Shining light on drug discovery: optogenetic screening for TopBP1 biomolecular condensate inhibitors
Abstract Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and checkpoint activation. TopBP1 forms nuclear condensates that act as a molecular switch to amplify ATR activity and promote the activatio...
Saved in:
| Published in: | NAR cancer Vol. 7; no. 4; p. zcaf041 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Oxford University Press
01.12.2025
|
| Subjects: | |
| ISSN: | 2632-8674, 2632-8674 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Abstract
Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and checkpoint activation. TopBP1 forms nuclear condensates that act as a molecular switch to amplify ATR activity and promote the activation of the checkpoint effector kinase Chk1. In cancer cells, ATR activity is crucial to tolerate the intrinsically high level of DNA lesions and obstacles that block replication fork progression. Thus, ATR inhibitors are currently tested in clinical trials, often in combination with chemotherapy drugs. However, resistance and toxicity are still major issues. The weak interactions that hold TopBP1 condensates together are highly sensitive to changes in the cellular milieu, suggesting that small molecules may alter the formation of TopBP1 condensates. Here, we developed a high-throughput screening system to identify TopBP1 condensation modulators. This system allowed us to identify FDA-approved drugs, including thimerosal and quinacrine, that inhibit TopBP1 condensation and block the activation of ATR/Chk1 signaling. Mechanistically, quinacrine impaired TopBP1’s ability to associate with chromatin, thereby interfering with its capacity to form condensates. Furthermore, quinacrine enhanced the therapeutic efficacy of 5-fluorouracil and irinotecan, components of the clinically used FOLFIRI regimen in a mouse model of peritoneal carcinomatosis from colorectal cancer.
Graphical Abstract
Graphical Abstract |
|---|---|
| AbstractList | Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and checkpoint activation. TopBP1 forms nuclear condensates that act as a molecular switch to amplify ATR activity and promote the activation of the checkpoint effector kinase Chk1. In cancer cells, ATR activity is crucial to tolerate the intrinsically high level of DNA lesions and obstacles that block replication fork progression. Thus, ATR inhibitors are currently tested in clinical trials, often in combination with chemotherapy drugs. However, resistance and toxicity are still major issues. The weak interactions that hold TopBP1 condensates together are highly sensitive to changes in the cellular milieu, suggesting that small molecules may alter the formation of TopBP1 condensates. Here, we developed a high-throughput screening system to identify TopBP1 condensation modulators. This system allowed us to identify FDA-approved drugs, including thimerosal and quinacrine, that inhibit TopBP1 condensation and block the activation of ATR/Chk1 signaling. Mechanistically, quinacrine impaired TopBP1’s ability to associate with chromatin, thereby interfering with its capacity to form condensates. Furthermore, quinacrine enhanced the therapeutic efficacy of 5-fluorouracil and irinotecan, components of the clinically used FOLFIRI regimen in a mouse model of peritoneal carcinomatosis from colorectal cancer. Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and checkpoint activation. TopBP1 forms nuclear condensates that act as a molecular switch to amplify ATR activity and promote the activation of the checkpoint effector kinase Chk1. In cancer cells, ATR activity is crucial to tolerate the intrinsically high level of DNA lesions and obstacles that block replication fork progression. Thus, ATR inhibitors are currently tested in clinical trials, often in combination with chemotherapy drugs. However, resistance and toxicity are still major issues. The weak interactions that hold TopBP1 condensates together are highly sensitive to changes in the cellular milieu, suggesting that small molecules may alter the formation of TopBP1 condensates. Here, we developed a high-throughput screening system to identify TopBP1 condensation modulators. This system allowed us to identify FDA-approved drugs, including thimerosal and quinacrine, that inhibit TopBP1 condensation and block the activation of ATR/Chk1 signaling. Mechanistically, quinacrine impaired TopBP1's ability to associate with chromatin, thereby interfering with its capacity to form condensates. Furthermore, quinacrine enhanced the therapeutic efficacy of 5-fluorouracil and irinotecan, components of the clinically used FOLFIRI regimen in a mouse model of peritoneal carcinomatosis from colorectal cancer.Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and checkpoint activation. TopBP1 forms nuclear condensates that act as a molecular switch to amplify ATR activity and promote the activation of the checkpoint effector kinase Chk1. In cancer cells, ATR activity is crucial to tolerate the intrinsically high level of DNA lesions and obstacles that block replication fork progression. Thus, ATR inhibitors are currently tested in clinical trials, often in combination with chemotherapy drugs. However, resistance and toxicity are still major issues. The weak interactions that hold TopBP1 condensates together are highly sensitive to changes in the cellular milieu, suggesting that small molecules may alter the formation of TopBP1 condensates. Here, we developed a high-throughput screening system to identify TopBP1 condensation modulators. This system allowed us to identify FDA-approved drugs, including thimerosal and quinacrine, that inhibit TopBP1 condensation and block the activation of ATR/Chk1 signaling. Mechanistically, quinacrine impaired TopBP1's ability to associate with chromatin, thereby interfering with its capacity to form condensates. Furthermore, quinacrine enhanced the therapeutic efficacy of 5-fluorouracil and irinotecan, components of the clinically used FOLFIRI regimen in a mouse model of peritoneal carcinomatosis from colorectal cancer. Abstract Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and checkpoint activation. TopBP1 forms nuclear condensates that act as a molecular switch to amplify ATR activity and promote the activation of the checkpoint effector kinase Chk1. In cancer cells, ATR activity is crucial to tolerate the intrinsically high level of DNA lesions and obstacles that block replication fork progression. Thus, ATR inhibitors are currently tested in clinical trials, often in combination with chemotherapy drugs. However, resistance and toxicity are still major issues. The weak interactions that hold TopBP1 condensates together are highly sensitive to changes in the cellular milieu, suggesting that small molecules may alter the formation of TopBP1 condensates. Here, we developed a high-throughput screening system to identify TopBP1 condensation modulators. This system allowed us to identify FDA-approved drugs, including thimerosal and quinacrine, that inhibit TopBP1 condensation and block the activation of ATR/Chk1 signaling. Mechanistically, quinacrine impaired TopBP1’s ability to associate with chromatin, thereby interfering with its capacity to form condensates. Furthermore, quinacrine enhanced the therapeutic efficacy of 5-fluorouracil and irinotecan, components of the clinically used FOLFIRI regimen in a mouse model of peritoneal carcinomatosis from colorectal cancer. Graphical Abstract Graphical Abstract |
| Author | Promonet, Alexy Morano, Laura Gongora, Céline Basbous, Jihane Egger, Tom Hodroj, Dana Fiachetti, Solène Fauvre, Alexandra Constantinou, Angelos Hassen-Khodja, Cédric Bordignon, Benoît Garambois, Véronique Vie, Nadia Aissanou, Adam |
