Automatic mapping of parallel applications on multicore architectures using the Servet benchmark suite

[Display omitted] ► Multicore systems require new mapping policies to make the most of the architecture. ► An automatic mapping based on Servet is proposed. ► Servet is a benchmark suite that obtains relevant hardware parameters of clusters. ► Results show a significant improvement of performance of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & electrical engineering Ročník 38; číslo 2; s. 258 - 269
Hlavní autoři: González-Domínguez, Jorge, Taboada, Guillermo L., Fraguela, Basilio B., Martín, María J., Touriño, Juan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2012
Témata:
ISSN:0045-7906, 1879-0755
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] ► Multicore systems require new mapping policies to make the most of the architecture. ► An automatic mapping based on Servet is proposed. ► Servet is a benchmark suite that obtains relevant hardware parameters of clusters. ► Results show a significant improvement of performance of parallel applications. ► The mapping technique proposed does not require source code modifications. Servet is a suite of benchmarks focused on detecting a set of parameters with high influence on the overall performance of multicore systems. These parameters can be used for autotuning codes to increase their performance on multicore clusters. Although Servet has been proved to detect accurately cache hierarchies, bandwidths and bottlenecks in memory accesses, as well as the communication overhead among cores, up to now the impact of the use of this information on application performance optimization has not been assessed. This paper presents a novel algorithm that automatically uses Servet for mapping parallel applications on multicore systems and analyzes its impact on three testbeds using three different parallel programming models: message-passing, shared memory and partitioned global address space (PGAS). Our results show that a suitable mapping policy based on the data provided by this tool can significantly improve the performance of parallel applications without source code modification.
AbstractList [Display omitted] ► Multicore systems require new mapping policies to make the most of the architecture. ► An automatic mapping based on Servet is proposed. ► Servet is a benchmark suite that obtains relevant hardware parameters of clusters. ► Results show a significant improvement of performance of parallel applications. ► The mapping technique proposed does not require source code modifications. Servet is a suite of benchmarks focused on detecting a set of parameters with high influence on the overall performance of multicore systems. These parameters can be used for autotuning codes to increase their performance on multicore clusters. Although Servet has been proved to detect accurately cache hierarchies, bandwidths and bottlenecks in memory accesses, as well as the communication overhead among cores, up to now the impact of the use of this information on application performance optimization has not been assessed. This paper presents a novel algorithm that automatically uses Servet for mapping parallel applications on multicore systems and analyzes its impact on three testbeds using three different parallel programming models: message-passing, shared memory and partitioned global address space (PGAS). Our results show that a suitable mapping policy based on the data provided by this tool can significantly improve the performance of parallel applications without source code modification.
Servet is a suite of benchmarks focused on detecting a set of parameters with high influence on the overall performance of multicore systems. These parameters can be used for autotuning codes to increase their performance on multicore clusters. Although Servet has been proved to detect accurately cache hierarchies, bandwidths and bottlenecks in memory accesses, as well as the communication overhead among cores, up to now the impact of the use of this information on application performance optimization has not been assessed. This paper presents a novel algorithm that automatically uses Servet for mapping parallel applications on multicore systems and analyzes its impact on three testbeds using three different parallel programming models: message-passing, shared memory and partitioned global address space (PGAS). Our results show that a suitable mapping policy based on the data provided by this tool can significantly improve the performance of parallel applications without source code modification.
Author Taboada, Guillermo L.
Martín, María J.
Touriño, Juan
González-Domínguez, Jorge
Fraguela, Basilio B.
Author_xml – sequence: 1
  givenname: Jorge
  surname: González-Domínguez
  fullname: González-Domínguez, Jorge
  email: jgonzalezd@udc.es
– sequence: 2
  givenname: Guillermo L.
  surname: Taboada
  fullname: Taboada, Guillermo L.
  email: taboada@udc.es
– sequence: 3
  givenname: Basilio B.
  surname: Fraguela
  fullname: Fraguela, Basilio B.
  email: basilio.fraguela@udc.es
– sequence: 4
  givenname: María J.
  surname: Martín
  fullname: Martín, María J.
