Deep learning for sea surface temperature applications: A comprehensive bibliometric analysis and methodological approach
This study explored the potential application of deep learning techniques in sea surface temperature (SST) investigations using a mixed method, bibliometric analysis and methodological approach. CiteSpace software was utilized for a bibliometric study on 137 academic publications from 2018 to 2023....
Uloženo v:
| Vydáno v: | Geo : geography and environment Ročník 11; číslo 2 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
John Wiley & Sons, Inc
01.07.2024
Wiley |
| Témata: | |
| ISSN: | 2054-4049, 2054-4049 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study explored the potential application of deep learning techniques in sea surface temperature (SST) investigations using a mixed method, bibliometric analysis and methodological approach. CiteSpace software was utilized for a bibliometric study on 137 academic publications from 2018 to 2023. Various databases were employed for methodological analysis, which involved examining publications based on models, methodologies, applications and research areas. The data were manually organized in a relational framework of an SQL database. The analysis underscored China's prominence as a leader in the extensive research devoted to this field. The United States of America and the United Kingdom played pivotal roles in providing the essential data that served as the foundation for these studies. Moreover, the long short‐term memory (LSTM) algorithm was the predominant computational deep learning algorithm extensively used in this specific context. The analysis highlighted significant knowledge gaps in areas such as SST forecasting, modelling, satellite remote sensing, extreme events and data reconstruction. Future scientists need to show more interest in these and related subjects, while Chinese and American scientists should prioritize paper quality over quantity. Additionally, fostering stronger collaborations between universities and institutions is vital for further advancements. Ultimately, this study offers valuable insights into hotspot research areas and development processes, establishing the foundation for research and suggesting possible avenues for future development. The results of this evaluation serve as an essential guide for researchers and modellers involved in prediction initiatives using deep learning.
Short
The main objective of this study is to highlight research gaps and provide a comprehensive overview of the most recent trends (last six years) involving deep learning techniques for sea surface temperature (SST) investigations. The study aims to provide information's, including the methodologies, an assessment of strengths and weaknesses in terms of institutions, keywords, authors, journals and collaborative efforts. In addition, the study highlights persistent challenges and potential future directions in SST research using deep learning methods. |
|---|---|
| AbstractList | Abstract This study explored the potential application of deep learning techniques in sea surface temperature (SST) investigations using a mixed method, bibliometric analysis and methodological approach. CiteSpace software was utilized for a bibliometric study on 137 academic publications from 2018 to 2023. Various databases were employed for methodological analysis, which involved examining publications based on models, methodologies, applications and research areas. The data were manually organized in a relational framework of an SQL database. The analysis underscored China's prominence as a leader in the extensive research devoted to this field. The United States of America and the United Kingdom played pivotal roles in providing the essential data that served as the foundation for these studies. Moreover, the long short‐term memory (LSTM) algorithm was the predominant computational deep learning algorithm extensively used in this specific context. The analysis highlighted significant knowledge gaps in areas such as SST forecasting, modelling, satellite remote sensing, extreme events and data reconstruction. Future scientists need to show more interest in these and related subjects, while Chinese and American scientists should prioritize paper quality over quantity. Additionally, fostering stronger collaborations between universities and institutions is vital for further advancements. Ultimately, this study offers valuable insights into hotspot research areas and development processes, establishing the foundation for research and suggesting possible avenues for future development. The results of this evaluation serve as an essential guide for researchers and modellers involved in prediction initiatives using deep learning. This study explored the potential application of deep learning techniques in sea surface temperature (SST) investigations using a mixed method, bibliometric analysis and methodological approach. CiteSpace software was utilized for a bibliometric study on 137 academic publications from 2018 to 2023. Various databases were employed for methodological analysis, which involved examining publications based on models, methodologies, applications and research areas. The data were manually organized in a relational framework of an SQL database. The analysis underscored China's prominence as a leader in the extensive research devoted to this field. The United States of America and the United Kingdom played pivotal roles in providing the essential data that served as the foundation for these studies. Moreover, the long short‐term memory (LSTM) algorithm was the predominant computational deep learning algorithm extensively used in this specific context. The analysis highlighted significant knowledge gaps in areas such as SST forecasting, modelling, satellite remote sensing, extreme events and data reconstruction. Future scientists need to show more interest in these and related subjects, while Chinese and American scientists should prioritize paper quality over quantity. Additionally, fostering stronger collaborations between universities and institutions is vital for further advancements. Ultimately, this study offers valuable insights into hotspot research areas and development processes, establishing the foundation for research and suggesting possible avenues for