| Author_xml | – sequence: 1 givenname: Laura surname: Morano fullname: Morano, Laura – sequence: 2 givenname: Nadia surname: Vie fullname: Vie, Nadia – sequence: 3 givenname: Adam surname: Aissanou fullname: Aissanou, Adam – sequence: 4 givenname: Dana surname: Hodroj fullname: Hodroj, Dana – sequence: 5 givenname: Véronique surname: Garambois fullname: Garambois, Véronique – sequence: 6 givenname: Alexandra surname: Fauvre fullname: Fauvre, Alexandra – sequence: 7 givenname: Alexy surname: Promonet fullname: Promonet, Alexy – sequence: 8 givenname: Tom surname: Egger fullname: Egger, Tom – sequence: 9 givenname: Benoît orcidid: 0000-0003-4977-3939 surname: Bordignon fullname: Bordignon, Benoît – sequence: 10 givenname: Cédric surname: Hassen-Khodja fullname: Hassen-Khodja, Cédric – sequence: 11 givenname: Solène surname: Fiachetti fullname: Fiachetti, Solène – sequence: 12 givenname: Jihane orcidid: 0000-0002-3943-627X surname: Basbous fullname: Basbous, Jihane email: jihane.basbous@igh.cnrs.fr – sequence: 13 givenname: Céline surname: Gongora fullname: Gongora, Céline email: celine.gongora@inserm.fr – sequence: 14 givenname: Angelos surname: Constantinou fullname: Constantinou, Angelos |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41190242$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0c9LwzAUB_AgEzfnrh4l4EUP3fKraetNh79goOA8lzRNu4wuqUkrzL_euk4RL57yDp-Xl5fvMRgYaxQApxhNMUrozAgnhZl9SFEghg_AiHBKgphHbPCrHoKJ92uEEAkxIZgfgSHDOEGEkRHIX1baaFPCSperBloDc9eWMNde2nfltlfQ1o0tlVGNltBLp9SOF9bBpa1vnjHMtN3YSsm2Eg5Ka3JlvGgU1GalM91Y50_AYSEqryb7cwxe726X84dg8XT_OL9eBJKGrAmoRJRGBY-FKCRjkoQkIpKHGUpYhgqJSZRwlmPKQoUZx1jEhLEkiQjJY54JOgYX_b21s2-t8k266fZQVSWMsq1PKeFxzLpZcUfP_9C1bZ3pXrdTOIoITTp1tldttlF5Wju9EW6bfv9fB6Y9kM5671TxQzBKvzJK-4zSfUZdw2XfYNv6P_sJzSCTQA |
| Cites_doi | 10.1038/ncomms7572 10.1038/s41467-017-00221-3 10.15252/msb.202110272 10.1186/1478-811X-9-13 10.1177/108705719900400206 10.1038/s41567-021-01462-2 10.1016/j.dnarep.2014.06.004 10.1016/j.molcel.2020.12.049 10.1038/nrm.2017.7 10.1016/j.molcel.2010.09.019 10.1074/jbc.M109.003020 10.4161/cbt.12.3.17034 10.1093/nar/11.5.1475 10.1038/nrc1074 10.1038/nbt1186 10.1073/pnas.0508888102 10.1016/S0960-9822(00)00447-4 10.1038/35087607 10.1016/j.molcel.2022.05.018 10.7554/eLife.106196.1 10.1016/j.molcel.2009.01.024 10.1016/j.cell.2005.12.041 10.1083/jcb.201502107 10.1016/j.cell.2009.02.024 10.1074/jbc.M704635200 10.1371/journal.pgen.1003702 10.1186/s12885-018-4712-z 10.1101/gad.256958.114 10.1126/science.aab0958 10.1038/s42003-025-08442-9 10.1186/s12935-018-0645-5 10.1038/s41573-022-00505-4 10.1016/j.semcancer.2019.09.021 10.1016/j.celrep.2013.10.027 10.1101/gad.1666208 10.3390/ijms23105701 10.1016/j.cell.2009.12.049 10.3727/096504012×13473664562628 10.1016/j.celrep.2024.114064 10.1186/s12943-018-0804-2 10.1146/annurev-pathol-012414-040424 10.1083/jcb.201607031 10.1093/jnci/82.13.1107 10.1002/ijc.20032 10.1038/sj.emboj.7601355 10.1091/mbc.E20-09-0583 10.1158/2159-8290.CD-16-0860 10.1016/j.cell.2013.10.043 10.1016/j.molcel.2013.03.006 10.1038/nature08467 10.1128/MCB.01140-08 10.1038/s41568-018-0034-3 10.1016/j.jbiotec.2010.01.012 10.1101/gad.1547007 10.1128/MCB.21.11.3820-3829.2001 10.1016/j.molcel.2015.02.012 10.1021/tx700341n 10.1074/jbc.M116.729194 10.1007/978-1-4613-1247-5_23 10.1101/gad.14.4.397 10.1016/j.cell.2012.03.043 10.3390/ijms18122603 10.1126/scitranslmed.3002530 10.1016/j.molcel.2019.02.014 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025. Published by Oxford University Press. 2025 The Author(s) 2025. Published by Oxford University Press. 2025 The Author(s) 2025. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. 2025 – notice: The Author(s) 2025. Published by Oxford University Press. – notice: 2025 The Author(s) 2025. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
| DOI | 10.1093/narcan/zcaf041 |
| DatabaseName | Oxford Open CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2632-8674 |
| ExternalDocumentID | 41190242 10_1093_narcan_zcaf041 10.1093/narcan/zcaf041 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 53G AAPXW AAVAP ABEJV ABGNP ABPTD ABXVV ALMA_UNASSIGNED_HOLDINGS AMNDL EBS GROUPED_DOAJ KSI M~E RPM TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
| ID | FETCH-LOGICAL-c354t-3c0337f68aafc44c25272c65b094b0fc127964d1345e14611a824499722d86ba3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001606084700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2632-8674 |
| IngestDate | Wed Nov 05 17:16:14 EST 2025 Sat Nov 29 03:45:38 EST 2025 Sat Nov 08 03:22:52 EST 2025 Wed Nov 05 20:44:42 EST 2025 Mon Dec 01 07:41:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c354t-3c0337f68aafc44c25272c65b094b0fc127964d1345e14611a824499722d86ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4977-3939 0000-0002-3943-627X |
| OpenAccessLink | https://dx.doi.org/10.1093/narcan/zcaf041 |
