Shining light on drug discovery: optogenetic screening for TopBP1 biomolecular condensate inhibitors

Abstract Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and checkpoint activation. TopBP1 forms nuclear condensates that act as a molecular switch to amplify ATR activity and promote the activatio...

Full description

Saved in:
Bibliographic Details
Published in:NAR cancer Vol. 7; no. 4; p. zcaf041
Main Authors: Morano, Laura, Vie, Nadia, Aissanou, Adam, Hodroj, Dana, Garambois, Véronique, Fauvre, Alexandra, Promonet, Alexy, Egger, Tom, Bordignon, Benoît, Hassen-Khodja, Cédric, Fiachetti, Solène, Basbous, Jihane, Gongora, Céline, Constantinou, Angelos
Format: Journal Article
Language:English
Published: England Oxford University Press 01.12.2025
Subjects:
ISSN:2632-8674, 2632-8674
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and checkpoint activation. TopBP1 forms nuclear condensates that act as a molecular switch to amplify ATR activity and promote the activation of the checkpoint effector kinase Chk1. In cancer cells, ATR activity is crucial to tolerate the intrinsically high level of DNA lesions and obstacles that block replication fork progression. Thus, ATR inhibitors are currently tested in clinical trials, often in combination with chemotherapy drugs. However, resistance and toxicity are still major issues. The weak interactions that hold TopBP1 condensates together are highly sensitive to changes in the cellular milieu, suggesting that small molecules may alter the formation of TopBP1 condensates. Here, we developed a high-throughput screening system to identify TopBP1 condensation modulators. This system allowed us to identify FDA-approved drugs, including thimerosal and quinacrine, that inhibit TopBP1 condensation and block the activation of ATR/Chk1 signaling. Mechanistically, quinacrine impaired TopBP1’s ability to associate with chromatin, thereby interfering with its capacity to form condensates. Furthermore, quinacrine enhanced the therapeutic efficacy of 5-fluorouracil and irinotecan, components of the clinically used FOLFIRI regimen in a mouse model of peritoneal carcinomatosis from colorectal cancer. Graphical Abstract Graphical Abstract
AbstractList Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and checkpoint activation. TopBP1 forms nuclear condensates that act as a molecular switch to amplify ATR activity and promote the activation of the checkpoint effector kinase Chk1. In cancer cells, ATR activity is crucial to tolerate the intrinsically high level of DNA lesions and obstacles that block replication fork progression. Thus, ATR inhibitors are currently tested in clinical trials, often in combination with chemotherapy drugs. However, resistance and toxicity are still major issues. The weak interactions that hold TopBP1 condensates together are highly sensitive to changes in the cellular milieu, suggesting that small molecules may alter the formation of TopBP1 condensates. Here, we developed a high-throughput screening system to identify TopBP1 condensation modulators. This system allowed us to identify FDA-approved drugs, including thimerosal and quinacrine, that inhibit TopBP1 condensation and block the activation of ATR/Chk1 signaling. Mechanistically, quinacrine impaired TopBP1’s ability to associate with chromatin, thereby interfering with its capacity to form condensates. Furthermore, quinacrine enhanced the therapeutic efficacy of 5-fluorouracil and irinotecan, components of the clinically used FOLFIRI regimen in a mouse model of peritoneal carcinomatosis from colorectal cancer.
Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and checkpoint activation. TopBP1 forms nuclear condensates that act as a molecular switch to amplify ATR activity and promote the activation of the checkpoint effector kinase Chk1. In cancer cells, ATR activity is crucial to tolerate the intrinsically high level of DNA lesions and obstacles that block replication fork progression. Thus, ATR inhibitors are currently tested in clinical trials, often in combination with chemotherapy drugs. However, resistance and toxicity are still major issues. The weak interactions that hold TopBP1 condensates together are highly sensitive to changes in the cellular milieu, suggesting that small molecules may alter the formation of TopBP1 condensates. Here, we developed a high-throughput screening system to identify TopBP1 condensation modulators. This system allowed us to identify FDA-approved drugs, including thimerosal and quinacrine, that inhibit TopBP1 condensation and block the activation of ATR/Chk1 signaling. Mechanistically, quinacrine impaired TopBP1's ability to associate with chromatin, thereby interfering with its capacity to form condensates. Furthermore, quinacrine enhanced the therapeutic efficacy of 5-fluorouracil and irinotecan, components of the clinically used FOLFIRI regimen in a mouse model of peritoneal carcinomatosis from colorectal cancer.Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and checkpoint activation. TopBP1 forms nuclear condensates that act as a molecular switch to amplify ATR activity and promote the activation of the checkpoint effector kinase Chk1. In cancer cells, ATR activity is crucial to tolerate the intrinsically high level of DNA lesions and obstacles that block replication fork progression. Thus, ATR inhibitors are currently tested in clinical trials, often in combination with chemotherapy drugs. However, resistance and toxicity are still major issues. The weak interactions that hold TopBP1 condensates together are highly sensitive to changes in the cellular milieu, suggesting that small molecules may alter the formation of TopBP1 condensates. Here, we developed a high-throughput screening system to identify TopBP1 condensation modulators. This system allowed us to identify FDA-approved drugs, including thimerosal and quinacrine, that inhibit TopBP1 condensation and block the activation of ATR/Chk1 signaling. Mechanistically, quinacrine impaired TopBP1's ability to associate with chromatin, thereby interfering with its capacity to form condensates. Furthermore, quinacrine enhanced the therapeutic efficacy of 5-fluorouracil and irinotecan, components of the clinically used FOLFIRI regimen in a mouse model of peritoneal carcinomatosis from colorectal cancer.
Abstract Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and checkpoint activation. TopBP1 forms nuclear condensates that act as a molecular switch to amplify ATR activity and promote the activation of the checkpoint effector kinase Chk1. In cancer cells, ATR activity is crucial to tolerate the intrinsically high level of DNA lesions and obstacles that block replication fork progression. Thus, ATR inhibitors are currently tested in clinical trials, often in combination with chemotherapy drugs. However, resistance and toxicity are still major issues. The weak interactions that hold TopBP1 condensates together are highly sensitive to changes in the cellular milieu, suggesting that small molecules may alter the formation of TopBP1 condensates. Here, we developed a high-throughput screening system to identify TopBP1 condensation modulators. This system allowed us to identify FDA-approved drugs, including thimerosal and quinacrine, that inhibit TopBP1 condensation and block the activation of ATR/Chk1 signaling. Mechanistically, quinacrine impaired TopBP1’s ability to associate with chromatin, thereby interfering with its capacity to form condensates. Furthermore, quinacrine enhanced the therapeutic efficacy of 5-fluorouracil and irinotecan, components of the clinically used FOLFIRI regimen in a mouse model of peritoneal carcinomatosis from colorectal cancer. Graphical Abstract Graphical Abstract
