Deep learning for sea surface temperature applications: A comprehensive bibliometric analysis and methodological approach

This study explored the potential application of deep learning techniques in sea surface temperature (SST) investigations using a mixed method, bibliometric analysis and methodological approach. CiteSpace software was utilized for a bibliometric study on 137 academic publications from 2018 to 2023....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geo : geography and environment Ročník 11; číslo 2
Hlavní autoři: Boufeniza, Redouane Larbi, Jingjia, Luo, Abdela, Kemal Adem, Alsafadi, Karam, Alsahli, Mohammad M
Médium: Journal Article
Jazyk:angličtina
Vydáno: London John Wiley & Sons, Inc 01.07.2024
Wiley
Témata:
ISSN:2054-4049, 2054-4049
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study explored the potential application of deep learning techniques in sea surface temperature (SST) investigations using a mixed method, bibliometric analysis and methodological approach. CiteSpace software was utilized for a bibliometric study on 137 academic publications from 2018 to 2023. Various databases were employed for methodological analysis, which involved examining publications based on models, methodologies, applications and research areas. The data were manually organized in a relational framework of an SQL database. The analysis underscored China's prominence as a leader in the extensive research devoted to this field. The United States of America and the United Kingdom played pivotal roles in providing the essential data that served as the foundation for these studies. Moreover, the long short‐term memory (LSTM) algorithm was the predominant computational deep learning algorithm extensively used in this specific context. The analysis highlighted significant knowledge gaps in areas such as SST forecasting, modelling, satellite remote sensing, extreme events and data reconstruction. Future scientists need to show more interest in these and related subjects, while Chinese and American scientists should prioritize paper quality over quantity. Additionally, fostering stronger collaborations between universities and institutions is vital for further advancements. Ultimately, this study offers valuable insights into hotspot research areas and development processes, establishing the foundation for research and suggesting possible avenues for future development. The results of this evaluation serve as an essential guide for researchers and modellers involved in prediction initiatives using deep learning. Short The main objective of this study is to highlight research gaps and provide a comprehensive overview of the most recent trends (last six years) involving deep learning techniques for sea surface temperature (SST) investigations. The study aims to provide information's, including the methodologies, an assessment of strengths and weaknesses in terms of institutions, keywords, authors, journals and collaborative efforts. In addition, the study highlights persistent challenges and potential future directions in SST research using deep learning methods.
AbstractList Abstract This study explored the potential application of deep learning techniques in sea surface temperature (SST) investigations using a mixed method, bibliometric analysis and methodological approach. CiteSpace software was utilized for a bibliometric study on 137 academic publications from 2018 to 2023. Various databases were employed for methodological analysis, which involved examining publications based on models, methodologies, applications and research areas. The data were manually organized in a relational framework of an SQL database. The analysis underscored China's prominence as a leader in the extensive research devoted to this field. The United States of America and the United Kingdom played pivotal roles in providing the essential data that served as the foundation for these studies. Moreover, the long short‐term memory (LSTM) algorithm was the predominant computational deep learning algorithm extensively used in this specific context. The analysis highlighted significant knowledge gaps in areas such as SST forecasting, modelling, satellite remote sensing, extreme events and data reconstruction. Future scientists need to show more interest in these and related subjects, while Chinese and American scientists should prioritize paper quality over quantity. Additionally, fostering stronger collaborations between universities and institutions is vital for further advancements. Ultimately, this study offers valuable insights into hotspot research areas and development processes, establishing the foundation for research and suggesting possible avenues for future development. The results of this evaluation serve as an essential guide for researchers and modellers involved in prediction initiatives using deep learning.
