Towards operational phytoplankton recognition with automated high-throughput imaging, near-real-time data processing, and convolutional neural networks

Plankton communities form the basis of aquatic ecosystems and elucidating their role in increasingly important environmental issues is a persistent research question. Recent technological advances in automated microscopic imaging, together with cloud platforms for high-performance computing, have cr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in Marine Science Ročník 9
Hlavní autori: Kraft, Kaisa, Velhonoja, Otso, Eerola, Tuomas, Suikkanen, Sanna, Tamminen, Timo, Haraguchi, Lumi, Ylöstalo, Pasi, Kielosto, Sami, Johansson, Milla, Lensu, Lasse, Kälviäinen, Heikki, Haario, Heikki, Seppälä, Jukka
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Frontiers Media S.A 02.09.2022
Predmet:
ISSN:2296-7745, 2296-7745
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Plankton communities form the basis of aquatic ecosystems and elucidating their role in increasingly important environmental issues is a persistent research question. Recent technological advances in automated microscopic imaging, together with cloud platforms for high-performance computing, have created possibilities for collecting and processing detailed high-frequency data on planktonic communities, opening new horizons for testing core hypotheses in aquatic ecosystems. Analyzing continuous streams of big data calls for development and deployment of novel computer vision and machine learning systems. The implementation of these analysis systems is not always straightforward with regards to operationality, and issues regarding data flows, computing and data treatment need to be considered. We created a data pipeline for automated near-real-time classification of phytoplankton during remote deployment of imaging flow cytometer (Imaging FlowCytobot, IFCB). Convolutional neural network (CNN) is used to classify continuous imaging data with probability thresholds used to filter out images not belonging to our existing classes. The automated data flow and classification system were used to monitor dominating species of filamentous cyanobacteria on the coast of Finland during summer 2021. We demonstrate that good phytoplankton recognition can be achieved with transfer learning utilizing a relatively shallow, publicly available, pre-trained CNN model and fine-tuning it with community-specific phytoplankton images (overall F1-score of 0.95 for test set of our labeled image data complemented with a 50% unclassifiable image portion). This enables both fast training and low computing resource requirements for model deployment making it easy to modify and applicable in wide range of situations. The system performed well when used to classify a natural phytoplankton community over different seasons (overall F1-score 0.82 for our evaluation data set). Furthermore, we address the key challenges of image classification for varying planktonic communities and analyze the practical implications of confused classes. We published our labeled image data set of Baltic Sea phytoplankton community for the training of image recognition models (~63000 images in 50 classes) to accelerate implementation of imaging systems for other brackish and freshwater communities. Our evaluation data set, 59 fully annotated samples of natural communities throughout an annual cycle, is also available for model testing purposes (~150000 images).
AbstractList Plankton communities form the basis of aquatic ecosystems and elucidating their role in increasingly important environmental issues is a persistent research question. Recent technological advances in automated microscopic imaging, together with cloud platforms for high-performance computing, have created possibilities for collecting and processing detailed high-frequency data on planktonic communities, opening new horizons for testing core hypotheses in aquatic ecosystems. Analyzing continuous streams of big data calls for development and deployment of novel computer vision and machine learning systems. The implementation of these analysis systems is not always straightforward with regards to operationality, and issues regarding data flows, computing and data treatment need to be considered. We created a data pipeline for automated near-real-time classification of phytoplankton during remote deployment of imaging flow cytometer (Imaging FlowCytobot, IFCB). Convolutional neural network (CNN) is used to classify continuous imaging data with probability thresholds used to filter out images not belonging to our existing classes. The automated data flow and classification system were used to monitor dominating species of filamentous cyanobacteria on the coast of Finland during summer 2021. We demonstrate that good phytoplankton recognition can be achieved with transfer learning utilizing a relatively shallow, publicly available, pre-trained CNN model and fine-tuning it with community-specific phytoplankton images (overall F1-score of 0.95 for test set of our labeled image data complemented with a 50% unclassifiable image portion). This enables both fast training and low computing resource requirements for model deployment making it easy to modify and applicable in wide range of situations. The system performed well when used to classify a natural phytoplankton community over different seasons (overall F1-score 0.82 for our evaluation data set). Furthermore, we address the key challenges of image classification for varying planktonic communities and analyze the practical implications of confused classes. We published our labeled image data set of Baltic Sea phytoplankton community for the training of image recognition models (~63000 images in 50 classes) to accelerate implementation of imaging systems for other brackish and freshwater communities. Our evaluation data set, 59 fully annotated samples of natural communities throughout an annual cycle, is also available for model testing purposes (~150000 images).
