The parabolic exotic t-structure

Let G be a connected reductive algebraic group over an algebraically closed field k, with simply connected derived subgroup. The exotic t-structure on the cotangent bundle of its flag variety T^*(G/B), originally introduced by Bezrukavnikov, has been a key tool for a number of major results in geome...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Épijournal de géométrie algébrique Ročník 2
Hlavní autori: Achar, Pramod N, Cooney, Nicholas, Riche, Simon N.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: EPIGA 21.11.2018
Association Epiga
Predmet:
ISSN:2491-6765, 2491-6765
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Let G be a connected reductive algebraic group over an algebraically closed field k, with simply connected derived subgroup. The exotic t-structure on the cotangent bundle of its flag variety T^*(G/B), originally introduced by Bezrukavnikov, has been a key tool for a number of major results in geometric representation theory, including the proof of the graded Finkelberg-Mirkovic conjecture. In this paper, we study (under mild technical assumptions) an analogous t-structure on the cotangent bundle of a partial flag variety T^*(G/P). As an application, we prove a parabolic analogue of the Arkhipov-Bezrukavnikov-Ginzburg equivalence. When the characteristic of k is larger than the Coxeter number, we deduce an analogue of the graded Finkelberg-Mirkovic conjecture for some singular blocks. Soit G un groupe algébrique réductif connexe sur un corps k algébriquement clos. La t-structure exotique sur le fibré cotangent de sa variété de drapeaux T^*(G/B), introduite à l'origine par Bezrukavnikov, a été un outil clé pour de nombreux résultats majeurs en théorie géométrique des représentations, en particulier la démonstration de la conjecture de Finkelberg-Mirkovic graduée. Dans cet article, nous étudions (sous de légères hypothèses techniques) une t-structure analogue sur le fibré cotangent de la variété de drapeaux partiels T^*(G/P). Comme application, nous prouvons un analogue parabolique de l'équivalence de Arkhipov-Bezrukavnikov-Ginzburg. Lorsque la caractéristique de k est supérieure au nombre de Coxeter, nous déduisons un analogue de la conjecture de Finkelberg-Mirkovic graduée pour certains blocs singuliers.
AbstractList Let G be a connected reductive algebraic group over an algebraically closed field k, with simply connected derived subgroup. The exotic t-structure on the cotangent bundle of its flag variety T^*(G/B), originally introduced by Bezrukavnikov, has been a key tool for a number of major results in geometric representation theory, including the proof of the graded Finkelberg-Mirkovic conjecture. In this paper, we study (under mild technical assumptions) an analogous t-structure on the cotangent bundle of a partial flag variety T^*(G/P). As an application, we prove a parabolic analogue of the Arkhipov-Bezrukavnikov-Ginzburg equivalence. When the characteristic of k is larger than the Coxeter number, we deduce an analogue of the graded Finkelberg-Mirkovic conjecture for some singular blocks. Soit G un groupe algébrique réductif connexe sur un corps k algébriquement clos. La t-structure exotique sur le fibré cotangent de sa variété de drapeaux T^*(G/B), introduite à l'origine par Bezrukavnikov, a été un outil clé pour de nombreux résultats majeurs en théorie géométrique des représentations, en particulier la démonstration de la conjecture de Finkelberg-Mirkovic graduée. Dans cet article, nous étudions (sous de légères hypothèses techniques) une t-structure analogue sur le fibré cotangent de la variété de drapeaux partiels T^*(G/P). Comme application, nous prouvons un analogue parabolique de l'équivalence de Arkhipov-Bezrukavnikov-Ginzburg. Lorsque la caractéristique de k est supérieure au nombre de Coxeter, nous déduisons un analogue de la conjecture de Finkelberg-Mirkovic graduée pour certains blocs singuliers.
Let G be a connected reductive algebraic group over an algebraically closed field k, with simply connected derived subgroup. The exotic t-structure on the cotangent bundle of its flag variety T^*(G/B), originally introduced by Bezrukavnikov, has been a key tool for a number of major results in geometric representation theory, including the proof of the graded Finkelberg-Mirkovic conjecture. In this paper, we study (under mild technical assumptions) an analogous t-structure on the cotangent bundle of a partial flag variety T^*(G/P). As an application, we prove a parabolic analogue of the Arkhipov-Bezrukavnikov-Ginzburg equivalence. When the characteristic of k is larger than the Coxeter number, we deduce an analogue of the graded Finkelberg-Mirkovic conjecture for some singular blocks.
Author Achar, Pramod N
Cooney, Nicholas
Riche, Simon N.
Author_xml – sequence: 1
  givenname: Pramod N
  surname: Achar
  fullname: Achar, Pramod N
– sequence: 2
  givenname: Nicholas
  surname: Cooney
  fullname: Cooney, Nicholas
– sequence: 3
  givenname: Simon N.
  orcidid: 0000-0002-8697-0854
  surname: Riche
  fullname: Riche, Simon N.