future development. The results of this evaluation serve as an essential guide for researchers and modellers involved in prediction initiatives using deep learning. This study explored the potential application of deep learning techniques in sea surface temperature (SST) investigations using a mixed method, bibliometric analysis and methodological approach. CiteSpace software was utilized for a bibliometric study on 137 academic publications from 2018 to 2023. Various databases were employed for methodological analysis, which involved examining publications based on models, methodologies, applications and research areas. The data were manually organized in a relational framework of an SQL database. The analysis underscored China's prominence as a leader in the extensive research devoted to this field. The United States of America and the United Kingdom played pivotal roles in providing the essential data that served as the foundation for these studies. Moreover, the long short‐term memory (LSTM) algorithm was the predominant computational deep learning algorithm extensively used in this specific context. The analysis highlighted significant knowledge gaps in areas such as SST forecasting, modelling, satellite remote sensing, extreme events and data reconstruction. Future scientists need to show more interest in these and related subjects, while Chinese and American scientists should prioritize paper quality over quantity. Additionally, fostering stronger collaborations between universities and institutions is vital for further advancements. Ultimately, this study offers valuable insights into hotspot research areas and development processes, establishing the foundation for research and suggesting possible avenues for future development. The results of this evaluation serve as an essential guide for researchers and modellers involved in prediction initiatives using deep learning. Short The main objective of this study is to highlight research gaps and provide a comprehensive overview of the most recent trends (last six years) involving deep learning techniques for sea surface temperature (SST) investigations. The study aims to provide information's, including the methodologies, an assessment of strengths and weaknesses in terms of institutions, keywords, authors, journals and collaborative efforts. In addition, the study highlights persistent challenges and potential future directions in SST research using deep learning methods. |
| Author | Abdela, Kemal Adem Boufeniza, Redouane Larbi Alsahli, Mohammad M Jingjia, Luo Alsafadi, Karam |
| Author_xml | – sequence: 1 givenname: Redouane Larbi orcidid: 0000-0002-6503-2447 surname: Boufeniza fullname: Boufeniza, Redouane Larbi email: boufenizaredouane@gmail.com organization: Nanjing University of Information Science and Technology – sequence: 2 givenname: Luo orcidid: 0000-0001-6076-1889 surname: Jingjia fullname: Jingjia, Luo organization: Nanjing University of Information Science and Technology – sequence: 3 givenname: Kemal Adem orcidid: 0009-0005-5247-929X surname: Abdela fullname: Abdela, Kemal Adem organization: Nanjing University of Information Science and Technology – sequence: 4 givenname: Karam orcidid: 0000-0001-8925-7918 surname: Alsafadi fullname: Alsafadi, Karam organization: Nanjing University of Information Science and Technology – sequence: 5 givenname: Mohammad M orcidid: 0000-0003-3225-7452 surname: Alsahli fullname: Alsahli, Mohammad M organization: Kuwait University |
| BookMark | eNp1kU1uFDEQhS2USIQkUo5giQ2bDv7tcbOLQgiRImVD1lbZXT3jkafd2D2gyWk4CyfDzSDEhlU9lb56paf3hpyMaURCrji75oyJ92tM4ppr_oqcCaZVo5jqTv7Rr8llKVvGWGU41_KMvHxEnGhEyGMY13RImRYEWvZ5AI90xt2EGeZ9RgrTFIOHOaSxfKA3P3_4tJsybnAs4RtSF1wMaYdzDp7CCPFQQqmip3W3SX2KaV3P4-KTE_jNBTkdIBa8_DPPyfOnuy-3n5vHp_uH25vHxkuteNM60QF63Wrje9BSeNDADHQazaqVygklnJe9HFopjOzQCWaUw7bvNRgj5Tl5OPr2CbZ2ymEH-WATBPt7kfLaQp6Dj2iNao3j4L3xXq1U57xRHQNozcpJ7tvq9fboVSN83WOZ7Tbtcw1brOSq49xovVDvjpTPqZSMw9-vnNmlKLsUZWsJFW2O6PcQ8fBfzt7fPYmF_wUyV5f2 |
| Cites_doi | 10.1016/j.dsr2.2023.105263 10.5670/oceanog.2017.421 10.1007/s11192‐021‐04200‐w 10.1109/GECOST55694.2022.10010371 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00106 10.1007/s11356‐021‐13825‐6 10.3390/s22041636 10.1177/2158244019840119 10.1007/s42979‐021‐00815‐1 10.3389/fmars.2022.905848 10.5194/egusphere‐2023‐350 10.3390/rs14194737 10.1109/JSTARS.2021.3065585 10.1016/j.jag.2022.102971 10.1016/j.jag.2023.103312 10.3390/land12040845 10.3390/rs13040744 10.3390/electronics11152359 10.1016/j.rse.2021.112553 10.3390/en13061369 10.1007/s10618‐022‐00894‐5 10.3390/land12010165 10.3390/app12125905 10.1175/WAF‐D‐22‐0094.1 10.3390/rs13183568 10.1109/LGRS.2017.2780843 10.15302/J‐SSCAE‐2021.03.008 10.3390/jmse8040249 10.3390/en15041510 10.1109/LGRS.2019.2947170 10.3389/fmars.2019.00420 10.3390/rs14061339 10.1175/JCLI‐D‐23‐0406.1 10.3389/fmars.2022.920994 10.1007/s00500‐022‐06899‐y 10.1007/s12517‐022‐10893‐x 10.1177/1094428114562629 10.1007/s11042‐022‐12208‐4 10.1007/s11356‐022‐23973‐y 10.3390/agronomy12051081 10.1016/j.dsr.2023.104042 10.1186/s40645‐020‐00400‐9 10.3389/fclim.2022.925068 10.1109/TGRS.2021.3094117 10.1038/s42256‐020‐0183‐4 10.3390/rs15081956 10.1007/s12518‐022‐00462‐y 10.1109/IGARSS46834.2022.9883749 10.1108/IMDS‐08‐2023‐0551 10.1038/s41598‐021‐04238‐z 10.5194/npg‐29‐255‐2022 10.1111/1365‐2656.13497 10.1109/TGRS.2021.3111649 10.1080/2150704X.2020.1746853 10.3390/su12010066 10.1093/icesjms/fsz057 10.1016/j.engappai.2022.105675 10.1016/j.envsoft.2019.104502 10.1029/2022MS003589 10.1016/j.enbuild.2023.112976 10.3390/fi14060171 10.1007/s11704‐021‐1080‐7 10.1029/2018MS001472 10.1080/01431161.2018.1454623 10.1515/jdis‐2017‐0006 10.1109/LGRS.2021.3049406 10.1177/2096531120944929 10.1007/s00704‐016‐2025‐1 10.1016/j.jmarsys.2020.103347 10.3390/rs14143300 10.1016/j.bdr.2021.100237 10.1155/2020/6387173 10.22158/asir.v6n1p39 10.1016/j.rse.2019.111358 10.7717/peerj‐cs.1095 10.1038/s41598‐019‐57162‐8 10.3389/fenvs.2022.1025128 10.1016/j.ocemod.2022.102158 10.1007/s00477‐022‐02371‐3 10.1029/2021GL094772 10.1175/JTECH‐D‐17‐0217.1 10.1007/s00146‐022‐01499‐8 10.1007/s10236‐023‐01595‐3 10.1016/j.oceaneng.2022.111932 10.1109/LGRS.2019.2926992 10.3390/rs12213654 10.1109/LGRS.2021.3098425 10.3390/jmse9030310 10.1016/j.scib.2021.03.009 10.1080/09669582.2017.1329310 10.1109/JSTARS.2020.3042242 10.1145/3597937 10.1007/s11356‐019‐07100‐y 10.1016/j.infrared.2019.04.022 10.1109/LGRS.2018.2870880 10.3390/rs15061656 10.1007/s42452‐020‐03239‐3 10.3389/fpubh.2022.933665 10.1109/TGRS.2023.3257039 10.3390/atmos14030434 10.1109/TGRS.2021.3096202 10.1109/ACCESS.2022.3167176 |
