The parabolic exotic t-structure
Let G be a connected reductive algebraic group over an algebraically closed field k, with simply connected derived subgroup. The exotic t-structure on the cotangent bundle of its flag variety T^*(G/B), originally introduced by Bezrukavnikov, has been a key tool for a number of major results in geome...
Uložené v:
| Vydané v: | Épijournal de géométrie algébrique Ročník 2 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
EPIGA
21.11.2018
Association Epiga |
| Predmet: | |
| ISSN: | 2491-6765, 2491-6765 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Let G be a connected reductive algebraic group over an algebraically closed field k, with simply connected derived subgroup. The exotic t-structure on the cotangent bundle of its flag variety T^*(G/B), originally introduced by Bezrukavnikov, has been a key tool for a number of major results in geometric representation theory, including the proof of the graded Finkelberg-Mirkovic conjecture. In this paper, we study (under mild technical assumptions) an analogous t-structure on the cotangent bundle of a partial flag variety T^*(G/P). As an application, we prove a parabolic analogue of the Arkhipov-Bezrukavnikov-Ginzburg equivalence. When the characteristic of k is larger than the Coxeter number, we deduce an analogue of the graded Finkelberg-Mirkovic conjecture for some singular blocks.
Soit G un groupe algébrique réductif connexe sur un corps k algébriquement clos. La t-structure exotique sur le fibré cotangent de sa variété de drapeaux T^*(G/B), introduite à l'origine par Bezrukavnikov, a été un outil clé pour de nombreux résultats majeurs en théorie géométrique des représentations, en particulier la démonstration de la conjecture de Finkelberg-Mirkovic graduée. Dans cet article, nous étudions (sous de légères hypothèses techniques) une t-structure analogue sur le fibré cotangent de la variété de drapeaux partiels T^*(G/P). Comme application, nous prouvons un analogue parabolique de l'équivalence de Arkhipov-Bezrukavnikov-Ginzburg. Lorsque la caractéristique de k est supérieure au nombre de Coxeter, nous déduisons un analogue de la conjecture de Finkelberg-Mirkovic graduée pour certains blocs singuliers. |
|---|---|
| AbstractList | Let G be a connected reductive algebraic group over an algebraically closed field k, with simply connected derived subgroup. The exotic t-structure on the cotangent bundle of its flag variety T^*(G/B), originally introduced by Bezrukavnikov, has been a key tool for a number of major results in geometric representation theory, including the proof of the graded Finkelberg-Mirkovic conjecture. In this paper, we study (under mild technical assumptions) an analogous t-structure on the cotangent bundle of a partial flag variety T^*(G/P). As an application, we prove a parabolic analogue of the Arkhipov-Bezrukavnikov-Ginzburg equivalence. When the characteristic of k is larger than the Coxeter number, we deduce an analogue of the graded Finkelberg-Mirkovic conjecture for some singular blocks.
Soit G un groupe algébrique réductif connexe sur un corps k algébriquement clos. La t-structure exotique sur le fibré cotangent de sa variété de drapeaux T^*(G/B), introduite à l'origine par Bezrukavnikov, a été un outil clé pour de nombreux résultats majeurs en théorie géométrique des représentations, en particulier la démonstration de la conjecture de Finkelberg-Mirkovic graduée. Dans cet article, nous étudions (sous de légères hypothèses techniques) une t-structure analogue sur le fibré cotangent de la variété de drapeaux partiels T^*(G/P). Comme application, nous prouvons un analogue parabolique de l'équivalence de Arkhipov-Bezrukavnikov-Ginzburg. Lorsque la caractéristique de k est supérieure au nombre de Coxeter, nous déduisons un analogue de la conjecture de Finkelberg-Mirkovic graduée pour certains blocs singuliers. Let G be a connected reductive algebraic group over an algebraically closed field k, with simply connected derived subgroup. The exotic t-structure on the cotangent bundle of its flag variety T^*(G/B), originally introduced by Bezrukavnikov, has been a key tool for a number of major results in geometric representation theory, including the proof of the graded Finkelberg-Mirkovic conjecture. In this paper, we study (under mild technical assumptions) an analogous t-structure on the cotangent bundle of a partial flag variety T^*(G/P). As an application, we prove a parabolic analogue of the Arkhipov-Bezrukavnikov-Ginzburg equivalence. When the characteristic of k is larger than the Coxeter number, we deduce an analogue of the graded Finkelberg-Mirkovic conjecture for some singular blocks. |
| Author | Achar, Pramod N Cooney, Nicholas Riche, Simon N. |