BackLink https://hal.science/hal-01788372$$DView record in HAL
BookMark eNpVkElrwzAQhUVJoWma_-BrD3a1jCT7GEKXQKCX3IWWceLgREF2Qvvv6yyUdi4zPN68Gb5HMtrHPRKSMVqA4lX5godmbQtOWVmcYnvcIS9AcnpHxhwqliut5OjP_ECmXbellHIOstJ6TLLVBrODTdbFtvEZfsV-aH3e9eno-2PCJ3Jf27bD6a1PyOrtdTX_yJef74v5bJl7IaHPuQaFulLI0IUaKkdrjRiqWnA9nAuOUu-UlI7XWgI4JUAOJTyzNqAXE7K4xoZot-aQmp1N3ybaxlyEmNbGpuG1Fg0w60saFA0hAEXlNDhklWbCgwRfDVnP16yNbf9FfcyW5qxRpstSaH7ig7e8en2KXZew_l1g1FwYmwtjc2ZsbozNmbH4Abnqcx8
ContentType Journal Article
Copyright Attribution - ShareAlike
Copyright_xml – notice: Attribution - ShareAlike
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.46298/epiga.2018.volume2.4520
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2491-6765
ExternalDocumentID oai_doaj_org_article_41ac80d60ddd40e6b74be19713c454c9
oai:HAL:hal-01788372v2
10_46298_epiga_2018_volume2_4520
GroupedDBID AAFWJ
AAYXX
ADQAK
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
1XC
VOOES
ID FETCH-LOGICAL-c354t-2746e796e1ebdf49b0f7eed9f327002db00cb655b2f7544b63455553c1aadec3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452658300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2491-6765
IngestDate Fri Oct 03 12:50:51 EDT 2025
Tue Oct 14 20:27:13 EDT 2025
Sat Nov 29 03:27:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Flag varieties
exceptional collection
t-structure
parity complexes
derived category of coherent sheaves
Language English
License https://creativecommons.org/licenses/by-sa/4.0
Attribution - ShareAlike: http://creativecommons.org/licenses/by-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-2746e796e1ebdf49b0f7eed9f327002db00cb655b2f7544b63455553c1aadec3
ORCID 0000-0002-8697-0854
OpenAccessLink https://doaj.org/article/41ac80d60ddd40e6b74be19713c454c9
ParticipantIDs doaj_primary_oai_doaj_org_article_41ac80d60ddd40e6b74be19713c454c9
hal_primary_oai_HAL_hal_01788372v2
crossref_primary_10_46298_epiga_2018_volume2_4520
PublicationCentury 2000
PublicationDate 2018-11-21
PublicationDateYYYYMMDD 2018-11-21
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-21
  day: 21
PublicationDecade 2010
PublicationTitle Épijournal de géométrie algébrique
PublicationYear 2018
Publisher EPIGA
Association Epiga
Publisher_xml – name: EPIGA
– name: Association Epiga
SSID ssj0002245977
Score 2.1243675
Snippet Let G be a connected reductive algebraic group over an algebraically closed field k, with simply connected derived subgroup. The exotic t-structure on the...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Index Database
SubjectTerms [math.math-rt]mathematics [math]/representation theory [math.rt]
derived category of coherent sheaves
exceptional collection
flag varieties
Mathematics
parity complexes
Representation Theory
t-structure
Title The parabolic exotic t-structure
URI https://hal.science/hal-01788372
https://doaj.org/article/41ac80d60ddd40e6b74be19713c454c9
Volume 2
WOSCitedRecordID wos000452658300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2491-6765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245977
  issn: 2491-6765
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2491-6765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245977
  issn: 2491-6765
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMcthBhYEAgQ5aUIsZr6HXssqBVDqRgq1M3yKzyGtiqlYuKzc05SVCYWMmRwIif-X5zzJfbvELoueaSeOYkd5woL7Q02KVaYROlSFMk3nO2nYTka6cnEPG6k-spzwho8cCNcV1AXNImKxBgFScqXwidqILYKUE2ol-6R0mwEU2811EVksFozdUcoZnQ3zV-fM2iI6rbjsxshc5rvDX9UY_vBy7ysv6rWXmawj_ba4WHRa27rAG2l6SEqwJZFZnT7DPEt0ucMjhZL3LBfPxbpCI0H_fHdPW4zG-DApVhiCAVVKo1KNPlYCeNJVYKzMhXP_4FZhL4QvJLSsyoD6rziQsLGA3UupsCP0fZ0Nk0nqODMl4roSJyMMBZwEH4w6Fc-ch1CoKmD6Lp5dt7wKyyM-2tJbC2JzZLYVhKbJemg26zDz_mZQF0XgF1saxf7l1066ApU_FXHfW9ocxm8BDTExWzFTv_jSmdoNzchLxBk9Bxtg_bpAu2E1fL1fXFZPxewf_jqfwNCuL06
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+parabolic+exotic+t-structure&rft.jtitle=%C3%89pijournal+de+g%C3%A9om%C3%A9trie+alg%C3%A9brique&rft.au=Achar%2C+Pramod+N&rft.au=Cooney%2C+Nicholas&rft.au=Riche%2C+Simon&rft.date=2018-11-21&rft.pub=EPIGA&rft.issn=2491-6765&rft.eissn=2491-6765&rft.volume=2&rft_id=info:doi/10.46298%2Fepiga.2018.volume2.4520&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01788372v2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2491-6765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2491-6765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2491-6765&client=summon