Distributed Linear Precoder Optimization and Base Station Selection for an Uplink Heterogeneous Network

In a heterogeneous wireless cellular network, each user may be covered by multiple access points such as macro/pico/relay/femto base stations (BS). An effective approach to maximize the sum utility (e.g., system throughput) in such a network is to jointly optimize users' linear procoders as wel...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 61; číslo 12; s. 3214 - 3228
Hlavní autoři: Hong, Mingyi, Luo, Zhi-Quan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.06.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In a heterogeneous wireless cellular network, each user may be covered by multiple access points such as macro/pico/relay/femto base stations (BS). An effective approach to maximize the sum utility (e.g., system throughput) in such a network is to jointly optimize users' linear procoders as well as their BS associations. In this paper, we first show that this joint optimization problem is NP-hard and thus is difficult to solve to global optimality. To find a locally optimal solution, we formulate the problem as a noncooperative game in which the users and the BSs both act as players. We introduce a set of new utility functions for the players and show that every Nash equilibrium (NE) of the resulting game is a stationary solution of the original sum utility maximization problem. Moreover, we develop a best-response type algorithm that allows the players to distributedly reach a NE of the game. Simulation results show that the proposed distributed algorithm can effectively relieve local BS congestion and simultaneously achieve high throughput and load balancing in a heterogeneous network.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2013.2252169