Author Ylöstalo, Pasi
Kälviäinen, Heikki
Johansson, Milla
Eerola, Tuomas
Suikkanen, Sanna
Haario, Heikki
Velhonoja, Otso
Lensu, Lasse
Seppälä, Jukka
Kielosto, Sami
Kraft, Kaisa
Tamminen, Timo
Haraguchi, Lumi
Author_xml – sequence: 1
  givenname: Kaisa
  surname: Kraft
  fullname: Kraft, Kaisa
– sequence: 2
  givenname: Otso
  surname: Velhonoja
  fullname: Velhonoja, Otso
– sequence: 3
  givenname: Tuomas
  surname: Eerola
  fullname: Eerola, Tuomas
– sequence: 4
  givenname: Sanna
  surname: Suikkanen
  fullname: Suikkanen, Sanna
– sequence: 5
  givenname: Timo
  surname: Tamminen
  fullname: Tamminen, Timo
– sequence: 6
  givenname: Lumi
  surname: Haraguchi
  fullname: Haraguchi, Lumi
– sequence: 7
  givenname: Pasi
  surname: Ylöstalo
  fullname: Ylöstalo, Pasi
– sequence: 8
  givenname: Sami
  surname: Kielosto
  fullname: Kielosto, Sami
– sequence: 9
  givenname: Milla
  surname: Johansson
  fullname: Johansson, Milla
– sequence: 10
  givenname: Lasse
  surname: Lensu
  fullname: Lensu, Lasse
– sequence: 11
  givenname: Heikki
  surname: Kälviäinen
  fullname: Kälviäinen, Heikki
– sequence: 12
  givenname: Heikki
  surname: Haario
  fullname: Haario, Heikki
– sequence: 13
  givenname: Jukka
  surname: Seppälä
  fullname: Seppälä, Jukka
BookMark eNp1Uctq3TAUFCWFpmk-oDt9QH0rW9bDyxL6CAS6SdfiWDq2lfhKRpJ7yZf0dxv7plAKXc3hDDPnMW_JRYgBCXlfswPnuvs4HCHlQ8Oa5qClkp14RS6bppOVUq24-Kt-Q65zfmCM1bxlou0uya_7eILkMo0LJig-BpjpMj2VuMwQHksMNKGNY_AbR0--TBTWEo9Q0NHJj1NVphTXcVrWQv0RRh_GDzQgpCohzFXxR6QOCtAlRYs57zwER20MP-O8vswMuKYdyimmx_yOvB5gznj9glfkx5fP9zffqrvvX29vPt1Vlou2VAprJ3ura22FcjUOHJBrxfvaQq8agAGha1wnkTlumVVCcuV6qzaCuY5fkduzr4vwYJb0fEF6MhG82RsxjQZS8XZGw7XmqKETDGXbsq4Xom00t3KQ1kG7eamzl00x54SDsb7sPy0J_GxqZra4zB6X2eIy57ielfU_yj-b_F_zG9Paofk
CitedBy_id crossref_primary_10_1002_lom3_10659
crossref_primary_10_1016_j_ecoinf_2025_103272
crossref_primary_10_1016_j_ecoinf_2025_103372
crossref_primary_10_3897_aca_8_e151406
crossref_primary_10_1111_2041_210X_14281
crossref_primary_10_1088_2632_2153_ace417
crossref_primary_10_1002_lom3_10723
crossref_primary_10_1007_s00138_023_01450_x
crossref_primary_10_5194_bg_21_4341_2024
crossref_primary_10_5194_essd_16_2971_2024
crossref_primary_10_1021_acs_est_5c06078
crossref_primary_10_3389_fmars_2022_1032287
crossref_primary_10_1002_lom3_10588
crossref_primary_10_3389_fmars_2023_1280510
crossref_primary_10_1002_lom3_10572
crossref_primary_10_1002_lol2_10438
crossref_primary_10_1016_j_hal_2025_102865
crossref_primary_10_1007_s10661_024_12861_2
crossref_primary_10_1016_j_scitotenv_2025_180245
crossref_primary_10_5194_acp_24_4717_2024
crossref_primary_10_1007_s10750_025_05802_8
crossref_primary_10_3389_fmars_2024_1513463
crossref_primary_10_1007_s10462_024_10745_y
crossref_primary_10_1016_j_ocecoaman_2025_107542
Cites_doi 10.1016/j.aci.2019.11.004
10.1016/S0422-9894(03)80083-1
10.1038/sdata.2016.18
10.5194/bg-11-3619-2014
10.1016/j.hal.2019.101739
10.5194/os-14-617-2018
10.1146/annurev-marine-041921-013023