Author Promonet, Alexy
Morano, Laura
Gongora, Céline
Basbous, Jihane
Egger, Tom
Hodroj, Dana
Fiachetti, Solène
Fauvre, Alexandra
Constantinou, Angelos
Hassen-Khodja, Cédric
Bordignon, Benoît
Garambois, Véronique
Vie, Nadia
Aissanou, Adam
Author_xml – sequence: 1
  givenname: Laura
  surname: Morano
  fullname: Morano, Laura
– sequence: 2
  givenname: Nadia
  surname: Vie
  fullname: Vie, Nadia
– sequence: 3
  givenname: Adam
  surname: Aissanou
  fullname: Aissanou, Adam
– sequence: 4
  givenname: Dana
  surname: Hodroj
  fullname: Hodroj, Dana
– sequence: 5
  givenname: Véronique
  surname: Garambois
  fullname: Garambois, Véronique
– sequence: 6
  givenname: Alexandra
  surname: Fauvre
  fullname: Fauvre, Alexandra
– sequence: 7
  givenname: Alexy
  surname: Promonet
  fullname: Promonet, Alexy
– sequence: 8
  givenname: Tom
  surname: Egger
  fullname: Egger, Tom
– sequence: 9
  givenname: Benoît
  orcidid: 0000-0003-4977-3939
  surname: Bordignon
  fullname: Bordignon, Benoît
– sequence: 10
  givenname: Cédric
  surname: Hassen-Khodja
  fullname: Hassen-Khodja, Cédric
– sequence: 11
  givenname: Solène
  surname: Fiachetti
  fullname: Fiachetti, Solène
– sequence: 12
  givenname: Jihane
  orcidid: 0000-0002-3943-627X
  surname: Basbous
  fullname: Basbous, Jihane
  email: jihane.basbous@igh.cnrs.fr
– sequence: 13
  givenname: Céline
  surname: Gongora
  fullname: Gongora, Céline
  email: celine.gongora@inserm.fr
– sequence: 14
  givenname: Angelos
  surname: Constantinou
  fullname: Constantinou, Angelos
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41190242$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9LwzAUB_AgEzfnrh4l4EUP3fKraetNh79goOA8lzRNu4wuqUkrzL_euk4RL57yDp-Xl5fvMRgYaxQApxhNMUrozAgnhZl9SFEghg_AiHBKgphHbPCrHoKJ92uEEAkxIZgfgSHDOEGEkRHIX1baaFPCSperBloDc9eWMNde2nfltlfQ1o0tlVGNltBLp9SOF9bBpa1vnjHMtN3YSsm2Eg5Ka3JlvGgU1GalM91Y50_AYSEqryb7cwxe726X84dg8XT_OL9eBJKGrAmoRJRGBY-FKCRjkoQkIpKHGUpYhgqJSZRwlmPKQoUZx1jEhLEkiQjJY54JOgYX_b21s2-t8k266fZQVSWMsq1PKeFxzLpZcUfP_9C1bZ3pXrdTOIoITTp1tldttlF5Wju9EW6bfv9fB6Y9kM5671TxQzBKvzJK-4zSfUZdw2XfYNv6P_sJzSCTQA
Cites_doi 10.1038/ncomms7572
10.1038/s41467-017-00221-3
10.15252/msb.202110272
10.1186/1478-811X-9-13
10.1177/108705719900400206
10.1038/s41567-021-01462-2
10.1016/j.dnarep.2014.06.004
10.1016/j.molcel.2020.12.049
10.1038/nrm.2017.7
10.1016/j.molcel.2010.09.019
10.1074/jbc.M109.003020
10.4161/cbt.12.3.17034
10.1093/nar/11.5.1475
10.1038/nrc1074
10.1038/nbt1186
10.1073/pnas.0508888102
10.1016/S0960-9822(00)00447-4
10.1038/35087607
10.1016/j.molcel.2022.05.018
10.7554/eLife.106196.1
10.1016/j.molcel.2009.01.024
10.1016/j.cell.2005.12.041
10.1083/jcb.201502107
10.1016/j.cell.2009.02.024
10.1074/jbc.M704635200
10.1371/journal.pgen.1003702
10.1186/s12885-018-4712-z
10.1101/gad.256958.114
10.1126/science.aab0958
10.1038/s42003-025-08442-9
10.1186/s12935-018-0645-5
10.1038/s41573-022-00505-4
10.1016/j.semcancer.2019.09.021
10.1016/j.celrep.2013.10.027
10.1101/gad.1666208
10.3390/ijms23105701
10.1016/j.cell.2009.12.049
10.3727/096504012×13473664562628
10.1016/j.celrep.2024.114064
10.1186/s12943-018-0804-2
10.1146/annurev-pathol-012414-040424
10.1083/jcb.201607031
10.1093/jnci/82.13.1107
10.1002/ijc.20032
10.1038/sj.emboj.7601355
10.1091/mbc.E20-09-0583
10.1158/2159-8290.CD-16-0860
10.1016/j.cell.2013.10.043
10.1016/j.molcel.2013.03.006
10.1038/nature08467
10.1128/MCB.01140-08
10.1038/s41568-018-0034-3
10.1016/j.jbiotec.2010.01.012
10.1101/gad.1547007
10.1128/MCB.21.11.3820-3829.2001
10.1016/j.molcel.2015.02.012
10.1021/tx700341n
10.1074/jbc.M116.729194
10.1007/978-1-4613-1247-5_23
10.1101/gad.14.4.397
10.1016/j.cell.2012.03.043
10.3390/ijms18122603
10.1126/scitranslmed.3002530
10.1016/j.molcel.2019.02.014
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press. 2025
The Author(s) 2025. Published by Oxford University Press.
2025 The Author(s) 2025. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press. 2025
– notice: The Author(s) 2025. Published by Oxford University Press.