  email: mariam@udc.es
– sequence: 5
  givenname: Juan
  surname: Touriño
  fullname: Touriño, Juan
  email: juan@udc.es
BookMark eNqNkMFO3DAQhq2KSizQd3BvvSS1nTiJTxVaFaiExAE4W85kwnrrxKntIPH2eNkeECdOI4-__5fmOyMns5-RkO-clZzx5ue-BD8t6BBwfioF47zkomSs_UI2vGtVwVopT8iGsVoWrWLNKTmLcc_yu-HdhoyXa_KTSRboZJbFzk_Uj3QxwTiHjuaVs5C__Rypn-m0uoz6gNQE2NmEkNaAka7xkEw7pPcYnjHRHmfYTSb8pXHN2AX5OhoX8dv_eU4er34_bG-K27vrP9vL2wIqWaeCq6ZGCUYhcin6qu_l0BnFukHyxkjkQo4VVKbvUSiDVSsEgJBQD009tsCqc_Lj2LsE_2_FmPRkI6BzZka_Rs2ZEJ1Sbdtk9NcRheBjDDhqsOnt0hSMdRnVB8N6r98Z1gfDmgudDecG9aFhCTbf_PKp7PaYxWzj2WLQEWx2hoMNWaoevP1Eyyul3KL4
CitedBy_id crossref_primary_10_1002_cpe_1914
crossref_primary_10_1002_cpe_6600
crossref_primary_10_1002_cpe_7419
crossref_primary_10_1016_j_compeleceng_2013_01_008
crossref_primary_10_3390_electronics12010053
crossref_primary_10_1016_j_compeleceng_2013_08_012
Cites_doi 10.1145/1088149.1088202
10.1016/S0167-8191(00)00087-9
10.1109/JPROC.2004.840301
10.1109/SC.2000.10024
10.1145/1542275.1542344
10.1016/j.compeleceng.2011.05.012
10.1145/331532.331555
10.1016/j.compeleceng.2007.09.007
10.1109/PACT.2009.11
10.1109/JPROC.2004.840306
10.1145/1183401.1183451
10.1109/JPROC.2004.840444
10.1109/PDP.2010.67
10.1109/IPDPS.2010.5470442
10.1109/IPDPS.2010.5470358
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2011.12.007
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
EndPage 269
ExternalDocumentID 10_1016_j_compeleceng_2011_12_007
S0045790611002114
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c354t-1964e5ca9ee152b3bb5d8a908d516a5e125f3c3abbe29ae3722cc25c4d64f7c03
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000303094900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7906
IngestDate Sun Sep 28 08:18:46 EDT 2025
Tue Nov 18 21:02:18 EST 2025
Sat Nov 29 03:04:30 EST 2025
Fri Feb 23 02:32:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c354t-1964e5ca9ee152b3bb5d8a908d516a5e125f3c3abbe29ae3722cc25c4d64f7c03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1022899776
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1022899776
crossref_citationtrail_10_1016_j_compeleceng_2011_12_007
crossref_primary_10_1016_j_compeleceng_2011_12_007
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2011_12_007
PublicationCentury 2000
PublicationDate March 2012
2012-3-00
20120301
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: March 2012
PublicationDecade 2010
PublicationTitle Computers & electrical engineering
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Musoll (b0045) 2011; 37
Faraj A, Yuan X. Automatic generation and tuning of MPI collective communication routines. In: Proceedings of 19th international conference on supercomputing (ICS’05). Cambridge, MA, USA; 2005. p. 393–402.
Broquedis F, Aumage O, Goglin B, Thibault S, Wacrenier P-A, Namyst R. Structuring the execution of OpenMP applications for multicore architectures. In: Proceedings 24th international parallel and distributed processing symposium (IPDPS’10). Atlanta, GA, USA; 2010.
Faraj A, Kumar S, Smih B, Mamidala AR, Gunnels JA, Heidelberger P. MPI collective communications on the blue gene/P supercomputer: algorithms and optimizations. In: Proceedings of 23rd international conference on supercomputing (ICS’09). Yorktown Heights, NY, USA; 2009. p. 489–90.
Püschel, Moura, Johnson, Padua, Veloso, Singer (b0005) 2005; 93
Mercier G, Clêt-Ortega J. Towards an efficient process placement policy for MPI applications in multicore environments. In: Proceedings of 16th European PVM/MPI users’, group meeting (EuroPVM/MPI’09), vol. 5759 of lecture notes in computer science. Espoo, Finland; 2009. p. 104–15.