| Author_xml | – sequence: 1 givenname: Pramod N surname: Achar fullname: Achar, Pramod N – sequence: 2 givenname: Nicholas surname: Cooney fullname: Cooney, Nicholas – sequence: 3 givenname: Simon N. orcidid: 0000-0002-8697-0854 surname: Riche fullname: Riche, Simon N. |
| BackLink | https://hal.science/hal-01788372$$DView record in HAL |
| BookMark | eNpVkElrwzAQhUVJoWma_-BrD3a1jCT7GEKXQKCX3IWWceLgREF2Qvvv6yyUdi4zPN68Gb5HMtrHPRKSMVqA4lX5godmbQtOWVmcYnvcIS9AcnpHxhwqliut5OjP_ECmXbellHIOstJ6TLLVBrODTdbFtvEZfsV-aH3e9eno-2PCJ3Jf27bD6a1PyOrtdTX_yJef74v5bJl7IaHPuQaFulLI0IUaKkdrjRiqWnA9nAuOUu-UlI7XWgI4JUAOJTyzNqAXE7K4xoZot-aQmp1N3ybaxlyEmNbGpuG1Fg0w60saFA0hAEXlNDhklWbCgwRfDVnP16yNbf9FfcyW5qxRpstSaH7ig7e8en2KXZew_l1g1FwYmwtjc2ZsbozNmbH4Abnqcx8 |
| ContentType | Journal Article |
| Copyright | Attribution - ShareAlike |
| Copyright_xml | – notice: Attribution - ShareAlike |
| DBID | AAYXX CITATION 1XC VOOES DOA |
| DOI | 10.46298/epiga.2018.volume2.4520 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2491-6765 |
| ExternalDocumentID | oai_doaj_org_article_41ac80d60ddd40e6b74be19713c454c9 oai:HAL:hal-01788372v2 10_46298_epiga_2018_volume2_4520 |
| GroupedDBID | AAFWJ AAYXX ADQAK AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 1XC VOOES |
| ID | FETCH-LOGICAL-c354t-2746e796e1ebdf49b0f7eed9f327002db00cb655b2f7544b63455553c1aadec3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452658300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2491-6765 |
| IngestDate | Fri Oct 03 12:50:51 EDT 2025 Tue Oct 14 20:27:13 EDT 2025 Sat Nov 29 03:27:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Flag varieties exceptional collection t-structure parity complexes derived category of coherent sheaves |
| Language | English |
| License | https://creativecommons.org/licenses/by-sa/4.0 Attribution - ShareAlike: http://creativecommons.org/licenses/by-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c354t-2746e796e1ebdf49b0f7eed9f327002db00cb655b2f7544b63455553c1aadec3 |
| ORCID | 0000-0002-8697-0854 |
| OpenAccessLink | https://doaj.org/article/41ac80d60ddd40e6b74be19713c454c9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_41ac80d60ddd40e6b74be19713c454c9 hal_primary_oai_HAL_hal_01788372v2 crossref_primary_10_46298_epiga_2018_volume2_4520 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-21 |
| PublicationDateYYYYMMDD | 2018-11-21 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationTitle | Épijournal de géométrie algébrique |
| PublicationYear | 2018 |
| Publisher | EPIGA Association Epiga |
| Publisher_xml | – name: EPIGA – name: Association Epiga |
| SSID | ssj0002245977 |
| Score | 2.1243675 |
| Snippet | Let G be a connected reductive algebraic group over an algebraically closed field k, with simply connected derived subgroup. The exotic t-structure on the... |
| SourceID | doaj hal crossref |
| SourceType | Open Website Open Access Repository Index Database |
| SubjectTerms | [math.math-rt]mathematics [math]/representation theory [math.rt] derived category of coherent sheaves exceptional collection flag varieties Mathematics parity complexes Representation Theory t-structure |
| Title | The parabolic exotic t-structure |
| URI | https://hal.science/hal-01788372 https://doaj.org/article/41ac80d60ddd40e6b74be19713c454c9 |
| Volume | 2 |
| WOSCitedRecordID | wos000452658300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2491-6765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245977 issn: 2491-6765 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2491-6765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245977 issn: 2491-6765 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMcthBhYEAgQ5aUIsZr6HXssqBVDqRgq1M3yKzyGtiqlYuKzc05SVCYWMmRwIif-X5zzJfbvELoueaSeOYkd5woL7Q02KVaYROlSFMk3nO2nYTka6cnEPG6k-spzwho8cCNcV1AXNImKxBgFScqXwidqILYKUE2ol-6R0mwEU2811EVksFozdUcoZnQ3zV-fM2iI6rbjsxshc5rvDX9UY_vBy7ysv6rWXmawj_ba4WHRa27rAG2l6SEqwJZFZnT7DPEt0ucMjhZL3LBfPxbpCI0H_fHdPW4zG-DApVhiCAVVKo1KNPlYCeNJVYKzMhXP_4FZhL4QvJLSsyoD6rziQsLGA3UupsCP0fZ0Nk0nqODMl4roSJyMMBZwEH4w6Fc-ch1CoKmD6Lp5dt7wKyyM-2tJbC2JzZLYVhKbJemg26zDz_mZQF0XgF1saxf7l1066ApU_FXHfW9ocxm8BDTExWzFTv_jSmdoNzchLxBk9Bxtg_bpAu2E1fL1fXFZPxewf_jqfwNCuL06 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+parabolic+exotic+t-structure&rft.jtitle=%C3%89pijournal+de+g%C3%A9om%C3%A9trie+alg%C3%A9brique&rft.au=Achar%2C+Pramod+N&rft.au=Cooney%2C+Nicholas&rft.au=Riche%2C+Simon&rft.date=2018-11-21&rft.pub=EPIGA&rft.issn=2491-6765&rft.eissn=2491-6765&rft.volume=2&rft_id=info:doi/10.46298%2Fepiga.2018.volume2.4520&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01788372v2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2491-6765&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2491-6765&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2491-6765&client=summon |