This study explored the potential application of deep learning techniques in sea surface temperature (SST) investigations using a mixed method, bibliometric analysis and methodological approach. CiteSpace software was utilized for a bibliometric study on 137 academic publications from 2018 to 2023. Various databases were employed for methodological analysis, which involved examining publications based on models, methodologies, applications and research areas. The data were manually organized in a relational framework of an SQL database. The analysis underscored China's prominence as a leader in the extensive research devoted to this field. The United States of America and the United Kingdom played pivotal roles in providing the essential data that served as the foundation for these studies. Moreover, the long short‐term memory (LSTM) algorithm was the predominant computational deep learning algorithm extensively used in this specific context. The analysis highlighted significant knowledge gaps in areas such as SST forecasting, modelling, satellite remote sensing, extreme events and data reconstruction. Future scientists need to show more interest in these and related subjects, while Chinese and American scientists should prioritize paper quality over quantity. Additionally, fostering stronger collaborations between universities and institutions is vital for further advancements. Ultimately, this study offers valuable insights into hotspot research areas and development processes, establishing the foundation for research and suggesting possible avenues for future development. The results of this evaluation serve as an essential guide for researchers and modellers involved in prediction initiatives using deep learning.
This study explored the potential application of deep learning techniques in sea surface temperature (SST) investigations using a mixed method, bibliometric analysis and methodological approach. CiteSpace software was utilized for a bibliometric study on 137 academic publications from 2018 to 2023. Various databases were employed for methodological analysis, which involved examining publications based on models, methodologies, applications and research areas. The data were manually organized in a relational framework of an SQL database. The analysis underscored China's prominence as a leader in the extensive research devoted to this field. The United States of America and the United Kingdom played pivotal roles in providing the essential data that served as the foundation for these studies. Moreover, the long short‐term memory (LSTM) algorithm was the predominant computational deep learning algorithm extensively used in this specific context. The analysis highlighted significant knowledge gaps in areas such as SST forecasting, modelling, satellite remote sensing, extreme events and data reconstruction. Future scientists need to show more interest in these and related subjects, while Chinese and American scientists should prioritize paper quality over quantity. Additionally, fostering stronger collaborations between universities and institutions is vital for further advancements. Ultimately, this study offers valuable insights into hotspot research areas and development processes, establishing the foundation for research and suggesting possible avenues for future development. The results of this evaluation serve as an essential guide for researchers and modellers involved in prediction initiatives using deep learning. Short The main objective of this study is to highlight research gaps and provide a comprehensive overview of the most recent trends (last six years) involving deep learning techniques for sea surface temperature (SST) investigations. The study aims to provide information's, including the methodologies, an assessment of strengths and weaknesses in terms of institutions, keywords, authors, journals and collaborative efforts. In addition, the study highlights persistent challenges and potential future directions in SST research using deep learning methods.