González-Domínguez J, Taboada GL, Fraguela BB, Martín MJ, Touriño J. Servet: a benchmark suite for autotuning on multicore clusters. In: Proceedings of 24th international parallel and distributed processing symposium (IPDPS’10). Atlanta, GA, USA; 2010.
Frigo, Johnson (b0010) 2005; 93
Mallón DA, Taboada GL, Teijeiro C, Touriño J, Fraguela BB, Gómez A, Doallo R, Mouriño JC. Performance evaluation of MPI, UPC and OpenMP on multicore architectures. In: Proceedings of 16th European PVM/MPI users’, group meeting (EuroPVM/MPI’09), vol. 5759 of lecture notes in computer science. Espoo, Finland; 2009. p. 174–84.
NASA Advanced Computing Division. NAS parallel benchmarks
Message Passing Interface Forum.
Broquedis F, Clêt-Ortega J, Moreaud S, Furmento N, Goglin B, Mercier G, Thibault S, Namyst R. Hwloc: a generic framework for managing hardware affinities in HPC applications. In: Proceedings 18th Euromicro international conference on parallel, distributed and network-based processing (PDP’10). Pisa, Italy; 2010.
Chen H, Chen W, Huang J, Robert B, Kuhn H. MPIPP: an automatic profile-guided parallel process placement toolset for SMP clusters and multiclusters. In: Proceedings of 20th international conference on supercomputing (ICS’06). Cairns, Australia; 2006. p. 353–60.
Javadi, Abawajy, Akbari (b0115) 2008; 34
The Servet Benchmark Suite.
Fraguela BB, Voronenko Y, Püschel M. Automatic tuning of discrete fourier transforms driven by analytical modeling. In: Proceedings of 18th international conference on parallel architectures and compilation techniques (PACT’09). Raleigh, NC, USA; 2009. p. 271–80.
Vadhiyar SS, Fagg GE, Dongarra JJ. Automatically tuned collective communications. In: Proceedings of 13th ACM/IEEE conference on supercomputing (SC’00). Dallas, TX, USA; 2000. p. 3.
Sistare S, Vandevaart R, Loh E. Optimization of MPI collectives on clusters of large-scale SMPs. In: Proceedings of 12th ACM/IEEE conference on supercomputing (SC’99). Portland, OR, USA; 1999. p. 23–36.
Tipparaju V, Nieplocha J, Panda DK. Fast collective operations using shared and remote memory access protocols on clusters. In: Proceedings of 17th international parallel and distributed processing symposium (IPDPS’03). Nice, France; 2003. pp. 84–93.
OpenMP.
UPC Consortium: UPC Language.
Yotov, Li, Ren, Garzarán, Padua, Pingali (b0020) 2005; 93
Whaley, Petitet, Dongarra (b0015) 2001; 27
[accessed July 2011].
Zhang J, Zhai J, Chen W, Zheng W. Process mapping for collective communications. In: Proceedings of 15th Euro-Par conference (Euro-Par’09), vol. 5704 of lecture notes in computer science. Delft, The Netherlands; 2009. p. 81–92.
Musoll (10.1016/j.compeleceng.2011.12.007_b0045) 2011; 37
10.1016/j.compeleceng.2011.12.007_b0060
10.1016/j.compeleceng.2011.12.007_b0070
10.1016/j.compeleceng.2011.12.007_b0080
10.1016/j.compeleceng.2011.12.007_b0090
10.1016/j.compeleceng.2011.12.007_b0075
10.1016/j.compeleceng.2011.12.007_b0030
10.1016/j.compeleceng.2011.12.007_b0085
10.1016/j.compeleceng.2011.12.007_b0040
10.1016/j.compeleceng.2011.12.007_b0095
10.1016/j.compeleceng.2011.12.007_b0050
Whaley (10.1016/j.compeleceng.2011.12.007_b0015) 2001; 27
10.1016/j.compeleceng.2011.12.007_b0035
10.1016/j.compeleceng.2011.12.007_b0100
Frigo (10.1016/j.compeleceng.2011.12.007_b0010) 2005; 93
10.1016/j.compeleceng.2011.12.007_b0055
10.1016/j.compeleceng.2011.12.007_b0110
10.1016/j.compeleceng.2011.12.007_b0065
10.1016/j.compeleceng.2011.12.007_b0120
10.1016/j.compeleceng.2011.12.007_b0105
10.1016/j.compeleceng.2011.12.007_b0025
Yotov (10.1016/j.compeleceng.2011.12.007_b0020) 2005; 93
Javadi (10.1016/j.compeleceng.2011.12.007_b0115) 2008; 34
Püschel (10.1016/j.compeleceng.2011.12.007_b0005) 2005; 93
References_xml – reference: Fraguela BB, Voronenko Y, Püschel M. Automatic tuning of discrete fourier transforms driven by analytical modeling. In: Proceedings of 18th international conference on parallel architectures and compilation techniques (PACT’09). Raleigh, NC, USA; 2009. p. 271–80.
