Square-root algorithms for the continuous-time linear least-square estimation problem

We present a simple differential equation for the triangular square root of the state error variance of the continuous-time Kalman filter. Unlike earlier methods of Andrews, and Tapley and Choe, this algorithm does not explicitly involve any antisymmetric matrix in the differential equation for the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 23; číslo 5; s. 907 - 911
Hlavní autoři: Morf, M., Levy, B., Kailath, T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.10.1978
Témata:
ISSN:0018-9286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a simple differential equation for the triangular square root of the state error variance of the continuous-time Kalman filter. Unlike earlier methods of Andrews, and Tapley and Choe, this algorithm does not explicitly involve any antisymmetric matrix in the differential equation for the square roots. The role of antisymmetric matrices is clarified: it is shown that they are just the generators of the orthogonal transformations that connect the various square roots; in the constant model case, a similar set of antisymmetric matrices appears inside the Chandrasekhar-type equations for the square roots of the derivative of the error variance. Several square-root algorithms for the smoothing problem are also presented and are related to some well-known smoothing approaches.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
DOI:10.1109/TAC.1978.1101862