Author Abdela, Kemal Adem
Boufeniza, Redouane Larbi
Alsahli, Mohammad M
Jingjia, Luo
Alsafadi, Karam
Author_xml – sequence: 1
  givenname: Redouane Larbi
  orcidid: 0000-0002-6503-2447
  surname: Boufeniza
  fullname: Boufeniza, Redouane Larbi
  email: boufenizaredouane@gmail.com
  organization: Nanjing University of Information Science and Technology
– sequence: 2
  givenname: Luo
  orcidid: 0000-0001-6076-1889
  surname: Jingjia
  fullname: Jingjia, Luo
  organization: Nanjing University of Information Science and Technology
– sequence: 3
  givenname: Kemal Adem
  orcidid: 0009-0005-5247-929X
  surname: Abdela
  fullname: Abdela, Kemal Adem
  organization: Nanjing University of Information Science and Technology
– sequence: 4
  givenname: Karam
  orcidid: 0000-0001-8925-7918
  surname: Alsafadi
  fullname: Alsafadi, Karam
  organization: Nanjing University of Information Science and Technology
– sequence: 5
  givenname: Mohammad M
  orcidid: 0000-0003-3225-7452
  surname: Alsahli
  fullname: Alsahli, Mohammad M
  organization: Kuwait University
BookMark eNp1kU1uFDEQhS2USIQkUo5giQ2bDv7tcbOLQgiRImVD1lbZXT3jkafd2D2gyWk4CyfDzSDEhlU9lb56paf3hpyMaURCrji75oyJ92tM4ppr_oqcCaZVo5jqTv7Rr8llKVvGWGU41_KMvHxEnGhEyGMY13RImRYEWvZ5AI90xt2EGeZ9RgrTFIOHOaSxfKA3P3_4tJsybnAs4RtSF1wMaYdzDp7CCPFQQqmip3W3SX2KaV3P4-KTE_jNBTkdIBa8_DPPyfOnuy-3n5vHp_uH25vHxkuteNM60QF63Wrje9BSeNDADHQazaqVygklnJe9HFopjOzQCWaUw7bvNRgj5Tl5OPr2CbZ2ymEH-WATBPt7kfLaQp6Dj2iNao3j4L3xXq1U57xRHQNozcpJ7tvq9fboVSN83WOZ7Tbtcw1brOSq49xovVDvjpTPqZSMw9-vnNmlKLsUZWsJFW2O6PcQ8fBfzt7fPYmF_wUyV5f2
Cites_doi 10.1016/j.dsr2.2023.105263
10.5670/oceanog.2017.421
10.1007/s11192‐021‐04200‐w
10.1109/GECOST55694.2022.10010371
10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00106
10.1007/s11356‐021‐13825‐6
10.3390/s22041636
10.1177/2158244019840119
10.1007/s42979‐021‐00815‐1
10.3389/fmars.2022.905848
10.5194/egusphere‐2023‐350
10.3390/rs14194737
10.1109/JSTARS.2021.3065585
10.1016/j.jag.2022.102971
10.1016/j.jag.2023.103312
10.3390/land12040845
10.3390/rs13040744
10.3390/electronics11152359
10.1016/j.rse.2021.112553
10.3390/en13061369
10.1007/s10618‐022‐00894‐5
10.3390/land12010165
10.3390/app12125905
10.1175/WAF‐D‐22‐0094.1
10.3390/rs13183568
10.1109/LGRS.2017.2780843
10.15302/J‐SSCAE‐2021.03.008
10.3390/jmse8040249
10.3390/en15041510
10.1109/LGRS.2019.2947170
10.3389/fmars.2019.00420
10.3390/rs14061339
10.1175/JCLI‐D‐23‐0406.1
10.3389/fmars.2022.920994
10.1007/s00500‐022‐06899‐y
10.1007/s12517‐022‐10893‐x
10.1177/1094428114562629
10.1007/s11042‐022‐12208‐4
10.1007/s11356‐022‐23973‐y
10.3390/agronomy12051081
10.1016/j.dsr.2023.104042
10.1186/s40645‐020‐00400‐9
10.3389/fclim.2022.925068
10.1109/TGRS.2021.3094117
10.1038/s42256‐020‐0183‐4
10.3390/rs15081956
10.1007/s12518‐022‐00462‐y
10.1109/IGARSS46834.2022.9883749
10.1108/IMDS‐08‐2023‐0551
10.1038/s41598‐021‐04238‐z
10.5194/npg‐29‐255‐2022
10.1111/1365‐2656.13497
10.1109/TGRS.2021.3111649
10.1080/2150704X.2020.1746853
10.3390/su12010066
10.1093/icesjms/fsz057
10.1016/j.engappai.2022.105675
10.1016/j.envsoft.2019.104502
10.1029/2022MS003589
10.1016/j.enbuild.2023.112976
10.3390/fi14060171
10.1007/s11704‐021‐1080‐7
10.1029/2018MS001472
10.1080/01431161.2018.1454623
10.1515/jdis‐2017‐0006
10.1109/LGRS.2021.3049406
10.1177/2096531120944929
10.1007/s00704‐016‐2025‐1
10.1016/j.jmarsys.2020.103347
10.3390/rs14143300
10.1016/j.bdr.2021.100237
10.1155/2020/6387173
10.22158/asir.v6n1p39
10.1016/j.rse.2019.111358
10.7717/peerj‐cs.1095
10.1038/s41598‐019‐57162‐8