– reference: Mercier G, Clêt-Ortega J. Towards an efficient process placement policy for MPI applications in multicore environments. In: Proceedings of 16th European PVM/MPI users’, group meeting (EuroPVM/MPI’09), vol. 5759 of lecture notes in computer science. Espoo, Finland; 2009. p. 104–15.
– reference: Message Passing Interface Forum.
– reference: The Servet Benchmark Suite.
– reference: Sistare S, Vandevaart R, Loh E. Optimization of MPI collectives on clusters of large-scale SMPs. In: Proceedings of 12th ACM/IEEE conference on supercomputing (SC’99). Portland, OR, USA; 1999. p. 23–36.
– reference: Vadhiyar SS, Fagg GE, Dongarra JJ. Automatically tuned collective communications. In: Proceedings of 13th ACM/IEEE conference on supercomputing (SC’00). Dallas, TX, USA; 2000. p. 3.
– volume: 27
  start-page: 3
  year: 2001
  end-page: 35
  ident: b0015
  article-title: Automated empirical optimizations of software and the ATLAS project
  publication-title: Parallel Comput
– reference: Chen H, Chen W, Huang J, Robert B, Kuhn H. MPIPP: an automatic profile-guided parallel process placement toolset for SMP clusters and multiclusters. In: Proceedings of 20th international conference on supercomputing (ICS’06). Cairns, Australia; 2006. p. 353–60.
– volume: 93
  start-page: 232
  year: 2005
  end-page: 275
  ident: b0005
  article-title: SPIRAL: code generation for DSP transforms
  publication-title: Proc IEEE
– reference: NASA Advanced Computing Division. NAS parallel benchmarks
– volume: 93
  start-page: 216
  year: 2005
  end-page: 231
  ident: b0010
  article-title: The design and implementation of FFTW3
  publication-title: Proc IEEE
– reference: Mallón DA, Taboada GL, Teijeiro C, Touriño J, Fraguela BB, Gómez A, Doallo R, Mouriño JC. Performance evaluation of MPI, UPC and OpenMP on multicore architectures. In: Proceedings of 16th European PVM/MPI users’, group meeting (EuroPVM/MPI’09), vol. 5759 of lecture notes in computer science. Espoo, Finland; 2009. p. 174–84.
– reference: UPC Consortium: UPC Language.
– reference: [accessed July 2011].
– volume: 93
  start-page: 358
  year: 2005
  end-page: 386
  ident: b0020
  article-title: Is search really necessary to generate high performance BLAS?
  publication-title: Proc IEEE
– reference: OpenMP.
– reference: Tipparaju V, Nieplocha J, Panda DK. Fast collective operations using shared and remote memory access protocols on clusters. In: Proceedings of 17th international parallel and distributed processing symposium (IPDPS’03). Nice, France; 2003. pp. 84–93.
– reference: Faraj A, Yuan X. Automatic generation and tuning of MPI collective communication routines. In: Proceedings of 19th international conference on supercomputing (ICS’05). Cambridge, MA, USA; 2005. p. 393–402.
– reference: González-Domínguez J, Taboada GL, Fraguela BB, Martín MJ, Touriño J. Servet: a benchmark suite for autotuning on multicore clusters. In: Proceedings of 24th international parallel and distributed processing symposium (IPDPS’10). Atlanta, GA, USA; 2010.