| ContentType | Journal Article |
| Copyright | The information, practices and views in this article are those of the author(s) and do not necessarily reflect the opinion of the Royal Geographical Society (with IBG). © 2024 The Author(s). published by the Royal Geographical Society (with the Institute of British Geographers) and John Wiley & Sons Ltd. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The information, practices and views in this article are those of the author(s) and do not necessarily reflect the opinion of the Royal Geographical Society (with IBG). © 2024 The Author(s). published by the Royal Geographical Society (with the Institute of British Geographers) and John Wiley & Sons Ltd. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.1002/geo2.151 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Computer Science |
| EISSN | 2054-4049 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_8468b1acc8cc4749bc8490aa687b31c6 10_1002_geo2_151 GEO2151 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 42030605 |
| GroupedDBID | 0R~ 1OC 24P 5VS 8FE 8FH AAMMB AAZKR ACCMX ACXQS ADBBV ADKYN ADZMN AEFGJ AEUYN AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV BENPR BHPHI BKSAR CCPQU EBS EDH EJD GODZA GROUPED_DOAJ HCIFZ IAO IEP ITC KQ8 LK5 M7R M~E O9- OK1 PCBAR PHGZM PHGZT PIMPY PROAC WIN AAYXX AFFHD BANNL CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c3541-6b29aec5658cda532ca5a08a95e87634b242bc3d3f632839eb2084be6dd5a8833 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001314419300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2054-4049 |
| IngestDate | Fri Oct 03 12:53:11 EDT 2025 Wed Aug 13 02:35:02 EDT 2025 Sat Nov 29 06:47:10 EST 2025 Wed Aug 20 07:24:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3541-6b29aec5658cda532ca5a08a95e87634b242bc3d3f632839eb2084be6dd5a8833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3225-7452 0009-0005-5247-929X 0000-0001-8925-7918 0000-0002-6503-2447 0000-0001-6076-1889 |
| OpenAccessLink | https://doaj.org/article/8468b1acc8cc4749bc8490aa687b31c6 |
| PQID | 3149118556 |
| PQPubID | 4370314 |
| PageCount | 33 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8468b1acc8cc4749bc8490aa687b31c6 proquest_journals_3149118556 crossref_primary_10_1002_geo2_151 wiley_primary_10_1002_geo2_151_GEO2151 |
| PublicationCentury | 2000 |
| PublicationDate | July‐December 2024 2024-07-00 20240701 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: July‐December 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Geo : geography and environment |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2021; 25 2023; 30 2017; 2 2023; 181 2021; 23 2021; 66 2019; 99 2019; 11 2023; 37 2023; 38 2021; 28 2019; 12 2020; 17 2019; 16 2024; 74 2020; 13 2020; 12 2020; 11 2020; 10 2022; 22 2024; 37 2022; 27 2020; 208 2022; 259 2022; 29 2019; 120 2018; 131 2020; 8 2018; 39 2017; 30 2020; 2 2022; 81 2022; 37 2022; 127 2022; 39 2019; 233 2018; 35 2021; 9 2021; 8 2022; 112 2021; 48 2019; 9 2023; 14 2021; 4 2019; 6 2023; 12 2021; 2 2015; 18 2023; 17 2023; 15 2023; 16 2023; 287 2019; 39 2021; 263 2023; 208 2020; 77 2024; 124 2021; 90 2018; 26 2023; 61 2021; 14 2021; 13 2020; 2020 2023; 197 2022; 4 2022; 60 2022 2022; 6 2022; 8 2022; 9 2022; 12 2019 2020; 27 2022; 14 2018 2022; 15 2015 2022; 10 2023; 119 2022; 11 2023; 118 2018; 15 2022; 19 e_1_2_13_24_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_66_1 e_1_2_13_101_1 e_1_2_13_43_1 e_1_2_13_85_1 e_1_2_13_62_1 e_1_2_13_81_1 e_1_2_13_92_1 e_1_2_13_96_1 e_1_2_13_17_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_78_1 e_1_2_13_51_1 e_1_2_13_74_1 e_1_2_13_70_1 e_1_2_13_4_1 e_1_2_13_105_1 e_1_2_13_88_1 e_1_2_13_29_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_100_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_104_1 e_1_2_13_86_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_82_1 e_1_2_13_91_1 e_1_2_13_95_1 e_1_2_13_99_1 e_1_2_13_18_1 e_1_2_13_14_1 e_1_2_13_37_1 e_1_2_13_79_1 e_1_2_13_10_1 e_1_2_13_56_1 e_1_2_13_33_1 e_1_2_13_75_1 e_1_2_13_52_1 e_1_2_13_71_1 e_1_2_13_5_1 Chen C. (e_1_2_13_8_1) 2015 e_1_2_13_49_1 e_1_2_13_26_1 e_1_2_13_68_1 e_1_2_13_45_1 e_1_2_13_87_1 e_1_2_13_22_1 e_1_2_13_64_1 e_1_2_13_103_1 e_1_2_13_41_1 e_1_2_13_60_1 e_1_2_13_83_1 e_1_2_13_6_1 e_1_2_13_90_1 e_1_2_13_94_1 e_1_2_13_98_1 e_1_2_13_19_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_76_1 e_1_2_13_30_1 e_1_2_13_72_1 e_1_2_13_2_1 e_1_2_13_107_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_102_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_84_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_80_1 e_1_2_13_93_1 e_1_2_13_97_1 e_1_2_13_39_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_58_1 e_1_2_13_31_1 e_1_2_13_77_1 e_1_2_13_12_1 e_1_2_13_54_1 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_3_1 e_1_2_13_106_1 e_1_2_13_89_1 e_1_2_13_28_1 |
| References_xml | – volume: 9 start-page: 1 issue: May year: 2022 end-page: 4 article-title: The role of artificial intelligence algorithms in marine scientific research publication-title: Frontiers in Marine Science – volume: 12 issue: 21 year: 2020 article-title: Sea surface temperature and high water temperature occurrence prediction using a long short‐term memory model publication-title: Remote Sensing – volume: 10 start-page: 40410 year: 2022 end-page: 40418 article-title: Deep learning models to predict sea surface temperature in Tohoku region publication-title: IEEE Access – volume: 81 start-page: 12973 issue: 9 year: 2022 end-page: 12981 article-title: The research landscape on the artificial intelligence: A bibliometric analysis of recent 20 years publication-title: Multimedia Tools and Applications – volume: 28 start-page: 49755 issue: 36 year: 2021 end-page: 49773 article-title: Knowledge map and global trends in extreme weather research from 1980 to 2019: A bibliometric analysis publication-title: Environmental Science and Pollution Research – volume: 12 issue: 12 year: 2022 article-title: Sparse data‐extended fusion method for sea surface temperature prediction on the East China Sea publication-title: Applied Sciences – volume: 14 start-page: 3438 year: 2021 end-page: 3446 article-title: Forecasting El Niño and La Niña using spatially and temporally structured predictors and a convolutional neural network publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 2 start-page: 1 issue: 2 year: 2017 end-page: 40 article-title: Science mapping: A systematic review of the literature publication-title: Journal of Data and Information Science – volume: 25 year: 2021 article-title: Time‐series graph network for sea surface temperature prediction publication-title: Big Data Research – volume: 38 start-page: 1 year: 2023 end-page: 32 article-title: A multivariable convolutional neural network for forecasting synoptic‐scale sea surface temperature anomalies in the South China Sea publication-title: Weather and Forecasting – volume: 259 issue: January year: 2022 article-title: MUST: A multi‐source Spatio‐temporal data fusion model for short‐Term Sea surface temperature prediction publication-title: Ocean Engineering – volume: 17 start-page: 558 issue: 4 year: 2020 end-page: 562 article-title: Prediction of sea surface temperature in the South China Sea by artificial neural networks publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 66 start-page: 1358 issue: 13 year: 2021 end-page: 1366 article-title: Unified deep learning model for El Niño/Southern Oscillation forecasts by incorporating seasonality in climate data publication-title: Science Bulletin – volume: 13 issue: 4 year: 2021 article-title: Deep learning of sea surface temperature patterns to Identify Ocean extremes publication-title: Remote Sensing – volume: 17 start-page: 1303 issue: 8 year: 2020 end-page: 1307 article-title: Prediction of 3‐D Ocean temperature by multilayer convolutional LSTM publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 208 issue: May year: 2020 article-title: Statistical and machine learning ensemble modelling to Forecast Sea surface temperature publication-title: Journal of Marine Systems – volume: 35 start-page: 1441 issue: 7 year: 2018 end-page: 1455 article-title: Basin‐scale prediction of sea surface temperature with artificial neural networks publication-title: Journal of Atmospheric and Oceanic Technology – year: 2022 – volume: 27 start-page: 3523 issue: 3 year: 2020 end-page: 3540 article-title: Mapping of climate change research in the Arab world: A bibliometric analysis publication-title: Environmental Science and Pollution Research – volume: 74 start-page: 149 issue: 2 year: 2024 end-page: 168 article-title: Deep learning‐based forecasting of sea surface temperature in the interim future: Application over the Aegean, Ionian, and Cretan seas (NE Mediterranean sea) publication-title: Ocean Dynamics – volume: 22 issue: 4 year: 2022 article-title: High Precision Sea surface temperature prediction of long period and large area in the Indian Ocean based on the temporal convolutional network and internet of things publication-title: Sensors – volume: 13 issue: 6 year: 2020 article-title: Improved particle swarm optimization for sea surface temperature prediction publication-title: Energies – volume: 37 start-page: 1877 issue: 5 year: 2022 end-page: 1896 article-title: Adaptive graph neural network based South China Sea seawater temperature prediction and multivariate uncertainty correlation analysis publication-title: Stochastic Environmental Research and Risk Assessment – volume: 17 issue: 1 year: 2023 article-title: Effective ensemble learning approach for SST field prediction using attention‐based PredRNN publication-title: Frontiers of Computer Science – year: 2019 – volume: 39 start-page: 4214 issue: 12 year: 2018 end-page: 4231 article-title: Prediction of daily sea surface temperature using artificial neural networks publication-title: International Journal of Remote Sensing – volume: 10 year: 2022 article-title: Applications of artificial intelligence in the field of air pollution: A bibliometric analysis publication-title: Frontiers in Public Health – volume: 30 start-page: 26 issue: 4 year: 2017 end-page: 37 article-title: The coevolution of midwater research and ROV technology at MBARI publication-title: Oceanography – volume: 27 start-page: 1 issue: 18 year: 2022 end-page: 13 article-title: ILF‐LSTM: Enhanced loss function in LSTM to predict the sea surface temperature publication-title: Soft Computing – volume: 8 year: 2022 article-title: A DBULSTM‐Adaboost model for sea surface temperature prediction publication-title: PeerJ Computer Science – volume: 14 start-page: 669 issue: 4 year: 2022 end-page: 678 article-title: Sea surface temperature prediction model for the Black Sea by employing time‐series satellite data: A machine learning approach publication-title: Applied Geomatics – volume: 11 issue: 15 year: 2022 article-title: A hybrid ARIMA‐GABP model for predicting sea surface temperature publication-title: Electronics – volume: 13 issue: 18 year: 2021 article-title: Can the structure similarity of training patches affect the sea surface temperature deep learning super‐resolution? publication-title: Remote Sensing – volume: 2020 issue: 1 year: 2020 article-title: A novel method for sea surface temperature prediction based on deep learning publication-title: Mathematical Problems in Engineering – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 11 article-title: A machine learning based prediction system for the Indian Ocean dipole publication-title: Scientific Reports – volume: 16 start-page: 173 issue: 2 year: 2019 end-page: 177 article-title: Inpainting of remote sensing SST images with deep convolutional generative adversarial network publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 90 start-page: 1787 issue: 7 year: 2021 end-page: 1800 article-title: Sea temperature effects on depth use and habitat selection in a marine fish community publication-title: Journal of Animal Ecology – volume: 12 start-page: 1 issue: 4 year: 2023 end-page: 16 article-title: CiteSpace and bibliometric analysis of published research on forest ecosystem services for the period 2018–2022 publication-title: Landscape – volume: 131 start-page: 1055 issue: 3–4 year: 2018 end-page: 1067 article-title: Urban Heat Island research from 1991 to 2015: A bibliometric analysis publication-title: Theoretical and Applied Climatology – volume: 9 issue: 2 year: 2019 article-title: A bibliometric analysis of research on intangible cultural heritage using CiteSpace publication-title: SAGE Open – volume: 14 issue: 14 year: 2022 article-title: Prediction of sea surface temperature in the East China Sea based on LSTM neural network publication-title: Remote Sensing – volume: 29 start-page: 255 issue: 3 year: 2022 end-page: 264 article-title: Predicting sea surface temperatures with coupled reservoir computers publication-title: Nonlinear Processes in Geophysics – volume: 15 issue: 6 year: 2023 article-title: Prediction of sea surface temperature in the South China Sea based on deep learning publication-title: Remote Sensing – volume: 39 start-page: 257 issue: 1 year: 2022 end-page: 278 article-title: Artificial intelligence with American values and Chinese characteristics: A comparative analysis of American and Chinese governmental AI policies publication-title: Ai & Society – volume: 15 start-page: 207 issue: 2 year: 2018 end-page: 211 article-title: A CFCC‐LSTM model for sea surface temperature prediction publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 9 issue: 3 year: 2021 article-title: Restoration of missing patterns on satellite infrared sea surface temperature images due to cloud coverage using deep generative Inpainting network publication-title: Journal of Marine Science and Engineering – volume: 118 year: 2023 article-title: Assessment of the spatiotemporal prediction capabilities of machine learning algorithms on sea surface temperature data: A comprehensive study publication-title: Engineering Applications of Artificial Intelligence – volume: 14 issue: 19 year: 2022 article-title: Prediction of sea surface temperature by combining interdimensional and self‐attention with neural networks publication-title: Remote Sensing – volume: 6 year: 2019 article-title: Observational needs of sea surface temperature publication-title: Frontiers in Marine Science – volume: 15 start-page: 1 issue: 5 year: 2023 end-page: 26 article-title: Synthesizing Sea surface temperature and satellite altimetry observations using deep learning improves the accuracy and resolution of Gridded Sea surface height anomalies publication-title: Journal of Advances in Modeling Earth Systems – volume: 39 start-page: 4214 issue: 12 year: 2019 end-page: 4231 article-title: Prediction of daily sea surface temperature using artificial neural networks publication-title: International Journal of Remote Sensing – volume: 127 start-page: 1403 issue: 3 year: 2022 end-page: 1429 article-title: An evolving international research collaboration network: Spatial and thematic developments in Co‐authored higher education research, 1998–2018 publication-title: Scientometrics – volume: 60 start-page: 1 year: 2022 end-page: 13 article-title: W‐net: A deep network for simultaneous identification of gulf stream and rings from concurrent satellite images of sea surface temperature and height publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 12 start-page: 1 issue: 1 year: 2022 end-page: 16 article-title: Hybrid systems using residual modeling for sea surface temperature forecasting publication-title: Scientific Reports – volume: 60 start-page: 1 year: 2022 end-page: 14 article-title: Optically enhanced super‐resolution of sea surface temperature using deep learning publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 2 start-page: 1 issue: 8 year: 2020 end-page: 14 article-title: Prediction of sea surface temperatures using deep learning neural networks publication-title: SN Applied Sciences – volume: 112 year: 2022 article-title: Prediction of long lead monthly three‐Dimensional Ocean temperature using time series gridded Argo data and a deep learning method publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 15 start-page: 1625 issue: 21 year: 2022 article-title: Prediction of Daily Sea water temperature in Turkish seas using machine learning approaches publication-title: Arabian Journal of Geosciences – volume: 60 start-page: 1 year: 2022 end-page: 11 article-title: Cloud‐Free Sea‐surface‐temperature image reconstruction from anomaly Inpainting network publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 14 issue: 6 year: 2022 article-title: A hybrid deep learning model for the bias correction of SST numerical forecast products using satellite data publication-title: Remote Sensing – volume: 8 start-page: 4 issue: 1 year: 2021 article-title: Applications of soft computing models for predicting sea surface temperature: A comprehensive review and assessment publication-title: Progress in Earth and Planetary Science – volume: 14 issue: 6 year: 2022 article-title: Time series prediction of sea surface temperature based on an adaptive graph learning neural model publication-title: Future Internet – volume: 6 issue: 1 year: 2022 article-title: The impact of artificial intelligence on information dissemination mechanisms—Bibliometric analysis based on CiteSpace publication-title: Applied Science and Innovative Research – volume: 124 start-page: 2333 issue: 7 year: 2024 end-page: 2363 article-title: Understanding AI innovation contexts: A review and content analysis of artificial intelligence and entrepreneurial ecosystems research publication-title: Industrial Management and Data Systems – volume: 48 issue: 17 year: 2021 article-title: Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning publication-title: Geophysical Research Letters – volume: 77 start-page: 1274 issue: 4 year: 2020 end-page: 1285 article-title: Machine intelligence and the data‐driven future of marine science publication-title: ICES Journal of Marine Science – volume: 14 start-page: 1 issue: 4 year: 2023 end-page: 19 article-title: HiGRN: A hierarchical graph recurrent network for Global Sea surface temperature prediction publication-title: ACM Transactions on Intelligent Systems and Technology – year: 2018 – volume: 2020 start-page: 1 year: 2020 end-page: 9 article-title: A novel method for sea surface temperature prediction based on deep learning publication-title: Mathematical Problems in Engineering – volume: 12 issue: 5 year: 2022 article-title: Solar radiation prediction model for the Yellow River Basin with deep learning publication-title: Agronomy – volume: 263 year: 2021 article-title: Convolutional neural networks for satellite remote sensing at coarse resolution. Application