| PMID | 41190242 |
| PQID | 3268177239 |
| PQPubID | 7443607 |
| ParticipantIDs | proquest_miscellaneous_3268843548 proquest_journals_3268177239 pubmed_primary_41190242 crossref_primary_10_1093_narcan_zcaf041 oup_primary_10_1093_narcan_zcaf041 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | NAR cancer |
| PublicationTitleAlternate | NAR Cancer |
| PublicationYear | 2025 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Gallant (2025110313352655500_B54) 2011; 12 Lecona (2025110313352655500_B16) 2018; 18 Tosi (2025110313352655500_B39) 2018; 18 Duursma (2025110313352655500_B29) 2013; 50 Leimbacher (2025110313352655500_B58) 2019; 74 Banani (2025110313352655500_B22) 2017; 18 Broderick (2025110313352655500_B59) 2015; 6 Pedersen (2025110313352655500_B60) 2015; 210 Mittag (2025110313352655500_B23) 2022; 82 Skehan (2025110313352655500_B38) 1990; 82 Luo (2025110313352655500_B2) 2009; 136 Jackson (2025110313352655500_B1) 2016; 352 Jackson (2025110313352655500_B5) 2009; 461 Kumagai (2025110313352655500_B56) 2010; 140 Lee (2025110313352655500_B28) 2007; 282 Brown (2025110313352655500_B7) 2000; 14 Brown (2025110313352655500_B6) 2017; 7 Zhou (2025110313352655500_B20) 2013; 9 Wu (2025110313352655500_B46) 2008; 21 Morano (2025110313352655500_B30) 2025 Malo (2025110313352655500_B34) 2006; 24 Acevedo (2025110313352655500_B25) 2016; 291 Harada (2025110313352655500_B52) 2017; 18 D’Angiolella (2025110313352655500_B12) 2012; 149 Mohapatra (2025110313352655500_B55) 2012; 20 Blackford (2025110313352655500_B62) 2015; 57 Wardlaw (2025110313352655500_B19) 2014; 22 Liu (2025110313352655500_B64) 2009; 29 Toledo (2025110313352655500_B11) 2013; 155 Frattini (2025110313352655500_B21) 2021; 81 Pellegrini (2025110313352655500_B47) 2018; 18 Zhang (2025110313352655500_B33) 1999; 4 Pancholi (2025110313352655500_B44) 2021; 17 Egger (2025110313352655500_B42) 2024; 43 Eykelenboom (2025110313352655500_B8) 2013; 5 Macheret (2025110313352655500_B3) 2015; 10 Delacroix (2025110313352655500_B27) 2007; 21 Gasparian (2025110313352655500_B53) 2011; 3 Bagge (2025110313352655500_B61) 2025; 8 Jacquet (2025110313352655500_B41) 1996; 82 Hirschhaeuser (2025110313352655500_B50) 2010; 148 Ciccia (2025110313352655500_B4) 2010; 40 Morin (2025110313352655500_B45) 2022; 18 de Klein (2025110313352655500_B9) 2000; 10 Mitrea (2025110313352655500_B24) 2022; 21 Tercero (2025110313352655500_B10) 2001; 412 Shiotani (2025110313352655500_B35) 2009; 33 Ehsanian (2025110313352655500_B48) 2011; 9 Liu (2025110313352655500_B63) 2006; 25 Longley (2025110313352655500_B49) 2003; 3 Zhang (2025110313352655500_B15) 2009; 284 Le (2025110313352655500_B13) 2017; 8 Lopez-Contreras (2025110313352655500_B14) 2015; 29 Bhullar (2025110313352655500_B17) 2018; 17 Candeil (2025110313352655500_B32) 2004; 109 Goedhart (2025110313352655500_B43) 2021; 32 Oien (2025110313352655500_B31) 2021; 68 Liu (2025110313352655500_B57) 2017; 216 Dignam (2025110313352655500_B36) 1983; 11 Wysocka (2025110313352655500_B37) 2001; 21 Gurova (2025110313352655500_B51) 2005; 102 Mordes (2025110313352655500_B26) 2008; 22 Kumagai (2025110313352655500_B18) 2006; 124 Vezzio-Vié (2025110313352655500_B40) 2022; 23 |
| References_xml | – volume: 6 start-page: 6572 year: 2015 ident: 2025110313352655500_B59 article-title: TOPBP1 recruits TOP2A to ultra-fine anaphase bridges to aid in their resolution publication-title: Nat Commun doi: 10.1038/ncomms7572 – volume: 8 start-page: 241 year: 2017 ident: 2025110313352655500_B13 article-title: ATR inhibition facilitates targeting of leukemia dependence on convergent nucleotide biosynthetic pathways publication-title: Nat Commun doi: 10.1038/s41467-017-00221-3 – volume: 17 start-page: e10272 year: 2021 ident: 2025110313352655500_B44 article-title: RNA polymerase II clusters form in line with surface condensation on regulatory chromatin publication-title: Mol Syst Biol doi: 10.15252/msb.202110272 – volume: 9 start-page: 13 year: 2011 ident: 2025110313352655500_B48 article-title: Beyond DNA binding—a review of the potential mechanisms mediating quinacrine’s therapeutic activities in parasitic infections, inflammation, and cancers publication-title: Cell Commun Signal doi: 