– reference: Faraj A, Kumar S, Smih B, Mamidala AR, Gunnels JA, Heidelberger P. MPI collective communications on the blue gene/P supercomputer: algorithms and optimizations. In: Proceedings of 23rd international conference on supercomputing (ICS’09). Yorktown Heights, NY, USA; 2009. p. 489–90.
– reference: Zhang J, Zhai J, Chen W, Zheng W. Process mapping for collective communications. In: Proceedings of 15th Euro-Par conference (Euro-Par’09), vol. 5704 of lecture notes in computer science. Delft, The Netherlands; 2009. p. 81–92.
– reference: Broquedis F, Clêt-Ortega J, Moreaud S, Furmento N, Goglin B, Mercier G, Thibault S, Namyst R. Hwloc: a generic framework for managing hardware affinities in HPC applications. In: Proceedings 18th Euromicro international conference on parallel, distributed and network-based processing (PDP’10). Pisa, Italy; 2010.
– volume: 34
  start-page: 488
  year: 2008
  end-page: 502
  ident: b0115
  article-title: Performance modeling and analysis of heterogeneous meta-computing systems interconnection networks
  publication-title: Comput Elect Eng
– volume: 37
  start-page: 1193
  year: 2011
  end-page: 1211
  ident: b0045
  article-title: Variable-size mosaics: a process-variation aware technique to increase the performance of tile-based, massive multi-core processors
  publication-title: Comput Elect Eng
– reference: Broquedis F, Aumage O, Goglin B, Thibault S, Wacrenier P-A, Namyst R. Structuring the execution of OpenMP applications for multicore architectures. In: Proceedings 24th international parallel and distributed processing symposium (IPDPS’10). Atlanta, GA, USA; 2010.
– ident: 10.1016/j.compeleceng.2011.12.007_b0085
  doi: 10.1145/1088149.1088202
– ident: 10.1016/j.compeleceng.2011.12.007_b0075
– volume: 27
  start-page: 3
  issue: 1–2
  year: 2001
  ident: 10.1016/j.compeleceng.2011.12.007_b0015
  article-title: Automated empirical optimizations of software and the ATLAS project
  publication-title: Parallel Comput
  doi: 10.1016/S0167-8191(00)00087-9
– volume: 93
  start-page: 216
  issue: 2
  year: 2005
  ident: 10.1016/j.compeleceng.2011.12.007_b0010
  article-title: The design and implementation of FFTW3
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2004.840301
– ident: 10.1016/j.compeleceng.2011.12.007_b0080
  doi: 10.1109/SC.2000.10024
– ident: 10.1016/j.compeleceng.2011.12.007_b0090
  doi: 10.1145/1542275.1542344
– volume: 37
  start-page: 1193
  year: 2011
  ident: 10.1016/j.compeleceng.2011.12.007_b0045
  article-title: Variable-size mosaics: a process-variation aware technique to increase the performance of tile-based, massive multi-core processors
  publication-title: Comput Elect Eng
  doi: 10.1016/j.compeleceng.2011.05.012
– ident: 10.1016/j.compeleceng.2011.12.007_b0035
  doi: 10.1145/331532.331555
– ident: 10.1016/j.compeleceng.2011.12.007_b0065
– ident: 10.1016/j.compeleceng.2011.12.007_b0060
– volume: 34
  start-page: 488
  issue: 6
  year: 2008
  ident: 10.1016/j.compeleceng.2011.12.007_b0115
  article-title: Performance modeling and analysis of heterogeneous meta-computing systems interconnection networks
  publication-title: Comput Elect Eng
  doi: 10.1016/j.compeleceng.2007.09.007
– ident: 10.1016/j.compeleceng.2011.12.007_b0025
  doi: 10.1109/PACT.2009.11
– ident: 10.1016/j.compeleceng.2011.12.007_b0040
– ident: 10.1016/j.compeleceng.2011.12.007_b0100
– ident: 10.1016/j.compeleceng.2011.12.007_b0120
– volume: 93
  start-page: 232
  issue: 2
  year: 2005
  ident: 10.1016/j.compeleceng.2011.12.007_b0005
  article-title: SPIRAL: code generation for DSP transforms
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2004.840306
– ident: 10.1016/j.compeleceng.2011.12.007_b0095
  doi: 10.1145/1183401.1183451
– ident: 10.1016/j.compeleceng.2011.12.007_b0030
– volume: 93
  start-page: 358
  issue: 2
  year: 2005
  ident: 10.1016/j.compeleceng.2011.12.007_b0020
  article-title: Is search really necessary to generate high performance BLAS?
