Modalities in homotopy type theory

Univalent homotopy type theory (HoTT) may be seen as a language for the category of $\infty$-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logical methods in computer science Jg. 16, Issue 1
Hauptverfasser: Rijke, Egbert, Shulman, Michael, Spitters, Bas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Logical Methods in Computer Science e.V 01.01.2020
Schlagworte:
ISSN:1860-5974, 1860-5974
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Univalent homotopy type theory (HoTT) may be seen as a language for the category of $\infty$-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and modalities in homotopy type theory, including their construction using a "localization" higher inductive type. This produces in particular the ($n$-connected, $n$-truncated) factorization system as well as internal presentations of subtoposes, through lex modalities. We also develop the semantics of these constructions.
ISSN:1860-5974
1860-5974
DOI:10.23638/LMCS-16(1:2)2020