– notice: 2025 The Author(s) 2025. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1093/narcan/zcaf041
DatabaseName Oxford Open
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2632-8674
ExternalDocumentID 41190242
10_1093_narcan_zcaf041
10.1093/narcan/zcaf041
Genre Journal Article
GroupedDBID 0R~
53G
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABXVV
ALMA_UNASSIGNED_HOLDINGS
AMNDL
EBS
GROUPED_DOAJ
KSI
M~E
RPM
TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c354t-3c0337f68aafc44c25272c65b094b0fc127964d1345e14611a824499722d86ba3
IEDL.DBID TOX
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001606084700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2632-8674
IngestDate Wed Nov 05 17:16:14 EST 2025
Sat Nov 29 03:45:38 EST 2025
Sat Nov 08 03:22:52 EST 2025
Wed Nov 05 20:44:42 EST 2025
Mon Dec 01 07:41:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2025. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-3c0337f68aafc44c25272c65b094b0fc127964d1345e14611a824499722d86ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4977-3939
0000-0002-3943-627X
OpenAccessLink https://dx.doi.org/10.1093/narcan/zcaf041
PMID 41190242
PQID 3268177239
PQPubID 7443607
ParticipantIDs proquest_miscellaneous_3268843548
proquest_journals_3268177239
pubmed_primary_41190242
crossref_primary_10_1093_narcan_zcaf041
oup_primary_10_1093_narcan_zcaf041
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NAR cancer
PublicationTitleAlternate NAR Cancer
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Gallant (2025110313352655500_B54) 2011; 12
Lecona (2025110313352655500_B16) 2018; 18
Tosi (2025110313352655500_B39) 2018; 18
Duursma (2025110313352655500_B29) 2013; 50
Leimbacher (2025110313352655500_B58) 2019; 74
Banani (2025110313352655500_B22) 2017; 18
Broderick (2025110313352655500_B59) 2015; 6
Pedersen (2025110313352655500_B60) 2015; 210
Mittag (2025110313352655500_B23) 2022; 82
Skehan (2025110313352655500_B38) 1990; 82
Luo (2025110313352655500_B2) 2009; 136
Jackson (2025110313352655500_B1) 2016; 352
Jackson (2025110313352655500_B5) 2009; 461
Kumagai (2025110313352655500_B56) 2010; 140
Lee (2025110313352655500_B28) 2007; 282
Brown (2025110313352655500_B7) 2000; 14
Brown (2025110313352655500_B6) 2017; 7
Zhou (2025110313352655500_B20) 2013; 9
Wu (2025110313352655500_B46) 2008; 21
Morano (2025110313352655500_B30) 2025
Malo (2025110313352655500_B34) 2006; 24
Acevedo (2025110313352655500_B25) 2016; 291
Harada (2025110313352655500_B52) 2017; 18
D’Angiolella (2025110313352655500_B12) 2012; 149
Mohapatra (2025110313352655500_B55) 2012; 20
Blackford (2025110313352655500_B62) 2015; 57
Wardlaw (2025110313352655500_B19) 2014; 22
Liu (2025110313352655500_B64) 2009; 29
Toledo (2025110313352655500_B11) 2013; 155
Frattini (2025110313352655500_B21) 2021; 81
Pellegrini (2025110313352655500_B47) 2018; 18
Zhang (2025110313352655500_B33) 1999; 4
Pancholi (2025110313352655500_B44) 2021; 17
Egger (2025110313352655500_B42) 2024; 43
Eykelenboom (2025110313352655500_B8) 2013; 5
Macheret (2025110313352655500_B3) 2015; 10
Delacroix (2025110313352655500_B27) 2007; 21
Gasparian (2025110313352655500_B53) 2011; 3
Bagge (2025110313352655500_B61) 2025; 8
Jacquet (2025110313352655500_B41) 1996; 82
Hirschhaeuser (2025110313352655500_B50) 2010; 148
Ciccia (2025110313352655500_B4) 2010; 40
Morin (2025110313352655500_B45) 2022; 18
de Klein (2025110313352655500_B9) 2000; 10
Mitrea (2025110313352655500_B24) 2022; 21
Tercero (2025110313352655500_B10) 2001; 412
Shiotani (2025110313352655500_B35) 2009; 33
Ehsanian (2025110313352655500_B48) 2011; 9
Liu (2025110313352655500_B63) 2006; 25
Longley (2025110313352655500_B49) 2003; 3
Zhang (2025110313352655500_B15) 2009; 284
Le (2025110313352655500_B13) 2017; 8
Lopez-Contreras (2025110313352655500_B14) 2015; 29
Bhullar (2025110313352655500_B17) 2018; 17
Candeil (2025110313352655500_B32) 2004; 109
Goedhart (2025110313352655500_B43) 2021; 32
Oien (2025110313352655500_B31) 2021; 68
Liu (2025110313352655500_B57) 2017; 216
Dignam (2025110313352655500_B36) 1983; 11
Wysocka (2025110313352655500_B37) 2001; 21
Gurova (2025110313352655500_B51) 2005; 102
Mordes (2025110313352655500_B26) 2008; 22
Kumagai (2025110313352655500_B18) 2006; 124
Vezzio-Vié (2025110313352655500_B40) 2022; 23
References_xml – volume: 6
  start-page: 6572
  year: 2015
  ident: 2025110313352655500_B59
  article-title: TOPBP1 recruits TOP2A to ultra-fine anaphase bridges to aid in their resolution
  publication-title: Nat Commun
  doi: 10.1038/ncomms7572
– volume: 8
  start-page: 241
  year: 2017
  ident: 2025110313352655500_B13
  article-title: ATR inhibition facilitates targeting of leukemia dependence on convergent nucleotide biosynthetic pathways
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00221-3