for the SST retrieval using IASI publication-title: Remote Sensing of Environment – volume: 16 start-page: 6433 issue: 22 year: 2023 end-page: 6458 article-title: Machine learning for numerical weather and climate modelling: A review publication-title: Geoscientific Model Development – volume: 4 year: 2022 article-title: Predictability of sea surface temperature anomalies at the eastern pole of the Indian Ocean dipole—Using a convolutional neural network model publication-title: Frontiers in Climate – volume: 12 start-page: 1 issue: 1 year: 2023 end-page: 19 article-title: Bibliometric analysis of the research (2000–2020) on land‐use carbon emissions based on CiteSpace publication-title: Landscape – volume: 4 start-page: 410 issue: 2 year: 2021 end-page: 428 article-title: Education informatization 2.0 in China: Motivation, framework, and vision publication-title: ECNU Review of Education – volume: 99 start-page: 231 year: 2019 end-page: 239 article-title: Sea surface temperature inversion model for infrared remote sensing images based on deep neural network publication-title: Infrared Physics & Technology – volume: 2 start-page: 1 issue: 6 year: 2021 end-page: 20 article-title: Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions publication-title: SN Computer Science – volume: 14 start-page: 887 year: 2021 end-page: 896 article-title: Applications of deep learning‐based super‐resolution for sea surface temperature reconstruction publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 119 year: 2023 article-title: Multi‐source deep data fusion and super‐resolution for downscaling sea surface temperature guided by generative adversarial network‐based spatiotemporal dependency learning publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 208 year: 2023 article-title: Deep‐learning model for sea surface temperature prediction near the Korean peninsula publication-title: Deep Sea Research Part II: Topical Studies in Oceanography – volume: 18 start-page: 429 issue: 3 year: 2015 end-page: 472 article-title: Bibliometric methods in management and organization publication-title: Organizational Research Methods – volume: 233 year: 2019 article-title: Short and mid‐term sea surface temperature prediction using time‐series satellite data and LSTM‐AdaBoost combination approach publication-title: Remote Sensing of Environment – volume: 9 start-page: 1 year: 2022 end-page: 13 article-title: Seven‐day sea surface temperature prediction using a 3DConv‐LSTM model publication-title: Frontiers in Marine Science – volume: 19 start-page: 1 year: 2022 end-page: 5 article-title: Sea surface temperature forecasting with Ensemble of Stacked Deep Neural Networks publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 15 issue: 8 year: 2023 article-title: On evaluating the predictability of sea surface temperature using entropy publication-title: Remote Sensing – year: 2015 – volume: 26 start-page: 108 issue: 1 year: 2018 end-page: 126 article-title: Climate change and tourism: A Scientometric analysis using CiteSpace publication-title: Journal of Sustainable Tourism – volume: 23 start-page: 90 issue: 3 year: 2021 article-title: Development strategy for the Core software and hardware of artificial intelligence in China publication-title: Chinese Journal of Engineering Science – volume: 11 start-page: 611 issue: 7 year: 2020 end-page: 619 article-title: Prediction of sea surface temperature using a multiscale deep combination neural network publication-title: Remote Sensing Letters – volume: 11 start-page: 376 issue: 1 year: 2019 end-page: 399 article-title: Applications of deep learning to ocean data inference and subgrid parameterization publication-title: Journal of Advances in Modeling Earth Systems – volume: 61 start-page: 1 year: 2023 end-page: 13 article-title: Physical knowledge‐enhanced deep neural network for sea surface temperature prediction publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 37 start-page: 1197 issue: 4 year: 2024 end-page: 1211 article-title: A Relative Sea surface temperature index for classifying ENSO events in a changing climate publication-title: Journal of Climate – volume: 19 start-page: 1 year: 2022 end-page: 5 article-title: An evolving sea surface temperature predicting method based on multidimensional spatiotemporal influences publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 181 issue: December 2022 year: 2023 article-title: A deep leaning approach to predict sea surface temperature based on multiple modes publication-title: Ocean Modelling – volume: 15 issue: 4 year: 2022 article-title: Review on deep learning research and applications in wind and wave energy publication-title: Energies – volume: 287 year: 2023 article-title: Progress, knowledge gap and future directions of urban heat mitigation and adaptation research through a bibliometric review of history and evolution publication-title: Energy and Buildings – volume: 12 issue: 1 year: 2019 article-title: Knowledge mapping analysis of rural landscape using CiteSpace publication-title: Sustainability – volume: 2 start-page: 312 issue: 6 year: 2020 end-page: 316 article-title: Towards a new generation of artificial intelligence in China publication-title: Nature Machine Intelligence – volume: 30 start-page: 26338 issue: 10 year: 2023 end-page: 26356 article-title: Preliminary investigation of saline water intrusion (SWI) and submarine groundwater discharge (SGD) along the south‐eastern coast of Andhra Pradesh, India, using groundwater dynamics, sea surface temperature and field water quality anomalies publication-title: Environmental Science and Pollution Research – volume: 120 year: 2019 article-title: A spatiotemporal deep learning model for sea surface temperature field prediction using time‐series satellite data publication-title: Environmental Modelling & Software – volume: 14 issue: 3 year: 2023 article-title: Knowledge map of climate change and transportation: A bibliometric analysis based on CiteSpace publication-title: Atmosphere – volume: 10 start-page: 1 year: 2022 end-page: 21 article-title: Visualization analysis of research on climate innovation on CiteSpace publication-title: Frontiers in Environmental Science – volume: 37 start-page: 788 issue: 2 year: 2023 end-page: 832 article-title: Forecast evaluation for data scientists: Common pitfalls and best practices publication-title: Data Mining and Knowledge Discovery – volume: 197 year: 2023 article-title: Deep learning approach for forecasting sea surface temperature response to tropical cyclones in the Western North Pacific publication-title: Deep‐Sea Research Part I: Oceanographic Research Papers – volume: 8 issue: 4 year: 2020 article-title: Monthly and quarterly sea surface temperature prediction based on gated recurrent unit neural network publication-title: Journal of Marine Science and Engineering – ident: e_1_2_13_13_1 doi: 10.1016/j.dsr2.2023.105263 – ident: e_1_2_13_72_1 doi: 10.5670/oceanog.2017.421 – ident: e_1_2_13_21_1 doi: 10.1007/s11192‐021‐04200‐w – ident: e_1_2_13_45_1 doi: 10.1109/GECOST55694.2022.10010371 – ident: e_1_2_13_11_1 doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00106 – ident: e_1_2_13_53_1 doi: 10.1007/s11356‐021‐13825‐6 – ident: e_1_2_13_77_1 doi: 10.3390/s22041636 – ident: e_1_2_13_76_1 doi: 10.1177/2158244019840119 – ident: e_1_2_13_75_1 doi: 10.1007/s42979‐021‐00815‐1 – ident: e_1_2_13_83_1 doi: 10.3389/fmars.2022.905848 – ident: e_1_2_13_14_1 doi: 10.5194/egusphere‐2023‐350 – ident: e_1_2_13_26_1 doi: 10.3390/rs14194737 – ident: e_1_2_13_30_1 doi: 10.1109/JSTARS.2021.3065585 – ident: e_1_2_13_90_1 doi: 10.1016/j.jag.2022.102971 – ident: e_1_2_13_46_1 doi: 10.1016/j.jag.2023.103312 – ident: e_1_2_13_51_1 doi: 10.3390/land12040845 – ident: e_1_2_13_69_1 doi: 10.3390/rs13040744 – ident: e_1_2_13_10_1 doi: 10.3390/electronics11152359 – volume-title: How to use CiteSpace year: 2015 ident: e_1_2_13_8_1 – ident: e_1_2_13_3_1 doi: 10.1016/j.rse.2021.112553 – ident: e_1_2_13_32_1 doi: 10.3390/en13061369 – ident: e_1_2_13_33_1 doi: 10.1007/s10618‐022‐00894‐5 – ident: e_1_2_13_52_1 doi: 10.3390/land12010165 – ident: e_1_2_13_82_1 doi: 10.3390/app12125905 – ident: e_1_2_13_59_1 doi: 10.1175/WAF‐D‐22‐0094.1 – ident: e_1_2_13_68_1 doi: 10.3390/rs13183568 – ident: e_1_2_13_99_1 doi: 10.1109/LGRS.2017.2780843 – ident: e_1_2_13_23_1 doi: 10.15302/J‐SSCAE‐2021.03.008 – ident: e_1_2_13_104_1 doi: 10.3390/jmse8040249 – ident: e_1_2_13_24_1 doi: 10.3390/en15041510 – ident: e_1_2_13_103_1 doi: 10.1109/LGRS.2019.2947170 – ident: e_1_2_13_61_1 doi: 10.3389/fmars.2019.00420 – ident: e_1_2_13_18_1 doi: 10.3390/rs14061339 – ident: e_1_2_13_49_1 doi: 10.1175/JCLI‐D‐23‐0406.1 – ident: e_1_2_13_41_1 doi: 10.3389/fmars.2022.920994 – ident: e_1_2_13_79_1 doi: 10.1007/s00500‐022‐06899‐y – ident: e_1_2_13_62_1 doi: 10.1007/s12517‐022‐10893‐x – ident: e_1_2_13_106_1 doi: 10.1177/1094428114562629 – ident: e_1_2_13_22_1 doi: 10.1007/s11042‐022‐12208‐4 – ident: e_1_2_13_60_1 doi: 10.1007/s11356‐022‐23973‐y – ident: e_1_2_13_105_1 doi: 10.3390/agronomy12051081 – ident: e_1_2_13_102_1 doi: 10.1016/j.dsr.2023.104042 – ident: e_1_2_13_27_1 doi: 10.1186/s40645‐020‐00400‐9 – ident: e_1_2_13_19_1 doi: 10.3389/fclim.2022.925068 – ident: e_1_2_13_55_1 doi: 10.1109/TGRS.2021.3094117 – ident: e_1_2_13_86_1 doi: 10.1038/s42256‐020‐0183‐4 – ident: e_1_2_13_42_1 doi: 10.3390/rs15081956 – ident: e_1_2_13_6_1 doi: 10.1007/s12518‐022‐00462‐y – ident: e_1_2_13_91_1 doi: 10.1109/IGARSS46834.2022.9883749 – ident: e_1_2_13_73_1 doi: 10.1108/IMDS‐08‐2023‐0551 – ident: e_1_2_13_15_1 doi: 10.1038/s41598‐021‐04238‐z – ident: e_1_2_13_80_1 doi: 10.5194/npg‐29‐255‐2022 – ident: e_1_2_13_20_1 doi: 10.1111/1365‐2656.13497 – ident: e_1_2_13_38_1 – ident: e_1_2_13_35_1 doi: 10.1109/TGRS.2021.3111649 – ident: e_1_2_13_94_1 doi: 10.1080/2150704X.2020.1746853 – ident: e_1_2_13_87_1 doi: 10.3390/su12010066 – ident: e_1_2_13_56_1 doi: 10.1093/icesjms/fsz057 – ident: e_1_2_13_44_1 doi: 10.1016/j.engappai.2022.105675 – ident: e_1_2_13_89_1 doi: 10.1016/j.envsoft.2019.104502 – ident: e_1_2_13_57_1 doi: 10.1029/2022MS003589 – ident: e_1_2_13_31_1 doi: 10.1016/j.enbuild.2023.112976 – ident: e_1_2_13_81_1 doi: 10.3390/fi14060171 – ident: e_1_2_13_70_1 doi: 10.1007/s11704‐021‐1080‐7 – ident: e_1_2_13_7_1 doi: 10.1029/2018MS001472 – ident: e_1_2_13_5_1 doi: 10.1080/01431161.2018.1454623 – ident: e_1_2_13_9_1 doi: 10.1515/jdis‐2017‐0006 – ident: e_1_2_13_4_1 doi: 10.1080/01431161.2018.1454623 – ident: e_1_2_13_92_1 doi: 10.1109/LGRS.2021.3049406 – ident: e_1_2_13_96_1 doi: 10.1177/2096531120944929 – ident: e_1_2_13_37_1 doi: 10.1007/s00704‐016‐2025‐1 – ident: e_1_2_13_85_1 doi: 10.1016/j.jmarsys.2020.103347 – ident: e_1_2_13_40_1 doi: 10.3390/rs14143300 – ident: e_1_2_13_78_1 doi: 10.1016/j.bdr.2021.100237 – ident: e_1_2_13_101_1 doi: 10.1155/2020/6387173 – ident: e_1_2_13_93_1 doi: 10.22158/asir.v6n1p39 – ident: e_1_2_13_88_1 doi: 10.1016/j.rse.2019.111358 – ident: e_1_2_13_98_1 doi: 10.7717/peerj‐cs.1095 – ident: e_1_2_13_71_1 doi: 10.1038/s41598‐019‐57162‐8 – ident: e_1_2_13_12_1 doi: 10.3389/fenvs.2022.1025128 – ident: e_1_2_13_95_1 doi: 10.1016/j.ocemod.2022.102158 – ident: e_1_2_13_63_1 doi: 10.1007/s00477‐022‐02371‐3 – ident: e_1_2_13_54_1 doi: 10.1029/2021GL094772 – ident: e_1_2_13_64_1 doi: 10.1175/JTECH‐D‐17‐0217.1 – ident: e_1_2_13_34_1 doi: 10.1007/s00146‐022‐01499‐8 – ident: e_1_2_13_48_1 doi: 10.1007/s10236‐023‐01595‐3 – ident: e_1_2_13_36_1 doi: 10.1016/j.oceaneng.2022.111932 – ident: e_1_2_13_84_1 doi: 10.1109/LGRS.2019.2926992 – ident: e_1_2_13_47_1 doi: 10.3390/rs12213654 – ident: e_1_2_13_39_1 doi: 10.1109/LGRS.2021.3098425 – ident: e_1_2_13_43_1 doi: 10.3390/jmse9030310 – ident: e_1_2_13_28_1 doi: 10.1016/j.scib.2021.03.009 – ident: e_1_2_13_17_1 doi: 10.1080/09669582.2017.1329310 – ident: e_1_2_13_67_1 doi: 10.1109/JSTARS.2020.3042242 – ident: e_1_2_13_97_1 doi: 10.1145/3597937 – ident: e_1_2_13_107_1 doi: 10.1007/s11356‐019‐07100‐y – ident: e_1_2_13_2_1 doi: 10.1016/j.infrared.2019.04.022 – ident: e_1_2_13_16_1 doi: 10.1109/LGRS.2018.2870880 – ident: e_1_2_13_29_1 doi: 10.3390/rs15061656 – ident: e_1_2_13_74_1 doi: 10.1007/s42452‐020‐03239‐3 – ident: e_1_2_13_25_1 doi: 10.3389/fpubh.2022.933665 – ident: e_1_2_13_58_1 doi: 10.1109/TGRS.2023.3257039 – ident: e_1_2_13_66_1 doi: 10.3390/atmos14030434 – ident: e_1_2_13_50_1 doi: 10.1109/TGRS.2021.3096202 – ident: e_1_2_13_100_1 doi: 10.1155/2020/6387173 – ident: e_1_2_13_65_1 doi: 10.1109/ACCESS.2022.3167176 |
| SSID | ssj0001511153 |
| Score | 2.2605581 |
| SecondaryResourceType | review_article |
| Snippet | This study explored the potential application of deep learning techniques in sea surface temperature (SST) investigations using a mixed method, bibliometric... Abstract This study explored the potential application of deep learning techniques in sea surface temperature (SST) investigations using a mixed method,... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Artificial intelligence Bibliometrics CiteSpace Computer science Deep learning Geography Keywords Knowledge marine environment meteorology Methods R&D Remote sensing Research & development research hotspots Scientists Scientometrics Sea surface temperature SST Thermal pollution Trends Visualization |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JS8QwFMYfOgp6cRfHjQjirdolbRMv4jLqaRRR8BaydUaQmbHjCP73vrSpy0Ev3kpb2sJ7L_ll6fcB7IeFREhgrpCKPKCUm4ApGgW8iIqYaprYvKjMJvJulz0-8ls_4Tb22yqbNrFqqM1QuznyowRRHmE4TbOT0UvgXKPc6qq30JiGGadUhnk-c9bp3t59zbIgT0SVFGWMbIKDJcobBdowPurZYXwYpdGPPqmS7v_Bm9-ptep2Lhf_-8FLsOCBk5zWGbIMU3awAouNmQPxtb0Cc94Ovf--Cu8X1o6IN5ToEeRaghVBxpOykNoSJ2fltZjJ9wXwY3JK3Bb10vbrbfFEPaln93-_swEg0uuf4IEhtXN10_KSRtp8DR4uO_fn14H3aAh0kmJMMxVzaTViIdNGpkmsZSpDJnlqndYdVYgASicmKbIESYbjQD5kVNnMmFQ6o-N1aA2GA7sBJNcGx2JMmhzvoNKy0CIt8sLaJNI8Y23Ya6IkRrUUh6hFl2PhIikwkm04c-H7vO7Es6sTw7InfC0KRC6mIqk105rmlCvNKA-lzFiu8FVZG7abiApf0WPxFc42HFQJ8etHiKvOjSOpzb-fswXzMRJSvfd3G1qv5cTuwKx-e30al7s-kz8AI6v9Pg priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsQwEA6igl78F9c_Ioi3um2Stom3VXf1pHtQ2FtI0nR3QXalVUGfxmfxyZy0qa4HQfBWmpSGzEzyTTLzDULHYa4AJHBnSHkaMCaygGsWBSKPcsIMozbNq2IT6c0NHwxE30dVulyYmh_i68DNWUa1XjsDV7psf5OGDu2UnEYue3ohimjqNJqw_vf5CiCJqCKhJIBKwE1iouGeDUm7-fjHblSR9v9AmrN4tdpweqv_GeoaWvEwE3dqvVhHc3aygZZ8xfPR6yZ6u7T2EfuaEUMM0BWD0uPyuciVsdgxVnm6ZTx7x32GOx_vLgy9sKM69B3rsX5wOfyO6h8rz3ECDxmuq1M3qytu6Mu30H2ve3dxHfg6DIGhMcgt0UQoawD6cZOpmBKjYhVyJWLr-OyYhm1eG5rRPKGAVgQ46yFn2iZZFitXzHgbzU-mE7uDcGoy8Le4ylLowZTloQVEKHJraWREwlvoqJGHfKzpNmRNrEykm0UJs9hC505QX-2OILt6MS2G0tubBFjFdaSM4cawlAltOBOhUglPNfwqaaH9RszSW20pKbiL4HDFMTSfVAL9dRDyqnvr0NLuXzvuoWUCeKiO9N1H80_Fsz1Ai-blaVwWh5XufgIpyvMW priority: 102 providerName: Wiley-Blackwell |
| Title | Deep learning for sea surface temperature applications: A comprehensive bibliometric analysis and methodological approach |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgeo2.151 https://www.proquest.com/docview/3149118556 https://doaj.org/article/8468b1acc8cc4749bc8490aa687b31c6 |
| Volume | 11 |
| WOSCitedRecordID | wos001314419300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2054-4049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511153 issn: 2054-4049 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2054-4049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511153 issn: 2054-4049 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2054-4049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511153 issn: 2054-4049 databaseCode: PCBAR dateStart: 20140701 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2054-4049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511153 issn: 2054-4049 databaseCode: BENPR dateStart: 20140701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2054-4049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511153 issn: 2054-4049 databaseCode: PIMPY dateStart: 20140701 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2054-4049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511153 issn: 2054-4049 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2054-4049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511153 issn: 2054-4049 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xqNReKqCt2BZWRkK9BZLYTuzeeCyPA9sIURVOlu04CxJa0D6Q4MBv6W_hlzGOE7QcKi5cosTOwZrxZL5Rxt8HsBlXGkGC8IFU5RFjsoyEYUkkq6RKmWXU5VUtNpH3--L8XBYzUl--JyzQAwfDbWN-FCbR1gprWc6ksYLJWOtM5IYmtibbjnM5U0yF88EYw5y2bLNxuj1wN-lWwpNX-aem6X-FLWcRap1iDpbgc4MNyU5Y0zLMueEKfGxkyi_vv8DDvnO3pBF6GBDEmwR3KhlPR5W2jniaqYYjmcz-mP5Fdp7--d7xkbsM_erEXJlrf_De8_MT3RCT4E1JgqR0-0kkLef4V_hz0DvbO4oa8YTIUo7GzkwqtbOI14QtNaep1VzHQkvuPAkdM5ibjaUlrTKKEENihR0LZlxWllx7BeJvsDC8GbpVILktsUgSuszxDaadiB3COFk5hw6QmejARmtSdRs4MlRgQ06VN7tCs3dg19v6Zd6zWtcD6GvV-Fq95esOrLWeUk2ojRXFGg-rJM5x-mftvf8uQh32fnuI8_09FvMDPqUIcELr7hosTEZTtw4f7N3kajzqwnzKii4s7vb6xWm33px4PXns4VhxfFJc4NPf4_4zS37thg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLVJ7oVBALBQwEnALTRwnsZEQKrSlq7bLHopUTsZf2VaqdpdsC9o_xW9knNi0PcCtB25REiWW8zzzxnbeA3iZ1gpJAvcDqa4SxoRNuGZZIuqspsyw3FV1azZRDYf8-FiMluBX_BfGb6uMMbEN1HZq_Bz5Zo5UHslwUZTvZ98T7xrlV1ejhUYHi323-Ikl2_zdYBu_7ytKd3eOPu4lwVUgMXmBrSg1FcoZJDLcWFXk1KhCpVyJwnl1NqYxaWmT27wuc8y9AkvPlDPtSmsL5a158bm3YJl5sPdgeTQ4HH29nNVB_pK10pcUuRAWZ0xExduUbo7dlL7JiuxaDmytAq7x26ssuU1zu2v_WwfdhTuBUJOtbgTcgyU3WYe1aFZBQuxah5Vg936yuA-LbedmJBhmjAnydoItJ_OLplbGES_XFbSmydUF_rdki_gt-I076bb9E32qz7x-gbc5ICrou-CBJZ0zd8wsJEq3P4AvN9IZD6E3mU7cIyCVsVhrcmUrvIMpx1OHbFjUzuWZESXvw4uICjnrpEZkJypNpUeOROT04YOHy5_rXhy8PTFtxjLEGomUkutMGcONYRUT2nAmUqVKXml8VdmHjYggGSLWXF7Cpw-vWwD-tRHy085nzxQf__s5z2Fl7-jwQB4MhvtPYJUiG-z2OW9A77y5cE_htvlxfjpvnoVRRODbTePyN1CQWV8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHQJeGAwQhQFGAt5CE8dJbCSEBl2hGpQ-gDSejD-7Sagt6QbqX-PXcZ04bHuAtz3wFiWRYznH9x5_nQPwJPUKSQIPHclXCWPCJlyzLBE-85QZlrvKN2YT1WTCDw7EdAN-dWdhwrbKLiY2gdouTJgjH-RI5ZEMF0U58HFbxHQ4erX8ngQHqbDS2tlptBDZd-ufOHxbvRwP8V8_pXS09-nNuyQ6DCQmL7BGpaZCOYOkhhuripwaVaiUK1G4oNTGNCYwbXKb-zLHPCxwGJpypl1pbaGCTS-Wewk2kZIz2oPN6fjD9MvpDA9ymayRwaTIi3CgxkSnfpvSwcwt6POsyM7lw8Y24BzXPcuYm5Q32vqfG-sGXI9Em-y2PeMmbLj5Nmx1JhYkxrRtuBpt4A_Xt2A9dG5JopHGjCCfJ1hzsjqpvTKOBBmvqEFNzi78vyC7JGzNr91hexyA6CP9LegaBPsDoqLuC15Y0jp2dxmHdJLut-HzhTTGHejNF3N3F0hlLI5BubIVvsGU46lDliy8c3lmRMn78LhDiFy2EiSyFZumMqBIIor68DpA58_zIBre3FjUMxljkESqyXWmjOHGIGKFNpyJVKmSVxo_VfZhp0OTjJFsJU-h1IdnDRj_Wgn5du9jYJD3_l3OI7iCYJTvx5P9-3CNIklstz_vQO-4PnEP4LL5cXy0qh_GDkXg60XD8jcBEmIf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+sea+surface+temperature+applications%3A+A%C2%A0comprehensive+bibliometric+analysis+and+methodological+approach&rft.jtitle=Geo+%3A+geography+and+environment&rft.au=Redouane+Larbi+Boufeniza&rft.au=Luo+Jingjia&rft.au=Kemal+Adem+Abdela&rft.au=Karam+Alsafadi&rft.date=2024-07-01&rft.pub=Wiley&rft.eissn=2054-4049&rft.volume=11&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fgeo2.151&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8468b1acc8cc4749bc8490aa687b31c6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-4049&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-4049&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-4049&client=summon |