Optimal Control of Microgrids with Multi-stage Mixed-integer Nonlinear Programming Guided $Q$-learning Algorithm
This paper proposes an energy management system (EMS) for the real-time operation of a pilot stochastic and dynamic microgrid on a university campus in Malta consisting of a diesel generator, photovoltaic panels, and batteries. The objective is to minimize the total daily operation costs, which incl...
Saved in:
| Published in: | Journal of modern power systems and clean energy Vol. 8; no. 6; pp. 1151 - 1159 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.11.2020
|
| Subjects: | |
| ISSN: | 2196-5420 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes an energy management system (EMS) for the real-time operation of a pilot stochastic and dynamic microgrid on a university campus in Malta consisting of a diesel generator, photovoltaic panels, and batteries. The objective is to minimize the total daily operation costs, which include the degradation cost of batteries, the cost of energy bought from the main grid, the fuel cost of the diesel generator, and the emission cost. The optimization problem is modeled as a finite Markov decision process (MDP) by combining network and technical constraints, and Q-learning algorithm is adopted to solve the sequential decision subproblems. The proposed algorithm decomposes a multi-stage mixed-integer nonlinear programming (MINLP) problem into a series of single-stage problems so that each subproblem can be solved by using Bellman's equation. To prove the effectiveness of the proposed algorithm, three case studies are taken into consideration: 1 minimizing the daily energy cost; 2 minimizing the emission cost; 3 minimizing the daily energy cost and emission cost simultaneously. Moreover, each case is operated under different battery operation conditions to investigate the battery lifetime. Finally, performance comparisons are carried out with a conventional Q-learning algorithm. |
|---|---|
| AbstractList | This paper proposes an energy management system (EMS) for the real-time operation of a pilot stochastic and dynamic microgrid on a university campus in Malta consisting of a diesel generator, photovoltaic panels, and batteries. The objective is to minimize the total daily operation costs, which include the degradation cost of batteries, the cost of energy bought from the main grid, the fuel cost of the diesel generator, and the emission cost. The optimization problem is modeled as a finite Markov decision process (MDP) by combining network and technical constraints, and Q-learning algorithm is adopted to solve the sequential decision subproblems. The proposed algorithm decomposes a multi-stage mixed-integer nonlinear programming (MINLP) problem into a series of single-stage problems so that each subproblem can be solved by using Bellman's equation. To prove the effectiveness of the proposed algorithm, three case studies are taken into consideration: 1 minimizing the daily energy cost; 2 minimizing the emission cost; 3 minimizing the daily energy cost and emission cost simultaneously. Moreover, each case is operated under different battery operation conditions to investigate the battery lifetime. Finally, performance comparisons are carried out with a conventional Q-learning algorithm. |
| Author | Yeliz Yoldas Ahmet Onen Selcuk Goren |
| Author_xml | – sequence: 1 fullname: Yeliz Yoldas organization: Abdullah Gul University,Department of Electrical and Electronics Engineering,Kayseri,Turkey,38080 – sequence: 2 fullname: Selcuk Goren organization: Abdullah Gul University,Department of Industrial Engineering,Kayseri,Turkey,38080 – sequence: 3 fullname: Ahmet Onen organization: Abdullah Gul University,Department of Electrical and Electronics Engineering,Kayseri,Turkey,38080 |
| BookMark | eNotj01PAjEQhhujiYj8AG89cF3s9mOXHglBJAHBRM-b2ba7lnS3pFui_nuLeprJ82aeyXuHrnvfG4QecjJjYs7Y4-6wXM0ooWRGCBGkuEIjmssiE5ySWzQZhmPiuaSiKNgInfanaDtweOn7GLzDvsE7q4Jvg9UD_rTxA-_OLtpsiNCalH0Zndk-mtYE_OJ7Z3sDAR8uF9B1tm_x-my10Xj6Os1cyvoLW7jWhyTr7tFNA24wk_85Ru9Pq7flc7bdrzfLxTZTTPCY5Zozk1oUBgQRTcNrJXhadEkoV4xCASUQQ2pSayh0rriQAkDSEuqcgmRjtPnzag_H6hRSyfBdebDVL_ChrSBEq5ypaNIwKTifF8DnVEmgpmEqfVdASibZDx_cakY |
| CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e31280 crossref_primary_10_1109_TPWRS_2022_3187069 crossref_primary_10_1007_s00202_025_03230_4 crossref_primary_10_3390_en15062251 crossref_primary_10_1109_ACCESS_2024_3440885 crossref_primary_10_1016_j_tej_2022_107129 crossref_primary_10_1016_j_seta_2023_103377 crossref_primary_10_1109_ACCESS_2025_3525843 crossref_primary_10_1016_j_isatra_2022_12_008 crossref_primary_10_1109_TASC_2024_3468074 crossref_primary_10_3390_su15118952 crossref_primary_10_3390_en16010090 crossref_primary_10_3390_en14185688 crossref_primary_10_3390_en15228739 crossref_primary_10_24018_ejeng_2025_10_3_3269 crossref_primary_10_1007_s13198_021_01479_z crossref_primary_10_1002_tee_23980 crossref_primary_10_2514_1_G008165 |
| ContentType | Journal Article |
| DBID | DOA |
| DOI | 10.35833/MPCE.2020.000506 |
| DatabaseName | DOAJ Directory of Open Access Journals (ODIN) |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2196-5420 |
| EndPage | 1159 |
| ExternalDocumentID | oai_doaj_org_article_2e0b3954486a482c9a2ef3c202ca0739 |
| GroupedDBID | -SC -S~ 4.4 5VR 5VS 8FE 8FG 9D9 9DC AAFWJ AAKKN ABAZT ABEEZ ABJCF ABVLG ACGFS AFGXO AFPKN AFUIB AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG AVWKF BENPR C24 C6C CAJEC ESBDL GROUPED_DOAJ HCIFZ JAVBF KQ8 L6V M~E OK1 PIMPY PROAC Q-- SOJ U1G U5M |
| ID | FETCH-LOGICAL-c354t-1d43e2026ea505ff4bc5405fd7024c32a6a7a0e0b0bda6d1c4595aa927ab12a93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608833600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Fri Oct 03 12:39:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c354t-1d43e2026ea505ff4bc5405fd7024c32a6a7a0e0b0bda6d1c4595aa927ab12a93 |
| OpenAccessLink | https://doaj.org/article/2e0b3954486a482c9a2ef3c202ca0739 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2e0b3954486a482c9a2ef3c202ca0739 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of modern power systems and clean energy |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001925663 |
| Score | 2.302986 |
| Snippet | This paper proposes an energy management system (EMS) for the real-time operation of a pilot stochastic and dynamic microgrid on a university campus in Malta... |
| SourceID | doaj |
| SourceType | Open Website |
| StartPage | 1151 |
| SubjectTerms | Cost minimization energy management system microgrid real-time optimization reinforcement learning |
| Title | Optimal Control of Microgrids with Multi-stage Mixed-integer Nonlinear Programming Guided $Q$-learning Algorithm |
| URI | https://doaj.org/article/2e0b3954486a482c9a2ef3c202ca0739 |
| Volume | 8 |
| WOSCitedRecordID | wos000608833600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals databaseCode: DOA dateStart: 20130101 customDbUrl: isFulltext: true eissn: 2196-5420 dateEnd: 20241231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0001925663 providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources databaseCode: M~E dateStart: 20130101 customDbUrl: isFulltext: true eissn: 2196-5420 dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssj0001925663 providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4ine8tDVqmMnTj2WqoWlpUggdYsc-xIV0YfSFjHx2znHGcrEwpAMiXVR7pL4u_i77whpSyGd0gaY5cq3MDMJ6zoAJopcgLORxa1uNpGOx93pVE92Wn15TliQBw6O6wjgudQJZhHKxF1htRFQSIs5uzV-lcl_fXmqd5Kp94BbEKfIsIwpfWVRZzTpDzAfFJ7KxRP-W6S_nk2Gx-SogYG0Fy5_QvZgcUoOd8QBz8jqGd_mOQ7qBzY5XRZ05OlzZTVza-p_oNK6fJYhwCsBz32BY7X8A1R0HCQwTEUngYE1R6P0cTtz4Gj7pc2adhEl7X2UywqNzc_J23Dw2n9iTX8EZmUSb1jkYgl4RwoM4piiiHPr8VfhUpx4rRRGmdRw9B_PnVEusnGiE2O0SE0eCaPlBWktlgu4JJTniOucSKzkEDuVa1_TaxxogYOtVFfkwTsrWwUJjMyLUtcHMFRZE6rsr1Bd_4eRG3LggxjKAW9Ja1Nt4Y7s28_NbF3d108B7kffgx-ZULk5 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Control+of+Microgrids+with+Multi-stage+Mixed-integer+Nonlinear+Programming+Guided+%24Q%24-learning+Algorithm&rft.jtitle=Journal+of+modern+power+systems+and+clean+energy&rft.au=Yeliz+Yoldas&rft.au=Selcuk+Goren&rft.au=Ahmet+Onen&rft.date=2020-11-01&rft.pub=IEEE&rft.eissn=2196-5420&rft.volume=8&rft.issue=6&rft.spage=1151&rft.epage=1159&rft_id=info:doi/10.35833%2FMPCE.2020.000506&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2e0b3954486a482c9a2ef3c202ca0739 |