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2004.840444
– ident: 10.1016/j.compeleceng.2011.12.007_b0110
  doi: 10.1109/PDP.2010.67
– ident: 10.1016/j.compeleceng.2011.12.007_b0105
  doi: 10.1109/IPDPS.2010.5470442
– ident: 10.1016/j.compeleceng.2011.12.007_b0070
– ident: 10.1016/j.compeleceng.2011.12.007_b0050
  doi: 10.1109/IPDPS.2010.5470358
– ident: 10.1016/j.compeleceng.2011.12.007_b0055
SSID ssj0004618
Score 1.954394
Snippet [Display omitted] ► Multicore systems require new mapping policies to make the most of the architecture. ► An automatic mapping based on Servet is proposed. ►...
Servet is a suite of benchmarks focused on detecting a set of parameters with high influence on the overall performance of multicore systems. These parameters...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 258
SubjectTerms Benchmarking
Clusters
Electrical engineering
Hierarchies
Mapping
Mathematical models
Optimization
Title Automatic mapping of parallel applications on multicore architectures using the Servet benchmark suite
URI https://dx.doi.org/10.1016/j.compeleceng.2011.12.007
https://www.proquest.com/docview/1022899776
Volume 38
WOSCitedRecordID wos000303094900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Za9wwEBbLppT2ofSk6YUCfTMOvm1BX7ZNeiwh9CEt-2YkWW439dpmbYeQ39sf0tFhrzcldFvoi_GBhK35PBqNZr5B6LXD8gRm4cCOnUDYAfxNNgkotyPO_Jxzj-eq3NvXk_j0NFksyOfJ5GefC3NRxGWZXF6S-r-KGu6BsGXq7F-Ie-gUbsA5CB2OIHY47iT4WddWmod1Reu6D2qma1k0pbDGG9Zyo0AFFEoqS2u8pdBYXdPnUUltIlqLwTd-X9H1D6vplu02w4GpDNEoHOnCOkr2YkN2OMT5VOWV2px3C3FlH1UrdXFUfuu0K3suXfQbdwKraKbM2w-dSlpcVdbJ4YC5NYVmhS4eTZtlsayst8NTSZBgOjdJSfqKWvPDsa9DBo30wV69_g4kwaYTjfW3n4xw6o2VsSaFN_O6p0vC_DZlaO_FuZR4LUcIhkYzu0ovsa7Iu03TfW36HIIa-3i583TUVSq7Sl0vVZQHe14ckmSK9mafjhfzUf6uqy0G83W30cEmDvGG97rJjrpmUSgz6ew-umfWN3imcfkATUT5EN0dsV4-QvmAUGwQiqsc9wjFY4TiqsQDQvEWQrFCKAaEYo1QPCAUK4Q-Rl_eH5-9-2ibch82B2XR2pIaToScEiHAqGQ-Y2GWUOIkWehGNBRgiuc-9yljwiNU-LHngTIJeZBFQR5zx3-CpmVViqcIOxFhWR67vpt7gRARyWBVHGWccMaYn0X7KOkHL-WGC1-WZCnSPwpxH3lD01oTwuzS6E0vodRYttpiTQGFuzQ_6KWagvaXW3q0FFXXpNJfkxBYw0XP_uW9nqM7m9_sBZq26068RLf4Rbts1q8MTH8BFezcXA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+mapping+of+parallel+applications+on+multicore+architectures+using+the+Servet+benchmark+suite&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Gonz%C3%A1lez-Dom%C3%ADnguez%2C+Jorge&rft.au=Taboada%2C+Guillermo+L.&rft.au=Fraguela%2C+Basilio+B.&rft.au=Mart%C3%ADn%2C+Mar%C3%ADa+J.&rft.date=2012-03-01&rft.issn=0045-7906&rft.volume=38&rft.issue=2&rft.spage=258&rft.epage=269&rft_id=info:doi/10.1016%2Fj.compeleceng.2011.12.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2011_12_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon