_CR45
  publication-title: Philos Transact R Soc Lond
  doi: 10.1098/rsta.1949.0009
– volume: 27
  start-page: 37
  issue: 1
  year: 2001
  ident: 547_CR4
  publication-title: Comput Mech
  doi: 10.1007/s004660000212
– volume: 169
  start-page: 109099
  year: 2019
  ident: 547_CR27
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2019.109099
– volume: 357
  start-page: 112594
  year: 2019
  ident: 547_CR34
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.112594
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 547_CR28
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 69
  start-page: 22
  issue: 1
  year: 2009
  ident: 547_CR12
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2007.10.032
– volume: 373
  start-page: 113482
  year: 2021
  ident: 547_CR25
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113482
– volume: 23
  start-page: 77
  issue: 1
  year: 2022
  ident: 547_CR6
  publication-title: Int J Aeronaut Space Scie
  doi: 10.1007/s42405-021-00430-7
– volume: 11
  start-page: 582
  issue: 9
  year: 1940
  ident: 547_CR44
  publication-title: J Appl Phys
  doi: 10.1063/1.1712836
– volume: 44
  start-page: 125
  issue: 1-2
  year: 1992
  ident: 547_CR36
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(92)90231-N
– volume: 5
  start-page: 113
  issue: 1
  year: 1972
  ident: 547_CR38
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620050111
– volume-title: Computational methods for plasticity: theory and applications
  year: 2011
  ident: 547_CR39
– volume: 16
  start-page: 344
  issue: 1
  year: 1999
  ident: 547_CR1
  publication-title: Comput Mater Sci
  doi: 10.1016/S0927-0256(99)00077-4
– volume: 123
  start-page: 2012
  issue: 9
  year: 2022
  ident: 547_CR15
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6925
– volume: 64
  start-page: 307
  issue: 2
  year: 2019
  ident: 547_CR16
  publication-title: Comput Mech
  doi: 10.1007/s00466-018-1643-0
– volume: 154
  start-page: 104506
  year: 2021
  ident: 547_CR23
  publication-title: J Mec Phys Solids
  doi: 10.1016/j.jmps.2021.104506
– ident: 547_CR35
– volume: 264
  start-page: 113688
  year: 2021
  ident: 547_CR31
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2021.113688
– volume: 223
  start-page: 341
  issue: 1
  year: 2007
  ident: 547_CR8
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2006.09.019
– volume: 183
  start-page: 309
  issue: 3
  year: 2000
  ident: 547_CR2
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(99)00224-8
– volume: 276
  start-page: 149
  year: 2014
  ident: 547_CR9
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2014.03.011
– start-page: 209
  volume-title: Mechanics of solid polymers
  year: 2015
  ident: 547_CR46
  doi: 10.1016/B978-0-323-31150-2.00005-4
– volume: 234
  start-page: 2175
  issue: 7
  year: 2010
  ident: 547_CR5
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2009.08.077
– volume: 220
  start-page: 55
  year: 2019
  ident: 547_CR33
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2019.05.006
– volume: 127
  start-page: 20
  year: 2019
  ident: 547_CR20
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2019.03.004
– year: 2021
  ident: 547_CR21
  publication-title: Materials
  doi: 10.3390/ma14112875
– ident: 547_CR40
– ident: 547_CR29
  doi: 10.3115/v1/D14-1179
– volume: 121
  start-page: 4811
  year: 2020
  ident: 547_CR18
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6493
– volume: 306
  start-page: 319
  year: 2016
  ident: 547_CR13
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2016.04.004
– volume-title: Finite element algorithms for elastoplasticity and consolidation
  year: 1997
  ident: 547_CR37
– volume: 334
  start-page: 337
  year: 2018
  ident: 547_CR26
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.01.036
– volume: 60
  start-page: 613
  issue: 4
  year: 2017
  ident: 547_CR10
  publication-title: Comput Mech
  doi: 10.1007/s00466-017-1428-x
– volume: 320
  start-page: 633
  year: 2017
  ident: 547_CR19
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.03.037
– ident: 547_CR30
SSID ssj0000551805
Score 2.293268
Snippet On the microscale, most composite materials are composed of heterogeneous materials comprising two or more different phases, such as matrices and inclusions....
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 732
SubjectTerms Accuracy
Aerospace Technology and Astronautics
Composite materials
Computational efficiency
Computing costs
Constitutive models
Decomposition
Deep learning
Deformation
Engineering
Fluid- and Aerodynamics
Homogenization
Inclusions
Microstructure
Model reduction
Neural networks
Original Paper
Structural analysis
Wavelet transforms
항공우주공학
SummonAdditionalLinks – databaseName: Springer Standard Collection
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9OfdAHv8XplIC-aWFbmjZ5VOfQFxGnsreQtMkYG61007_fu375gQr61EDSa8klud8ll98RcmJdGAW-iD3jLDgonDPPGNuGkjOBCbhtxyZPNhHe3orhUN6Vl8JmVbR7dSSZr9T1ZTcfjA_eJu56iDNgajTIEpg7gQkb7gdP9c5KG0nG8tjFLrjrHrhdw_K2zPdiPlmkRpK5T2Dzy_lobnb66__74Q2yVsJMel6Mi02yYJMtsvqBfHCbjAYvWZbiLhrFhGhTegEGLaZpQnt6rr1ehutgWXWPBK-oQgoYl94kFjA3SKYlu2JGU0dxZcEIMBCHQX4FMe1LZnfIY__q4fLaK9MueBHj_twTlsXGNxrAl5GBgLKvdRhJoQPONLeOuVAKG0oTWy3bJmaOCdsRLmQ20kHMdslikiZ2j1DNAi25FM5JQGqam8Bq3jUx74AI8F-bpFN1vYpKTnJMjTFVNZty3okKOlHlnahYk5zW7zwXjBy_tj4GjapJNFZIpI3PUaommQJ34UYhugIA22mSVqVxVc7hmWLgbXV95vsg5KzS8Hv1z9_c_1vzA7KCOeyLGOAWWQT12EOyHL3Ox7PsKB_bbxtA8ng
  priority: 102
  providerName: Springer Nature
Title Surrogate Model Based on Data-Driven Model Reduction for Inelastic Behavior of Composite Microstructure
URI https://link.springer.com/article/10.1007/s42405-022-00547-3
https://www.proquest.com/docview/3255243443
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002984808
Volume 24
WOSCitedRecordID wos000903435900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Aeronautical and Space Sciences, 2023, 24(3), , pp.732-752
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2093-2480
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000551805
  issn: 2093-274X
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2093-2480
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000551805
  issn: 2093-274X
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2093-2480
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000551805
  issn: 2093-274X
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2093-2480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000551805
  issn: 2093-274X
  databaseCode: RSV