10.1186/1478-811X-9-13 – volume: 4 start-page: 67 year: 1999 ident: 2025110313352655500_B33 article-title: A simple statistical parameter for use in evaluation and validation of high throughput screening assays publication-title: J Biomol Screen doi: 10.1177/108705719900400206 – volume: 18 start-page: 271 year: 2022 ident: 2025110313352655500_B45 article-title: Sequence-dependent surface condensation of a pioneer transcription factor on DNA publication-title: Nat Phys doi: 10.1038/s41567-021-01462-2 – volume: 22 start-page: 165 year: 2014 ident: 2025110313352655500_B19 article-title: TopBP1: a BRCT-scaffold protein functioning in multiple cellular pathways publication-title: DNA Repair doi: 10.1016/j.dnarep.2014.06.004 – volume: 81 start-page: 1231 year: 2021 ident: 2025110313352655500_B21 article-title: TopBP1 assembles nuclear condensates to switch on ATR signaling publication-title: Mol Cell doi: 10.1016/j.molcel.2020.12.049 – volume: 18 start-page: 285 year: 2017 ident: 2025110313352655500_B22 article-title: Biomolecular condensates: organizers of cellular biochemistry publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm.2017.7 – volume: 40 start-page: 179 year: 2010 ident: 2025110313352655500_B4 article-title: The DNA damage response: making it safe to play with knives publication-title: Mol Cell doi: 10.1016/j.molcel.2010.09.019 – volume: 284 start-page: 18085 year: 2009 ident: 2025110313352655500_B15 article-title: Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response publication-title: J Biol Chem doi: 10.1074/jbc.M109.003020 – volume: 12 start-page: 239 year: 2011 ident: 2025110313352655500_B54 article-title: Quinacrine synergizes with 5-fluorouracil and other therapies in colorectal cancer publication-title: Cancer Biol Ther doi: 10.4161/cbt.12.3.17034 – volume: 11 start-page: 1475 year: 1983 ident: 2025110313352655500_B36 article-title: Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei publication-title: Nucleic Acids Res doi: 10.1093/nar/11.5.1475 – volume: 3 start-page: 330 year: 2003 ident: 2025110313352655500_B49 article-title: 5-Fluorouracil: mechanisms of action and clinical strategies publication-title: Nat Rev Cancer doi: 10.1038/nrc1074 – volume: 24 start-page: 167 year: 2006 ident: 2025110313352655500_B34 article-title: Statistical practice in high-throughput screening data analysis publication-title: Nat Biotechnol doi: 10.1038/nbt1186 – volume: 102 start-page: 17448 year: 2005 ident: 2025110313352655500_B51 article-title: Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0508888102 – volume: 10 start-page: 479 year: 2000 ident: 2025110313352655500_B9 article-title: Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice publication-title: Curr Biol doi: 10.1016/S0960-9822(00)00447-4 – volume: 412 start-page: 553 year: 2001 ident: 2025110313352655500_B10 article-title: Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint publication-title: Nature doi: 10.1038/35087607 – volume: 82 start-page: 2201 year: 2022 ident: 2025110313352655500_B23 article-title: A conceptual framework for understanding phase separation and addressing open questions and challenges publication-title: Mol Cell doi: 10.1016/j.molcel.2022.05.018 – start-page: P106196 volume-title: eLife year: 2025 ident: 2025110313352655500_B30 article-title: TopBP1 biomolecular condensates: a new therapeutic target in advanced-stage colorectal cancer doi: 10.7554/eLife.106196.1 – volume: 33 start-page: 547 year: 2009 ident: 2025110313352655500_B35 article-title: Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks publication-title: Mol Cell doi: 10.1016/j.molcel.2009.01.024 – volume: 124 start-page: 943 year: 2006 ident: 2025110313352655500_B18 article-title: TopBP1 Activates the ATR-ATRIP complex publication-title: Cell doi: 10.1016/j.cell.2005.12.041 – volume: 210 start-page: 565 year: 2015 ident: 2025110313352655500_B60 article-title: TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells publication-title: J Cell Biol doi: 10.1083/jcb.201502107 – volume: 136 start-page: 823 year: 2009 ident: 2025110313352655500_B2 article-title: Principles of cancer therapy: oncogene and non-oncogene addiction publication-title: Cell doi: 