10.1086/703657
10.1109/IEEECONF38699.2020.9388998
10.1016/j.jmarsys.2014.10.001
10.4319/lom.2007.5.204
10.1007/BF00994018
10.3389/fmars.2018.00211
10.1007/s11356-021-12471-2
10.1016/j.dsr2.2014.03.012
10.1023/A:1010933404324
10.1111/j.1529-8817.2009.00791.x
10.3390/app7080753
10.1017/CBO9780511542145
10.1016/j.pocean.2019.02.001
10.1186/s12898-018-0209-5
10.1109/ACCESS.2020.3022242
10.4319/lom.2007.5.195
10.1126/sciadv.aau6253
10.4319/lom.2012.10.278
10.1038/nmicrobiol.2017.58
10.3389/fmars.2021.594144
10.1109/IJCNN.2010.5596486
10.3354/ame01842
10.1002/lom3.10151
10.1016/j.patcog.2011.06.019
10.1016/j.ecoinf.2019.02.007
10.1111/gcb.14108
10.1016/j.csr.2003.06.001
10.3389/fmars.2019.00529
10.1093/plankt/fbu070
10.1002/lom3.10402
10.3389/fmars.2019.00196
10.1007/978-3-030-68780-9_11
10.1002/lno.11443
10.1016/j.mio.2016.04.003
10.1016/j.hal.2019.101685
10.1007/s11356-012-1437-4
10.1186/s40537-019-0192-5
10.1038/nature14539
10.1007/978-3-319-54526-4_8
10.5121/ijdkp.2015.5201
10.1002/lom3.10285
10.1002/lno.10117
10.5194/os-17-1657-2021
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fmars.2022.867695
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2296-7745
ExternalDocumentID oai_doaj_org_article_3883e8a950e64409b554283c6f6cda49
10_3389_fmars_2022_867695
GroupedDBID 5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFS
ADBBV
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
LK8
M2P
M7P
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
ID FETCH-LOGICAL-c354t-7e1d6bc818c57d1ef3ae3873b1cab72aafea92d96e0d3c0c75637dbc7afea0d93
IEDL.DBID DOA
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000855100200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-7745
IngestDate Fri Oct 03 12:43:55 EDT 2025
Tue Nov 18 22:38:17 EST 2025
Sat Nov 29 04:07:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-7e1d6bc818c57d1ef3ae3873b1cab72aafea92d96e0d3c0c75637dbc7afea0d93
OpenAccessLink https://doaj.org/article/3883e8a950e64409b554283c6f6cda49
ParticipantIDs doaj_primary_oai_doaj_org_article_3883e8a950e64409b554283c6f6cda49
crossref_citationtrail_10_3389_fmars_2022_867695
crossref_primary_10_3389_fmars_2022_867695
PublicationCentury 2000
PublicationDate 2022-09-02
PublicationDateYYYYMMDD 2022-09-02
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-02
  day: 02
PublicationDecade 2020
PublicationTitle Frontiers in Marine Science
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Reynolds (B57) 2006
B22
Bueno (B4) 2017; 7
Lumini (B41) 2019; 51
Ruokanen (B59) 2003; 69
He (B24) 2016
Luo (B43) 2018; 16
Kaitala (B32) 2014; 140
(B66) 2021
Guo (B18) 2021
Olli (B49) 2019; 194
Lombard (B40) 2019; 6
Irisson (B28) 2022; 14
Henrichs (B23) 2021; 28
Moreno-Torres (B46) 2012; 45
Farcy (B15) 2019; 6
Kraft (B36) 2021; 8
Hossin (B26) 2015; 5
Campbell (B7) 2013; 20
B35
Righetti (B58) 2019; 5
Picheral (B54) 2017
Anglès (B1) 2015; 60
Bureš (B5) 2021
Campbell (B6) 2010; 46
Lumini (B42) 2020
Muller-Karger (B47) 2018; 5
Walker (B64) 2021