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RlgMc-EYslMoS3MBis44T-4QobUUvq9UuoBUXy47tqmqVlOy2v78zXu-WItELl8SSEyfS88eb8fgNwPsQ66YqlecuBjRQpBTcuTDEUnSVq2QYepeSTdTjsZrP9SQ73BY5rHI9J6aJ2ncN-cg_CeS-o1KUpfh88ZtT1ijaXc0pNLZgh1QSihS6N9v4WIYkN5aiGEdouHM0wOb53Ew6PVfiakbHk0eciAuOtVtr01bbx1u086-d0rQAHT3-319_Ao8y9WRfVn3lKdwL7TN4-Icg4XM4mV32fUeeNUZJ0s7ZPi5ynnUtO7BLyw96mhtz1ZREXwlWhryXHbcBeTi2zLLiYs-6yGi2oagwbI4C_1ZitZd9eAE_jg6_f_3GcyoG3ghZLrkKwrvSWSRkTlcKy6W1daOVraSwMkQRa61CrZ0PVg-dF1GoUKhYi9DYyouXsN12bXgFzIrKaqlVjBrZm5WuClaOnJcFNoE27QCKNQimyTrllC7j3GwUlhNwBoEzCTgjBvBh887FSqXjzqffIbbmrDk1JK5N95POnPUGTYhjQ4wLSW0xgN01miaP64W5gXIAH9f94ab63998fXdrb-AB5bFfxQHvwjbCEd7C_eZqebro92Bn_3A8me6l3o3XifyF1-ns5zWndQBE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB21BQl64LMVSwtYAk5gkY3jJD4gBCxVVy0rRIu0N2PHdlW1StrsFsSf6m9kJh9bikRvPXBKpCQTJX4ev7HHbwBe-JAVaZI7boPHAEVKwa31EZ4Fm9pU-sjZpthENpnk06n6sgTn_V4YSqvsfWLjqF1V0Bz5G4HcN05Ekoh3J6ecqkbR6mpfQqOFxY7_9RNDttnb8Qjb92Ucb33a_7jNu6oCvBAymfPcC2cTa5BbWJXmeJ4YkxUqN6kURvogQqZynynrvFGRdSKI3A_zkAlfmNQJtLsMN5BGxKpJFdxbzOlEJG_WZE3GkRIcA75pt0-n2a2X4OhJ26FjTkQJ-_alsXC5rMMlmvvXymwz4G3d_d9-1T2401Fr9r7tC_dhyZcPYPUPwcWHcLB3VtcVzRwyKgJ3zD7gIO5YVbKRmRs-qsn3d5e-kqgtwZYhr2fj0mOcgZZZpyhZsyow8qaU9YbmKLGxFeM9q_0afLuWL12HlbIq_SNgRqRGSZWHoJCdGmlTb2RsnRyiCYzZBzDsG10XnQ47lQM51gsF6QYoGoGiG6BoMYBXi2dOWhWSK-9-jljSR8WhJvFwOh5U-qjWGCKNNTFKJO3DAWz26NGd35rpC-gM4HWPv4vL_37n46utPYNb2_ufd_XueLKzAbdjZIptzvMmrGDT-Cdws_gxP5zVT5sexeD7dePyN2i_XPE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xMU3sYTAGolDAEnsb0draTuxHtlJRgaqKjalvlh3bVbUpmbJufz93SVq2CZAQT7Fk5xL5_OM7--47gIMQszwVyicuBjRQpOSJc6GHpehSl8rQ865ONpFNJmo209M7Ufy1t_vqSrKJaSCWpmJ5dOXj0TrwTeBGRJHFg4QwB06TDXgsyJGe7PXT8_UpS48Ix2o_xgGa7gmaYLM2cub3Yu7tThtFFe8Bzwd3pfUWNHr6_z__DHZb-Mk-NeNlDx6F4jns3CEl3If56U1VlXS6xihR2iU7xo3Os7JgQ7u0ybCi9bGt-k7Er6RahtiXjYuAWBwls5Z1sWJlZLTikGcYiiPnv4aw9qYKL-DH6PPZyZekTceQ5FyKZaIC9044i6DM6VRhWVib5VrZVHIrQ-Qx0ypk2vlgdc95HrkKfRUzHnKbev4SNouyCK-AWZ5aLbWKUSOCs9KlwcqB87KPItCu7UB_pQaTt1zllDLj0qxZlutONNiJpu5EwztwuH7nqmHq-GvrD6hdc5EvDBFs03NemovKoBkxNoS6ENj2O9Bdad-0c_vacLTCBoILgUI-rrT9q_rP33z9b83fw_Z0ODLfxpOvb-AJpblv3IS7sImaCm9hK79dLq6rd_WQ_wkvAv5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surrogate+Model+Based+on+Data-Driven+Model+Reduction+for+Inelastic+Behavior+of+Composite+Microstructure&rft.jtitle=International+journal+of+aeronautical+and+space+sciences&rft.au=Kim%2C+Hyejin&rft.au=Jeong%2C+Inho&rft.au=Cho%2C+Haeseong&rft.au=Cho%2C+Maenghyo&rft.date=2023-07-01&rft.pub=Springer+Nature+B.V&rft.issn=2093-274X&rft.eissn=2093-2480&rft.volume=24&rft.issue=3&rft.spage=732&rft.epage=752&rft_id=info:doi/10.1007%2Fs42405-022-00547-3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-274X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-274X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-274X&client=summon