– volume: 17
  start-page: e10272
  year: 2021
  ident: 2025110313352655500_B44
  article-title: RNA polymerase II clusters form in line with surface condensation on regulatory chromatin
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.202110272
– volume: 9
  start-page: 13
  year: 2011
  ident: 2025110313352655500_B48
  article-title: Beyond DNA binding—a review of the potential mechanisms mediating quinacrine’s therapeutic activities in parasitic infections, inflammation, and cancers
  publication-title: Cell Commun Signal
  doi: 10.1186/1478-811X-9-13
– volume: 4
  start-page: 67
  year: 1999
  ident: 2025110313352655500_B33
  article-title: A simple statistical parameter for use in evaluation and validation of high throughput screening assays
  publication-title: J Biomol Screen
  doi: 10.1177/108705719900400206
– volume: 18
  start-page: 271
  year: 2022
  ident: 2025110313352655500_B45
  article-title: Sequence-dependent surface condensation of a pioneer transcription factor on DNA
  publication-title: Nat Phys
  doi: 10.1038/s41567-021-01462-2
– volume: 22
  start-page: 165
  year: 2014
  ident: 2025110313352655500_B19
  article-title: TopBP1: a BRCT-scaffold protein functioning in multiple cellular pathways
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2014.06.004
– volume: 81
  start-page: 1231
  year: 2021
  ident: 2025110313352655500_B21
  article-title: TopBP1 assembles nuclear condensates to switch on ATR signaling
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2020.12.049
– volume: 18
  start-page: 285
  year: 2017
  ident: 2025110313352655500_B22
  article-title: Biomolecular condensates: organizers of cellular biochemistry
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2017.7
– volume: 40
  start-page: 179
  year: 2010
  ident: 2025110313352655500_B4
  article-title: The DNA damage response: making it safe to play with knives
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.09.019
– volume: 284
  start-page: 18085
  year: 2009
  ident: 2025110313352655500_B15
  article-title: Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.003020
– volume: 12
  start-page: 239
  year: 2011
  ident: 2025110313352655500_B54
  article-title: Quinacrine synergizes with 5-fluorouracil and other therapies in colorectal cancer
  publication-title: Cancer Biol Ther
  doi: 10.4161/cbt.12.3.17034
– volume: 11
  start-page: 1475
  year: 1983
  ident: 2025110313352655500_B36
  article-title: Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/11.5.1475
– volume: 3
  start-page: 330
  year: 2003
  ident: 2025110313352655500_B49
  article-title: 5-Fluorouracil: mechanisms of action and clinical strategies
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1074
– volume: 24
  start-page: 167
  year: 2006
  ident: 2025110313352655500_B34
  article-title: Statistical practice in high-throughput screening data analysis
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1186
– volume: 102
  start-page: 17448
  year: 2005
  ident: 2025110313352655500_B51
  article-title: Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0508888102
– volume: 10
  start-page: 479
  year: 2000
  ident: 2025110313352655500_B9
  article-title: Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(00)00447-4
– volume: 412
  start-page: 553
  year: 2001
  ident: 2025110313352655500_B10
  article-title: Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint
  publication-title: Nature
  doi: 10.1038/35087607
– volume: 82
  start-page: 2201
  year: 2022
  ident: 2025110313352655500_B23
  article-title: A conceptual framework for understanding phase separation and addressing open questions and challenges
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2022.05.018
– start-page: P106196
  volume-title: eLife
  year: 2025
  ident: 2025110313352655500_B30
  article-title: TopBP1 biomolecular condensates: a new therapeutic target in advanced-stage colorectal cancer
  doi: 10.7554/eLife.106196.1
– volume: 33
  start-page: 547
  year: 2009
  ident: 2025110313352655500_B35
  article-title: Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.01.024
– volume: 124
  start-page: 943
  year: 2006
  ident: 2025110313352655500_B18
  article-title: TopBP1 Activates the ATR-ATRIP complex
  publication-title: Cell
  doi: 10.1016/j.cell.2005.12.041
– volume: 210
  start-page: 565
  year: 2015
  ident: 2025110313352655500_B60
  article-title: TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201502107
– volume: 136
  start-page: 823
  year: 2009
  ident: 2025110313352655500_B2
  article-title: Principles of cancer therapy: oncogene and non-oncogene addiction
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.024
– volume: 282
  start-page: 28036
  year: 2007
  ident: 2025110313352655500_B28
  article-title: The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M704635200
– volume: 9
  start-page: e1003702
  year: 2013
  ident: 2025110313352655500_B20
  article-title: An essential function for the ATR-activation-domain (AAD) of TopBP1 in mouse development and cellular senescence
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003702
– volume: 18
  start-page: 812
  year: 2018
  ident: 2025110313352655500_B39
  article-title: Rational development of synergistic combinations of chemotherapy and molecular targeted agents for colorectal cancer treatment
  publication-title: BMC Cancer
  doi: 10.1186/s12885-018-4712-z
– volume: 29
  start-page: 690
  year: 2015
  ident: 2025110313352655500_B14
  article-title: Increased Rrm2 gene dosage reduces fragile site breakage and prolongs survival of ATR mutant mice
  publication-title: Genes Dev
  doi: 10.1101/gad.256958.114
– volume: 352
  start-page: 1178
  year: 2016
  ident: 2025110313352655500_B1
  article-title: Drugging DNA repair
  publication-title: Science
  doi: 10.1126/science.aab0958
– volume: 8
  start-page: 1005
  year: 2025
  ident: 2025110313352655500_B61
  article-title: TopBP1 coordinates DNA repair synthesis in mitosis via recruitment of the nuclease scaffold SLX4
  publication-title: Commun Biol
  doi: 10.1038/s42003-025-08442-9
– volume: 18
  start-page: 147
  year: 2018
  ident: 2025110313352655500_B47
  article-title: A drug screening assay on cancer cells chronically adapted to acidosis
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-018-0645-5
– volume: 21
  start-page: 841
  year: 2022
  ident: 2025110313352655500_B24
  article-title: Modulating biomolecular condensates: a novel approach to drug discovery
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-022-00505-4
– volume: 68
  start-page: 21
  year: 2021
  ident: 2025110313352655500_B31
  article-title: Repurposing quinacrine for treatment-refractory cancer
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2019.09.021
– volume: 5
  start-page: 1095
  year: 2013
  ident: 2025110313352655500_B8
  article-title: ATR activates the S-M checkpoint during unperturbed growth to ensure sufficient replication prior to mitotic onset
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.10.027
– volume: 22
  start-page: 1478
  year: 2008
  ident: 2025110313352655500_B26
  article-title: TopBP1 activates ATR through ATRIP and a PIKK regulatory domain
  publication-title: Genes Dev
  doi: 10.1101/gad.1666208
– volume: 23
  start-page: 5701
  year: 2022
  ident: 2025110313352655500_B40
  article-title: Multiplexed-based assessment of DNA damage response to chemotherapies using cell imaging cytometry
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23105701
– volume: 140
  start-page: 349
  year: 2010
  ident: 2025110313352655500_B56
  article-title: Treslin collaborates with TopBP1 in triggering the initiation of DNA replication
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.049
– volume: 20
  start-page: 81
  year: 2012
  ident: 2025110313352655500_B55
  article-title: Quinacrine-mediated autophagy and apoptosis in colon cancer cells is through a p53- and p21-dependent mechanism
  publication-title: Oncol Res
  doi: 10.3727/096504012×13473664562628
– volume: 43
  start-page: 114064
  year: 2024
  ident: 2025110313352655500_B42
  article-title: Spatial organization and functions of Chk1 activation by TopBP1 biomolecular condensates
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2024.114064
– volume: 17
  start-page: 48
  year: 2018
  ident: 2025110313352655500_B17
  article-title: Kinase-targeted cancer therapies: progress, challenges and future directions
  publication-title: Mol Cancer
  doi: 10.1186/s12943-018-0804-2
– volume: 10
  start-page: 425
  year: 2015
  ident: 2025110313352655500_B3
  article-title: DNA replication stress as a hallmark of cancer
  publication-title: Annu Rev Pathol
  doi: 10.1146/annurev-pathol-012414-040424
– volume: 216
  start-page: 623
  year: 2017
  ident: 2025110313352655500_B57
  article-title: TOPBP1Dpb11 plays a conserved role in homologous recombination DNA repair through the coordinated recruitment of 53BP1Rad9
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201607031
– volume: 82
  start-page: 1107
  year: 1990
  ident: 2025110313352655500_B38
  article-title: New colorimetric cytotoxicity assay for anticancer-drug screening
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/82.13.1107
– volume: 109
  start-page: 848
  year: 2004
  ident: 2025110313352655500_B32
  article-title: ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases
  publication-title: Int J Cancer
  doi: 10.1002/ijc.20032
– volume: 25
  start-page: 4795
  year: 2006
  ident: 2025110313352655500_B63