10.3389/fenvs.2022.1025128
10.1016/j.ocemod.2022.102158
10.1007/s00477‐022‐02371‐3
10.1029/2021GL094772
10.1175/JTECH‐D‐17‐0217.1
10.1007/s00146‐022‐01499‐8
10.1007/s10236‐023‐01595‐3
10.1016/j.oceaneng.2022.111932
10.1109/LGRS.2019.2926992
10.3390/rs12213654
10.1109/LGRS.2021.3098425
10.3390/jmse9030310
10.1016/j.scib.2021.03.009
10.1080/09669582.2017.1329310
10.1109/JSTARS.2020.3042242
10.1145/3597937
10.1007/s11356‐019‐07100‐y
10.1016/j.infrared.2019.04.022
10.1109/LGRS.2018.2870880
10.3390/rs15061656
10.1007/s42452‐020‐03239‐3
10.3389/fpubh.2022.933665
10.1109/TGRS.2023.3257039
10.3390/atmos14030434
10.1109/TGRS.2021.3096202
10.1109/ACCESS.2022.3167176
ContentType Journal Article
Copyright The information, practices and views in this article are those of the author(s) and do not necessarily reflect the opinion of the Royal Geographical Society (with IBG). © 2024 The Author(s). published by the Royal Geographical Society (with the Institute of British Geographers) and John Wiley & Sons Ltd.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The information, practices and views in this article are those of the author(s) and do not necessarily reflect the opinion of the Royal Geographical Society (with IBG). © 2024 The Author(s). published by the Royal Geographical Society (with the Institute of British Geographers) and John Wiley & Sons Ltd.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1002/geo2.151
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Computer Science
EISSN 2054-4049
EndPage n/a
ExternalDocumentID oai_doaj_org_article_8468b1acc8cc4749bc8490aa687b31c6
10_1002_geo2_151
GEO2151
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 42030605
GroupedDBID 0R~
1OC
24P
5VS
8FE
8FH
AAMMB
AAZKR
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEUYN
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EDH
EJD
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IEP
ITC
KQ8
LK5
M7R
M~E
O9-
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
WIN
AAYXX
AFFHD
BANNL
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c3541-6b29aec5658cda532ca5a08a95e87634b242bc3d3f632839eb2084be6dd5a8833
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001314419300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2054-4049
IngestDate Fri Oct 03 12:53:11 EDT 2025
Wed Aug 13 02:35:02 EDT 2025
Sat Nov 29 06:47:10 EST 2025
Wed Aug 20 07:24:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3541-6b29aec5658cda532ca5a08a95e87634b242bc3d3f632839eb2084be6dd5a8833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3225-7452
0009-0005-5247-929X
0000-0001-8925-7918
0000-0002-6503-2447
0000-0001-6076-1889
OpenAccessLink https://doaj.org/article/8468b1acc8cc4749bc8490aa687b31c6
PQID 3149118556
PQPubID 4370314
PageCount 33
ParticipantIDs doaj_primary_oai_doaj_org_article_8468b1acc8cc4749bc8490aa687b31c6
proquest_journals_3149118556
crossref_primary_10_1002_geo2_151
wiley_primary_10_1002_geo2_151_GEO2151
PublicationCentury 2000
PublicationDate July‐December 2024
2024-07-00
20240701
2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July‐December 2024
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Geo : geography and environment
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 25
2023; 30
2017; 2
2023; 181
2021; 23
2021; 66
2019; 99
2019; 11
2023; 37
2023; 38
2021; 28
2019; 12
2020; 17
2019; 16
2024; 74
2020; 13
2020; 12
2020; 11
2020; 10
2022; 22
2024; 37
2022; 27
2020; 208
2022; 259
2022; 29
2019; 120
2018; 131
2020; 8
2018; 39
2017; 30
2020; 2
2022; 81
2022; 37
2022; 127
2022; 39
2019; 233
2018; 35
2021; 9
2021; 8
2022; 112
2021; 48
2019; 9
2023; 14
2021; 4
2019; 6
2023; 12
2021; 2
2015; 18
2023; 17
2023; 15
2023; 16
2023; 287
2019; 39
2021; 263
2023; 208
2020; 77
2024; 124
2021; 90
2018; 26
2023; 61
2021; 14