10.1016/j.cell.2009.02.024 – volume: 282 start-page: 28036 year: 2007 ident: 2025110313352655500_B28 article-title: The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR publication-title: J Biol Chem doi: 10.1074/jbc.M704635200 – volume: 9 start-page: e1003702 year: 2013 ident: 2025110313352655500_B20 article-title: An essential function for the ATR-activation-domain (AAD) of TopBP1 in mouse development and cellular senescence publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003702 – volume: 18 start-page: 812 year: 2018 ident: 2025110313352655500_B39 article-title: Rational development of synergistic combinations of chemotherapy and molecular targeted agents for colorectal cancer treatment publication-title: BMC Cancer doi: 10.1186/s12885-018-4712-z – volume: 29 start-page: 690 year: 2015 ident: 2025110313352655500_B14 article-title: Increased Rrm2 gene dosage reduces fragile site breakage and prolongs survival of ATR mutant mice publication-title: Genes Dev doi: 10.1101/gad.256958.114 – volume: 352 start-page: 1178 year: 2016 ident: 2025110313352655500_B1 article-title: Drugging DNA repair publication-title: Science doi: 10.1126/science.aab0958 – volume: 8 start-page: 1005 year: 2025 ident: 2025110313352655500_B61 article-title: TopBP1 coordinates DNA repair synthesis in mitosis via recruitment of the nuclease scaffold SLX4 publication-title: Commun Biol doi: 10.1038/s42003-025-08442-9 – volume: 18 start-page: 147 year: 2018 ident: 2025110313352655500_B47 article-title: A drug screening assay on cancer cells chronically adapted to acidosis publication-title: Cancer Cell Int doi: 10.1186/s12935-018-0645-5 – volume: 21 start-page: 841 year: 2022 ident: 2025110313352655500_B24 article-title: Modulating biomolecular condensates: a novel approach to drug discovery publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-022-00505-4 – volume: 68 start-page: 21 year: 2021 ident: 2025110313352655500_B31 article-title: Repurposing quinacrine for treatment-refractory cancer publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2019.09.021 – volume: 5 start-page: 1095 year: 2013 ident: 2025110313352655500_B8 article-title: ATR activates the S-M checkpoint during unperturbed growth to ensure sufficient replication prior to mitotic onset publication-title: Cell Rep doi: 10.1016/j.celrep.2013.10.027 – volume: 22 start-page: 1478 year: 2008 ident: 2025110313352655500_B26 article-title: TopBP1 activates ATR through ATRIP and a PIKK regulatory domain publication-title: Genes Dev doi: 10.1101/gad.1666208 – volume: 23 start-page: 5701 year: 2022 ident: 2025110313352655500_B40 article-title: Multiplexed-based assessment of DNA damage response to chemotherapies using cell imaging cytometry publication-title: Int J Mol Sci doi: 10.3390/ijms23105701 – volume: 140 start-page: 349 year: 2010 ident: 2025110313352655500_B56 article-title: Treslin collaborates with TopBP1 in triggering the initiation of DNA replication publication-title: Cell doi: 10.1016/j.cell.2009.12.049 – volume: 20 start-page: 81 year: 2012 ident: 2025110313352655500_B55 article-title: Quinacrine-mediated autophagy and apoptosis in colon cancer cells is through a p53- and p21-dependent mechanism publication-title: Oncol Res doi: 10.3727/096504012×13473664562628 – volume: 43 start-page: 114064 year: 2024 ident: 2025110313352655500_B42 article-title: Spatial organization and functions of Chk1 activation by TopBP1 biomolecular condensates publication-title: Cell Rep doi: 10.1016/j.celrep.2024.114064 – volume: 17 start-page: 48 year: 2018 ident: 2025110313352655500_B17 article-title: Kinase-targeted cancer therapies: progress, challenges and future directions publication-title: Mol Cancer doi: 10.1186/s12943-018-0804-2 – volume: 10 start-page: 425 year: 2015 ident: 2025110313352655500_B3 article-title: DNA replication stress as a hallmark of cancer publication-title: Annu Rev Pathol doi: 10.1146/annurev-pathol-012414-040424 – volume: 216 start-page: 623 year: 2017 ident: 2025110313352655500_B57 article-title: TOPBP1Dpb11 plays a conserved role in homologous recombination DNA repair through the coordinated recruitment of 53BP1Rad9 publication-title: J Cell Biol doi: 10.1083/jcb.201607031 – volume: 82 start-page: 1107 year: 1990 ident: 2025110313352655500_B38 article-title: New colorimetric cytotoxicity assay for anticancer-drug screening publication-title: J Natl Cancer Inst doi: 10.1093/jnci/82.13.1107 – volume: 109 start-page: 848 year: 2004 ident: 2025110313352655500_B32 article-title: ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases publication-title: Int J Cancer doi: 10.1002/ijc.20032 – volume: 25 start-page: 4795 year: 2006 ident: 2025110313352655500_B63 article-title: Regulation of TopBP1 oligomerization by Akt/PKB for cell survival publication-title: EMBO J doi: 10.1038/sj.emboj.7601355 – volume: 32 start-page: 470 year: 2021 ident: 2025110313352655500_B43 article-title: SuperPlotsOfData-a web app for the transparent display and quantitative comparison of continuous data from different conditions publication-title: Mol Biol Cell doi: 10.1091/mbc.E20-09-0583 – volume: 7 start-page: 20 year: 2017 ident: 2025110313352655500_B6 article-title: Targeting DNA repair in cancer: beyond PARP inhibitors publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-16-0860 – volume: 155 start-page: 1088 year: 2013 ident: 2025110313352655500_B11 article-title: ATR prohibits replication catastrophe by preventing global exhaustion of RPA publication-title: Cell doi: 10.1016/j.cell.2013.10.043 – volume: 50 start-page: 116 year: 2013 ident: 2025110313352655500_B29 article-title: A role for the MRN complex in ATR activation via TOPBP1 recruitment publication-title: Mol Cell doi: 10.1016/j.molcel.2013.03.006 – volume: 461 start-page: 1071 year: 2009 ident: 2025110313352655500_B5 article-title: The DNA-damage response in human biology and disease publication-title: Nature doi: 10.1038/nature08467 – volume: 29 start-page: 2673 year: 2009 ident: 2025110313352655500_B64 article-title: Regulation of p53 by TopBP1: a potential mechanism for p53 inactivation in cancer publication-title: Mol Cell Biol doi: 10.1128/MCB.01140-08 – volume: 18 start-page: 586 year: 2018 ident: 2025110313352655500_B16 article-title: Targeting ATR in cancer publication-title: Nat Rev Cancer doi: 10.1038/s41568-018-0034-3 – volume: 148 start-page: 3 year: 2010 ident: 2025110313352655500_B50 article-title: Multicellular tumor spheroids: an underestimated tool is catching up again publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2010.01.012 – volume: 21 start-page: 1472 year: 2007 ident: 2025110313352655500_B27 article-title: The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1 publication-title: Genes Dev doi: 10.1101/gad.1547007 – volume: 21 start-page: 3820 year: 2001 ident: 2025110313352655500_B37 article-title: Loss of HCF-1-chromatin association precedes temperature-induced growth arrest of tsBN67 cells publication-title: Mol Cell Biol doi: 10.1128/MCB.21.11.3820-3829.2001 – volume: 57 start-page: 1133 year: 2015 ident: 2025110313352655500_B62 article-title: TopBP1 interacts with BLM to maintain genome stability but is dispensable for preventing BLM degradation publication-title: Mol Cell doi: 10.1016/j.molcel.2015.02.012 – volume: 21 start-page: 483 year: 2008 ident: 2025110313352655500_B46 article-title: Thiol-modulated mechanisms of the cytotoxicity of thimerosal and inhibition of DNA topoisomerase IIα publication-title: Chem Res Toxicol doi: 10.1021/tx700341n – volume: 291 start-page: 13124 year: 2016 ident: 2025110313352655500_B25 article-title: Direct binding to replication protein A (RPA)-coated single-stranded DNA allows recruitment of the ATR activator TopBP1 to sites of DNA damage publication-title: J Biol Chem doi: 10.1074/jbc.M116.729194 – volume: 82 start-page: 359 year: 1996 ident: 2025110313352655500_B41 article-title: Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis publication-title: Cancer Treat Res doi: 10.1007/978-1-4613-1247-5_23 – volume: 14 start-page: 397 year: 2000 ident: 2025110313352655500_B7 article-title: ATR disruption leads to chromosomal fragmentation and early embryonic lethality publication-title: Genes Dev doi: 10.1101/gad.14.4.397 – volume: 149 start-page: 1023 year: 2012 ident: 2025110313352655500_B12 article-title: Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair publication-title: Cell doi: 10.1016/j.cell.2012.03.043 – volume: 18 start-page: 2603 year: 2017 ident: 2025110313352655500_B52 article-title: Quinacrine inhibits ICAM-1 transcription by blocking DNA binding of the NF-κB subunit p65 and sensitizes human lung adenocarcinoma A549 cells to TNF-α and the Fas ligand publication-title: Int J Mol Sci doi: 10.3390/ijms18122603 – volume: 3 start-page: 95ra74 year: 2011 ident: 2025110313352655500_B53 article-title: Curaxins: anticancer compounds that simultaneously suppress NF-κB and activate p53 by targeting FACT publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3002530 – volume: 74 start-page: 571 year: 2019 ident: 2025110313352655500_B58 article-title: MDC1 interacts with TOPBP1 to maintain chromosomal stability during mitosis publication-title: Mol Cell doi: 10.1016/j.molcel.2019.02.014 |
| SSID | ssj0002512216 |
| Score | 2.310796 |
| Snippet | Abstract
Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation,... Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and... |
| SourceID | proquest pubmed crossref oup |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | zcaf041 |
| SubjectTerms | 5-Fluorouracil Animals Antineoplastic Agents - pharmacology Ataxia Telangiectasia Mutated Proteins - antagonists & inhibitors Ataxia Telangiectasia Mutated Proteins - metabolism Carrier Proteins - antagonists & inhibitors Carrier Proteins - genetics Carrier Proteins - metabolism Cell Line, Tumor Checkpoint Kinase 1 - metabolism Chemotherapy CHK1 protein Chromatin Clinical trials Colorectal carcinoma Condensates DNA biosynthesis DNA repair DNA-Binding Proteins - antagonists & inhibitors DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Drug Discovery - methods Drug resistance Fluorouracil - administration & dosage Fluorouracil - pharmacology Gene regulation High-throughput screening High-Throughput Screening Assays - methods Humans Irinotecan Irinotecan - pharmacology Kinases Mice Nuclear Proteins - antagonists & inhibitors Nuclear Proteins - genetics Nuclear Proteins - metabolism Quinacrine Replication initiation Signal Transduction - drug effects Thimerosal Toxicity Transcription activation Transcription initiation |
| Title | Shining light on drug discovery: optogenetic screening for TopBP1 biomolecular condensate inhibitors |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41190242 https://www.proquest.com/docview/3268177239 https://www.proquest.com/docview/3268843548 |
| Volume | 7 |
| WOSCitedRecordID | wos001606084700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2632-8674 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512216 issn: 2632-8674 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2632-8674 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512216 issn: 2632-8674 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2632-8674 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512216 issn: 2632-8674 databaseCode: TOX dateStart: 20191201 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46fPDFC96mc0QRfCpbLm1T31QUn-bACX0raZq4grRj7QT99Z60XWEqqM89peGcnJzva_LlIHQBITWGEO1oL5AONyZxAk-7DtAhXwsppGGyajbhj0YiDINxc1l08cMWfsAGGURcZoMPJc2wkqgTV9gZPXkM278ptkpT4rW3Mn59a6XqrCjZvgHKqrDcb_9jSDtoq0GP-LoO9y5a09keSp6mVZcH_GqJNs4znMwXL9jqbe35zPcrnM_KHCaK1StiWCaAulpzgKt4ks9uxgRbEf6yTy4GhgyLUQEgFKfZNI1T25BnHz3f301uH5ymeYKjmMtLh6khuNt4QkqjOFfUpT5VnhsDn4uHRhFqRagJYdzVtrc3kQIqvZXR0kR4sWQHqJPlmT5CGFLe8NhTNJAe9zWDFLdkViYspnEiRBddLp0bzeo7MqJ6b5tFtaeixlNddA6-_9WotwxN1CRUEQHKFASYAAu66Kx9DKlg9zdkpvNFbSMA_nEY0WEd0vZTnADyAThy_JcRnKBNatv8VqdWeqhTzhf6FG2otzIt5n207oeiX5H3fjULPwHB-tuM |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shining+light+on+drug+discovery%3A+optogenetic+screening+for+TopBP1+biomolecular+condensate+inhibitors&rft.jtitle=NAR+cancer&rft.au=Morano%2C+Laura&rft.au=Vie%2C+Nadia&rft.au=Aissanou%2C+Adam&rft.au=Hodroj%2C+Dana&rft.date=2025-12-01&rft.pub=Oxford+University+Press&rft.issn=2632-8674&rft.eissn=2632-8674&rft.volume=7&rft.issue=4&rft_id=info:doi/10.1093%2Fnarcan%2Fzcaf041&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-8674&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-8674&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-8674&client=summon |