LeCun (B39) 2015; 521
Harred (B21) 2014; 36
Kahru (B31) 2020; 92
Breiman (B3) 2001; 45
González (B17) 2017; 15
Fischer (B16) 2020; 65
Kingma (B34) 2014
B8
Johnson (B29) 2019; 6
Teigen (B62) 2020
Honkanen (B25) 2021; 17
Deng (B12) 2009
Dunker (B13) 2018; 18
Miloslavich (B44) 2018; 24
Anglès (B2) 2019; 173
Laakso (B37) 2018; 14
Stal (B61) 2003; 23
Olson (B51) 2007; 5
Faillettaz (B14) 2016; 15
Cortes (B10) 1995; 20
Sosik (B60) 2007; 5
Correa (B9) 2017
Hutchins (B27) 2017; 2
Pu (B55) 2021
Moberg (B45) 2012; 10
Niemistö (B48) 1989; 17
Recht (B56) 2019
Haraguchi (B20) 2017; 80
Kahru (B30) 2014; 11
Orenstein (B52) 2017
Kerr (B33) 2020; 8
Olofsson (B50) 2020; 91
Dai (B11) 2017
Laney (B38) 2014; 105
Thai-Nghe (B63) 2010
Wilkinson (B65) 2016; 3
Paszke (B53) 2019
Hällfors (B19) 2004; 95
References_xml – year: 2020
  ident: B42
  article-title: Deep learning for plankton and coral classification
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2019.11.004
– ident: B35
– volume: 69
  start-page: 519
  year: 2003
  ident: B59
  article-title: Alg@line–joint operational unattended phytoplankton monitoring in the Baltic Sea
  publication-title: Elsevier Oceanogr. Ser.
  doi: 10.1016/S0422-9894(03)80083-1
– volume: 3
  start-page: 1
  year: 2016
  ident: B65
  article-title: Comment: the FAIR guiding principles for scientific data management and stewardship
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.18
– volume: 11
  start-page: 3619
  year: 2014
  ident: B30
  article-title: Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-3619-2014
– volume: 92
  year: 2020
  ident: B31
  article-title: Cyanobacterial blooms in the Baltic Sea: Correlations with environmental factors
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2019.101739
– volume: 14
  start-page: 617
  year: 2018
  ident: B37
  article-title: 100 years of atmospheric and marine observations at the Finnish utö island in the Baltic Sea
  publication-title: Ocean Sci.
  doi: 10.5194/os-14-617-2018
– volume: 14
  start-page: 277
  year: 2022
  ident: B28
  article-title: Machine learning for the study of plankton and marine snow from images
  publication-title: Ann. Rev. Mar. Sci.
  doi: 10.1146/annurev-marine-041921-013023
– volume: 194
  year: 2019
  ident: B49
  article-title: Phytoplankton species richness along coastal and estuarine salinity continua
  publication-title: Am. Nat.
  doi: 10.1086/703657
– start-page: 1
  year: 2020
  ident: B62
  article-title: Leveraging similarity metrics to in-situ discover planktonic interspecies variations or mutations
  publication-title: Global Oceans 2020: Singapore–US. Gulf Coast, 2020
  doi: 10.1109/IEEECONF38699.2020.9388998
– start-page: 20
  year: 2017
  ident: B9
  article-title: Deep learning for microalgae classification
– volume: 140
  start-page: 1
  year: 2014
  ident: B32
  article-title: Introduction to special issue: 5th ferrybox workshop–celebrating 20 years of the alg@ line
  publication-title: J. Mar. Syst.