2021; 13
2020; 2020
2023; 197
2022; 4
2022; 60
2022
2022; 6
2022; 8
2022; 9
2022; 12
2019
2020; 27
2022; 14
2018
2022; 15
2015
2022; 10
2023; 119
2022; 11
2023; 118
2018; 15
2022; 19
e_1_2_13_24_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_66_1
e_1_2_13_101_1
e_1_2_13_43_1
e_1_2_13_85_1
e_1_2_13_62_1
e_1_2_13_81_1
e_1_2_13_92_1
e_1_2_13_96_1
e_1_2_13_17_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_78_1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_70_1
e_1_2_13_4_1
e_1_2_13_105_1
e_1_2_13_88_1
e_1_2_13_29_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_100_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_104_1
e_1_2_13_86_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_82_1
e_1_2_13_91_1
e_1_2_13_95_1
e_1_2_13_99_1
e_1_2_13_18_1
e_1_2_13_14_1
e_1_2_13_37_1
e_1_2_13_79_1
e_1_2_13_10_1
e_1_2_13_56_1
e_1_2_13_33_1
e_1_2_13_75_1
e_1_2_13_52_1
e_1_2_13_71_1
e_1_2_13_5_1
Chen C. (e_1_2_13_8_1) 2015
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_68_1
e_1_2_13_45_1
e_1_2_13_87_1
e_1_2_13_22_1
e_1_2_13_64_1
e_1_2_13_103_1
e_1_2_13_41_1
e_1_2_13_60_1
e_1_2_13_83_1
e_1_2_13_6_1
e_1_2_13_90_1
e_1_2_13_94_1
e_1_2_13_98_1
e_1_2_13_19_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_76_1
e_1_2_13_30_1
e_1_2_13_72_1
e_1_2_13_2_1
e_1_2_13_107_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_102_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_84_1
e_1_2_13_7_1
e_1_2_13_61_1
e_1_2_13_80_1
e_1_2_13_93_1
e_1_2_13_97_1
e_1_2_13_39_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_58_1
e_1_2_13_31_1
e_1_2_13_77_1
e_1_2_13_12_1
e_1_2_13_54_1
e_1_2_13_73_1
e_1_2_13_50_1
e_1_2_13_3_1
e_1_2_13_106_1
e_1_2_13_89_1
e_1_2_13_28_1
References_xml – volume: 9
  start-page: 1
  issue: May
  year: 2022
  end-page: 4
  article-title: The role of artificial intelligence algorithms in marine scientific research
  publication-title: Frontiers in Marine Science
– volume: 12
  issue: 21
  year: 2020
  article-title: Sea surface temperature and high water temperature occurrence prediction using a long short‐term memory model
  publication-title: Remote Sensing
– volume: 10
  start-page: 40410
  year: 2022
  end-page: 40418
  article-title: Deep learning models to predict sea surface temperature in Tohoku region
  publication-title: IEEE Access
– volume: 81
  start-page: 12973
  issue: 9
  year: 2022
  end-page: 12981
  article-title: The research landscape on the artificial intelligence: A bibliometric analysis of recent 20 years
  publication-title: Multimedia Tools and Applications
– volume: 28
  start-page: 49755
  issue: 36
  year: 2021
  end-page: 49773
  article-title: Knowledge map and global trends in extreme weather research from 1980 to 2019: A bibliometric analysis
  publication-title: Environmental Science and Pollution Research
– volume: 12
  issue: 12
  year: 2022
  article-title: Sparse data‐extended fusion method for sea surface temperature prediction on the East China Sea
  publication-title: Applied Sciences
– volume: 14
  start-page: 3438
  year: 2021
  end-page: 3446
  article-title: Forecasting El Niño and La Niña using spatially and temporally structured predictors and a convolutional neural network
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 2
  start-page: 1
  issue: 2
  year: 2017
  end-page: 40
  article-title: Science mapping: A systematic review of the literature
  publication-title: Journal of Data and Information Science
– volume: 25
  year: 2021
  article-title: Time‐series graph network for sea surface temperature prediction
  publication-title: Big Data Research
– volume: 38
  start-page: 1
  year: 2023
  end-page: 32
  article-title: A multivariable convolutional neural network for forecasting synoptic‐scale sea surface temperature anomalies in the South China Sea