  article-title: Regulation of TopBP1 oligomerization by Akt/PKB for cell survival
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601355
– volume: 32
  start-page: 470
  year: 2021
  ident: 2025110313352655500_B43
  article-title: SuperPlotsOfData-a web app for the transparent display and quantitative comparison of continuous data from different conditions
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E20-09-0583
– volume: 7
  start-page: 20
  year: 2017
  ident: 2025110313352655500_B6
  article-title: Targeting DNA repair in cancer: beyond PARP inhibitors
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-16-0860
– volume: 155
  start-page: 1088
  year: 2013
  ident: 2025110313352655500_B11
  article-title: ATR prohibits replication catastrophe by preventing global exhaustion of RPA
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.043
– volume: 50
  start-page: 116
  year: 2013
  ident: 2025110313352655500_B29
  article-title: A role for the MRN complex in ATR activation via TOPBP1 recruitment
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.03.006
– volume: 461
  start-page: 1071
  year: 2009
  ident: 2025110313352655500_B5
  article-title: The DNA-damage response in human biology and disease
  publication-title: Nature
  doi: 10.1038/nature08467
– volume: 29
  start-page: 2673
  year: 2009
  ident: 2025110313352655500_B64
  article-title: Regulation of p53 by TopBP1: a potential mechanism for p53 inactivation in cancer
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01140-08
– volume: 18
  start-page: 586
  year: 2018
  ident: 2025110313352655500_B16
  article-title: Targeting ATR in cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-018-0034-3
– volume: 148
  start-page: 3
  year: 2010
  ident: 2025110313352655500_B50
  article-title: Multicellular tumor spheroids: an underestimated tool is catching up again
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2010.01.012
– volume: 21
  start-page: 1472
  year: 2007
  ident: 2025110313352655500_B27
  article-title: The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1
  publication-title: Genes Dev
  doi: 10.1101/gad.1547007
– volume: 21
  start-page: 3820
  year: 2001
  ident: 2025110313352655500_B37
  article-title: Loss of HCF-1-chromatin association precedes temperature-induced growth arrest of tsBN67 cells
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.21.11.3820-3829.2001
– volume: 57
  start-page: 1133
  year: 2015
  ident: 2025110313352655500_B62
  article-title: TopBP1 interacts with BLM to maintain genome stability but is dispensable for preventing BLM degradation
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.02.012
– volume: 21
  start-page: 483
  year: 2008
  ident: 2025110313352655500_B46
  article-title: Thiol-modulated mechanisms of the cytotoxicity of thimerosal and inhibition of DNA topoisomerase IIα
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx700341n
– volume: 291
  start-page: 13124
  year: 2016
  ident: 2025110313352655500_B25
  article-title: Direct binding to replication protein A (RPA)-coated single-stranded DNA allows recruitment of the ATR activator TopBP1 to sites of DNA damage
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M116.729194
– volume: 82
  start-page: 359
  year: 1996
  ident: 2025110313352655500_B41
  article-title: Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis
  publication-title: Cancer Treat Res
  doi: 10.1007/978-1-4613-1247-5_23
– volume: 14
  start-page: 397
  year: 2000
  ident: 2025110313352655500_B7
  article-title: ATR disruption leads to chromosomal fragmentation and early embryonic lethality
  publication-title: Genes Dev
  doi: 10.1101/gad.14.4.397
– volume: 149
  start-page: 1023
  year: 2012
  ident: 2025110313352655500_B12
  article-title: Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.043
– volume: 18
  start-page: 2603
  year: 2017
  ident: 2025110313352655500_B52
  article-title: Quinacrine inhibits ICAM-1 transcription by blocking DNA binding of the NF-κB subunit p65 and sensitizes human lung adenocarcinoma A549 cells to TNF-α and the Fas ligand
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18122603
– volume: 3
  start-page: 95ra74
  year: 2011
  ident: 2025110313352655500_B53
  article-title: Curaxins: anticancer compounds that simultaneously suppress NF-κB and activate p53 by targeting FACT
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3002530
– volume: 74
  start-page: 571
  year: 2019
  ident: 2025110313352655500_B58
  article-title: MDC1 interacts with TOPBP1 to maintain chromosomal stability during mitosis
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2019.02.014
SSID ssj0002512216
Score 2.310796
Snippet Abstract Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation,...
Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Publisher
StartPage zcaf041
SubjectTerms 5-Fluorouracil
Animals
Antineoplastic Agents - pharmacology
Ataxia Telangiectasia Mutated Proteins - antagonists & inhibitors
Ataxia Telangiectasia Mutated Proteins - metabolism
Carrier Proteins - antagonists & inhibitors
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Line, Tumor
Checkpoint Kinase 1 - metabolism
Chemotherapy
CHK1 protein
Chromatin
Clinical trials
Colorectal carcinoma
Condensates
DNA biosynthesis
DNA repair
DNA-Binding Proteins - antagonists & inhibitors
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Drug Discovery - methods
Drug resistance
Fluorouracil - administration & dosage
Fluorouracil - pharmacology
Gene regulation
High-throughput screening
High-Throughput Screening Assays - methods
Humans
Irinotecan
Irinotecan - pharmacology
Kinases
Mice
Nuclear Proteins - antagonists & inhibitors
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Quinacrine
Replication initiation
Signal Transduction - drug effects
Thimerosal
Toxicity
Transcription activation
Transcription initiation
Title Shining light on drug discovery: optogenetic screening for TopBP1 biomolecular condensate inhibitors
URI https://www.ncbi.nlm.nih.gov/pubmed/41190242
https://www.proquest.com/docview/3268177239
https://www.proquest.com/docview/3268843548
Volume 7
WOSCitedRecordID wos001606084700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2632-8674
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512216
  issn: 2632-8674
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2632-8674
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512216
  issn: 2632-8674
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2632-8674
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512216
  issn: 2632-8674
  databaseCode: TOX
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46fPDFC96mc0QRfCpbLm1T31QUn-bACX0raZq4grRj7QT99Z60XWEqqM89peGcnJzva_LlIHQBITWGEO1oL5AONyZxAk-7DtAhXwsppGGyajbhj0YiDINxc1l08cMWfsAGGURcZoMPJc2wkqgTV9gZPXkM278ptkpT4rW3Mn59a6XqrCjZvgHKqrDcb_9jSDtoq0GP-LoO9y5a09keSp6mVZcH_GqJNs4znMwXL9jqbe35zPcrnM_KHCaK1StiWCaAulpzgKt4ks9uxgRbEf6yTy4GhgyLUQEgFKfZNI1T25BnHz3f301uH5ymeYKjmMtLh6khuNt4QkqjOFfUpT5VnhsDn4uHRhFqRagJYdzVtrc3kQIqvZXR0kR4sWQHqJPlmT5CGFLe8NhTNJAe9zWDFLdkViYspnEiRBddLp0bzeo7MqJ6b5tFtaeixlNddA6-_9WotwxN1CRUEQHKFASYAAu66Kx9DKlg9zdkpvNFbSMA_nEY0WEd0vZTnADyAThy_JcRnKBNatv8VqdWeqhTzhf6FG2otzIt5n207oeiX5H3fjULPwHB-tuM
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shining+light+on+drug+discovery%3A+optogenetic+screening+for+TopBP1+biomolecular+condensate+inhibitors&rft.jtitle=NAR+cancer&rft.au=Morano%2C+Laura&rft.au=Vie%2C+Nadia&rft.au=Aissanou%2C+Adam&rft.au=Hodroj%2C+Dana&rft.date=2025-12-01&rft.pub=Oxford+University+Press&rft.issn=2632-8674&rft.eissn=2632-8674&rft.volume=7&rft.issue=4&rft_id=info:doi/10.1093%2Fnarcan%2Fzcaf041&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-8674&client=summon