  doi: 10.1016/j.jmarsys.2014.10.001
– volume: 5
  start-page: 204
  year: 2007
  ident: B60
  article-title: Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry
  publication-title: Limnol. Oceanogr. Methods
  doi: 10.4319/lom.2007.5.204
– start-page: 248
  year: 2009
  ident: B12
  article-title: Imagenet: A large-scale hierarchical image database
– start-page: 770
  year: 2016
  ident: B24
  article-title: Deep residual learning for image recognition
– volume: 20
  start-page: 273
  year: 1995
  ident: B10
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 5
  year: 2018
  ident: B47
  article-title: Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2018.00211
– volume: 28
  start-page: 28544
  year: 2021
  ident: B23
  article-title: Application of a convolutional neural network to improve automated early warning of harmful algal blooms
  publication-title: Environ. Sci. pollut. Res.
  doi: 10.1007/s11356-021-12471-2
– volume: 105
  start-page: 30
  year: 2014
  ident: B38
  article-title: Phytoplankton assemblage structure in and around a massive under-ice bloom in the chukchi Sea
  publication-title: Deep-Sea Res. II
  doi: 10.1016/j.dsr2.2014.03.012
– volume: 45
  start-page: 5
  year: 2001
  ident: B3
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 46
  year: 2010
  ident: B6
  article-title: First harmful Dinophysis (Dinophyceae, Dinophysiales) bloom in the US revealed by automated imaging flow cytometry
  publication-title: J. Phycol.
  doi: 10.1111/j.1529-8817.2009.00791.x
– volume: 7
  year: 2017
  ident: B4
  article-title: Automated diatom classification (Part a): Handcrafted feature approaches
  publication-title: Appl. Sci.
  doi: 10.3390/app7080753
– start-page: 1082
  year: 2017
  ident: B52
  article-title: Transfer learning and deep feature extraction for planktonic image data sets
– year: 2017
  ident: B54
  article-title: EcoTaxa, a tool for the taxonomic classification of images
– volume-title: The ecology of phytoplankton
  year: 2006
  ident: B57
  doi: 10.1017/CBO9780511542145
– year: 2014
  ident: B34
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv
– volume: 173
  start-page: 26
  year: 2019
  ident: B2
  article-title: Influence of coastal upwelling and river discharge on the phytoplankton community composition in the northwestern gulf of Mexico
  publication-title: Progr. Oceanogr.
  doi: 10.1016/j.pocean.2019.02.001
– volume: 18
  start-page: 51
  year: 2018
  ident: B13
  article-title: Combining high-throughput imaging flow cytometry and deep learning for efficient species and life-cycle stage identification of phytoplankton
  publication-title: BMC Ecol.
  doi: 10.1186/s12898-018-0209-5
– volume: 8
  start-page: 170013
  year: 2020
  ident: B33
  article-title: Collaborative deep learning models to handle class imbalance in FlowCam plankton imagery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022242
– volume: 5
  start-page: 195
  year: 2007
  ident: B51
  article-title: A submersible imaging-in-flow instrument to analyze nano-and microplankton: Imaging FlowCytobot. Limnol. oceanogr
  publication-title: Methods
  doi: 10.4319/lom.2007.5.195
– start-page: 5389
  year: 2019
  ident: B56
  article-title: Do ImageNet classifiers generalize to ImageNet
– volume: 5
  year: 2019
  ident: B58
  article-title: Global pattern of phytoplankton diversity driven by temperature and environmental variability
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau6253
– volume: 10
  start-page: 278
  year: 2012
  ident: B45
  article-title: Distance maps to estimate cell volume from two-dimensional plankton images. Limnol. oceanogr
  publication-title: Methods
  doi: 10.4319/lom.2012.10.278
– volume: 2
  start-page: 17058
  year: 2017
  ident: B27
  article-title: Microorganisms and ocean global change
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2017.58
– volume: 8
  year: 2021
  ident: B36
  article-title: First application of IFCB high-frequency imaging-in-flow cytometry to investigate bloom-forming filamentous cyanobacteria in the Baltic Sea
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2021.594144
– year: 2010
  ident: B63
  article-title: Cost-sensitive learning methods for imbalanced data
  doi: 10.1109/IJCNN.2010.5596486
– volume: 80
  start-page: 77
  year: 2017
  ident: B20
  article-title: Monitoring natural phytoplankton communities: A comparison between traditional methods and pulse-shape recording flow cytometry
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame01842
– volume: 15
  start-page: 221
  year: 2017
  ident: B17
  article-title: Validation methods for plankton image classification systems
  publication-title: Limnol. Oceanogr. Methods
  doi: 10.1002/lom3.10151
– volume: 45
  start-page: 521
  year: 2012
  ident: B46
  article-title: A unifying view on dataset shift in classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.06.019
– volume: 51
  start-page: 33
  year: 2019
  ident: B41
  article-title: Deep learning and transfer learning features for plankton classification
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2019.02.007
– start-page: 8024
  year: 2019
  ident: B53
  article-title: Pytorch: An imperative style, high-performance deep learning library
– start-page: 3672
  year: 2021
  ident: B64
  article-title: Improving rare-class recognition of marine plankton with hard negative mining
– volume: 95
  start-page: 210
  year: 2004
  ident: B19
  article-title: Checklist of Baltic Sea phytoplankton species (including some heterotrophic protistan groups)
  publication-title: Baltic Sea Environ. Proc.
