Analysis of the inherent instability of the interpolating moving least squares method when using improper polynomial bases
This paper first discusses the inherent instability of the interpolating moving least squares (IMLS) method. In the original IMLS method, non-scaled polynomial bases are used. Theoretical and numerical results indicate that the stability of the original IMLS method decreases as the separation distan...
Uloženo v:
| Vydáno v: | Engineering analysis with boundary elements Ročník 73; s. 21 - 34 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.12.2016
|
| Témata: | |
| ISSN: | 0955-7997, 1873-197X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper first discusses the inherent instability of the interpolating moving least squares (IMLS) method. In the original IMLS method, non-scaled polynomial bases are used. Theoretical and numerical results indicate that the stability of the original IMLS method decreases as the separation distance decreases. Then, using shifted and scaled polynomial bases, a stabilized algorithm of the IMLS method is proposed and analyzed. As an application, the stabilized IMLS method is finally introduced into the meshless Galerkin boundary node method (GBNM) to produce a stabilized GBNM for potential problems and Stokes problems. Numerical examples are given to demonstrate the stability and convergence of the presented stabilized algorithms. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0955-7997 1873-197X |
| DOI: | 10.1016/j.enganabound.2016.08.012 |