– volume: 17
  start-page: 3
  year: 1989
  ident: B48
  article-title: Blue-green algae and their nitrogen fixation in the Baltic Sea in 1980, 1982 and 1984
  publication-title: Meri
– volume: 24
  start-page: 2416
  year: 2018
  ident: B44
  article-title: Essential ocean variables for global sustained observations of biodiversity and ecosystem changes
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14108
– volume: 23
  start-page: 1695
  year: 2003
  ident: B61
  article-title: BASIC: Baltic Sea cyanobacteria. an investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea–responses to a changing environment
  publication-title: Cont. Shelf Res.
  doi: 10.1016/j.csr.2003.06.001
– volume: 6
  year: 2019
  ident: B15
  article-title: Towards a European coastal observing network to provide better answer to science and to societal challenges; the JERICO/JERICO-NEXT research infrastructure
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2019.00529
– volume: 36
  start-page: 1434
  year: 2014
  ident: B21
  article-title: Predicting harmful algal blooms: A case study with Dinophysis ovum in the gulf of Mexico
  publication-title: J. Plankton Res.
  doi: 10.1093/plankt/fbu070
– start-page: 3654
  year: 2021
  ident: B55
  article-title: Anomaly detection for In situ marine plankton images
– start-page: 21
  year: 2021
  ident: B18
  article-title: Automated plankton classification from holographic imagery with deep convolutional neural networks. Limnol. oceanogr
  publication-title: Methods 19
  doi: 10.1002/lom3.10402
– volume: 6
  year: 2019
  ident: B40
  article-title: Globally consistent quantitative observations of planktonic ecosystems
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2019.00196
– year: 2021
  ident: B5
  article-title: “Plankton recognition in images with varying size” in Proceedings of the international conference on pattern recognition (ICPR)
  publication-title: Workshops Challenges
  doi: 10.1007/978-3-030-68780-9_11
– ident: B8
– volume: 65
  start-page: 2125
  year: 2020
  ident: B16
  article-title: Return of the “age of dinoflagellates” in Monterey bay: Drivers of dinoflagellate dominance examined using automated imaging flow cytometry and long-term time series analysis
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.11443
– volume: 15
  start-page: 60
  year: 2016
  ident: B14
  article-title: Imperfect automatic image classification successfully describes plankton distribution patterns
  publication-title: Methods Oceanogr.
  doi: 10.1016/j.mio.2016.04.003
– year: 2021
  ident: B66
  article-title: World register of marine species
– volume: 91
  year: 2020
  ident: B50
  article-title: Basin-specific changes in filamentous cyanobacteria community composition across four decades in the Baltic Sea
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2019.101685
– volume: 20
  start-page: 6896
  year: 2013
  ident: B7
  article-title: Continuous automated imaging-in-flow cytometry for detection and early warning of Karenia brevis blooms in the Gulf of Mexico
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-012-1437-4
– volume: 6
  start-page: 1
  year: 2019
  ident: B29
  article-title: Survey on deep learning with class imbalance
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0192-5
– volume: 521
  start-page: 436
  year: 2015
  ident: B39
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume-title: Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science()
  year: 2017
  ident: B11
  article-title: A hybrid convolutional neural network for plankton classification
  doi: 10.1007/978-3-319-54526-4_8
– ident: B22
– volume: 5
  year: 2015
  ident: B26
  article-title: A review on evaluation metrics for data classification evaluations
  publication-title: Int. J. Data Min. knowledge Manage. process (IJDKP).
  doi: 10.5121/ijdkp.2015.5201
– volume: 16
  start-page: 814
  year: 2018
  ident: B43
  article-title: Automated plankton image analysis using convolutional neural networks
  publication-title: Limnol. Oceanogr. Methods
  doi: 10.1002/lom3.10285
– volume: 60
  start-page: 1562
  year: 2015
  ident: B1
  article-title: Responses of the coastal phytoplankton community to tropical cyclones revealed by high-frequency imaging flow cytometry
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10117
– volume: 17
  start-page: 1657
  year: 2021
  ident: B25
  article-title: The diurnal cycle of pCO 2 in the coastal region of the Baltic Sea
  publication-title: Ocean Sci.
  doi: 10.5194/os-17-1657-2021
SSID ssj0001340549
Score 2.3965197
Snippet Plankton communities form the basis of aquatic ecosystems and elucidating their role in increasingly important environmental issues is a persistent research...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms automated data processing
convolutional neural network
IFCB
imaging flow cytometry (IFC)
near-real-time classification
phytoplankton imaging
Title Towards operational phytoplankton recognition with automated high-throughput imaging, near-real-time data processing, and convolutional neural networks
URI https://doaj.org/article/3883e8a950e64409b554283c6f6cda49
Volume 9
WOSCitedRecordID wos000855100200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: M7P
  dateStart: 20140225
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: PCBAR
  dateStart: 20140225
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: BENPR
  dateStart: 20140225
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: PIMPY
  dateStart: 20140225
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: M2P
  dateStart: 20140225
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVl20MplH7SJG3QoadQtVrLsqRjUjb0tA1lA3sz0kiGkI3X7Hr7V_J3OyO7y_aSXHqysWRZaAbmjfz0hrHPnk7I6CoI2wCIEgGC8FY1wurCyGAMONfkYhNmPrfLpbs6KPVFnLBBHnhYuG_KWpWsd1omDN3SBYx_GBKhaiqIvsxH96RxB8lU3l1RCERKN_zGxCzMoZkwUcR8sCi-WqJ16n8C0YFefw4sl6_YyxER8vNhJq_Zk9S-YS9-QvLtKCf9lt0vMrt1y9dd2ozbdxxb-nW38u0t4je-ZwLhPW2ucr_r1whHU-QkSSzGgjzdruc3d7k00RfeopsLRI0rQSXmObFFeTecHMjtvo2caOmje-I3Sf4yXzJ5fPuOXV_OFt9_iLGkggCly16YNI1VAIzSoE2cpkb5pKxRYQo-mML7JnlXRFclGRVIMLpSJgYw1CCjU-_ZpF236QPjjQ6QQOFowZTea-sRGinKtqdJqlAeMfl3fWsY9cap7MWqxryDTFJnk9RkknowyRE727_SDWIbD3W-IKPtO5JOdn6A3lOP3lM_5j3H_2OQE_ac5pWZZ8VHNuk3u_SJPYPf_c12c8qeXszmV79Os4P-AdKX7wA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+operational+phytoplankton+recognition+with+automated+high-throughput+imaging%2C+near-real-time+data+processing%2C+and+convolutional+neural+networks&rft.jtitle=Frontiers+in+Marine+Science&rft.au=Kraft%2C+Kaisa&rft.au=Velhonoja%2C+Otso&rft.au=Eerola%2C+Tuomas&rft.au=Suikkanen%2C+Sanna&rft.date=2022-09-02&rft.issn=2296-7745&rft.eissn=2296-7745&rft.volume=9&rft_id=info:doi/10.3389%2Ffmars.2022.867695&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmars_2022_867695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-7745&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-7745&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-7745&client=summon