  publication-title: Weather and Forecasting
– volume: 259
  issue: January
  year: 2022
  article-title: MUST: A multi‐source Spatio‐temporal data fusion model for short‐Term Sea surface temperature prediction
  publication-title: Ocean Engineering
– volume: 17
  start-page: 558
  issue: 4
  year: 2020
  end-page: 562
  article-title: Prediction of sea surface temperature in the South China Sea by artificial neural networks
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 66
  start-page: 1358
  issue: 13
  year: 2021
  end-page: 1366
  article-title: Unified deep learning model for El Niño/Southern Oscillation forecasts by incorporating seasonality in climate data
  publication-title: Science Bulletin
– volume: 13
  issue: 4
  year: 2021
  article-title: Deep learning of sea surface temperature patterns to Identify Ocean extremes
  publication-title: Remote Sensing
– volume: 17
  start-page: 1303
  issue: 8
  year: 2020
  end-page: 1307
  article-title: Prediction of 3‐D Ocean temperature by multilayer convolutional LSTM
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 208
  issue: May
  year: 2020
  article-title: Statistical and machine learning ensemble modelling to Forecast Sea surface temperature
  publication-title: Journal of Marine Systems
– volume: 35
  start-page: 1441
  issue: 7
  year: 2018
  end-page: 1455
  article-title: Basin‐scale prediction of sea surface temperature with artificial neural networks
  publication-title: Journal of Atmospheric and Oceanic Technology
– year: 2022
– volume: 27
  start-page: 3523
  issue: 3
  year: 2020
  end-page: 3540
  article-title: Mapping of climate change research in the Arab world: A bibliometric analysis
  publication-title: Environmental Science and Pollution Research
– volume: 74
  start-page: 149
  issue: 2
  year: 2024
  end-page: 168
  article-title: Deep learning‐based forecasting of sea surface temperature in the interim future: Application over the Aegean, Ionian, and Cretan seas (NE Mediterranean sea)
  publication-title: Ocean Dynamics
– volume: 22
  issue: 4
  year: 2022
  article-title: High Precision Sea surface temperature prediction of long period and large area in the Indian Ocean based on the temporal convolutional network and internet of things
  publication-title: Sensors
– volume: 13
  issue: 6
  year: 2020
  article-title: Improved particle swarm optimization for sea surface temperature prediction
  publication-title: Energies
– volume: 37
  start-page: 1877
  issue: 5
  year: 2022
  end-page: 1896
  article-title: Adaptive graph neural network based South China Sea seawater temperature prediction and multivariate uncertainty correlation analysis
  publication-title: Stochastic Environmental Research and Risk Assessment
– volume: 17
  issue: 1
  year: 2023
  article-title: Effective ensemble learning approach for SST field prediction using attention‐based PredRNN
  publication-title: Frontiers of Computer Science
– year: 2019
– volume: 39
  start-page: 4214
  issue: 12
  year: 2018
  end-page: 4231
  article-title: Prediction of daily sea surface temperature using artificial neural networks
  publication-title: International Journal of Remote Sensing
– volume: 10
  year: 2022
  article-title: Applications of artificial intelligence in the field of air pollution: A bibliometric analysis
  publication-title: Frontiers in Public Health
– volume: 30
  start-page: 26
  issue: 4
  year: 2017
  end-page: 37
  article-title: The coevolution of midwater research and ROV technology at MBARI
  publication-title: Oceanography
– volume: 27
  start-page: 1
  issue: 18
  year: 2022
  end-page: 13
  article-title: ILF‐LSTM: Enhanced loss function in LSTM to predict the sea surface temperature
  publication-title: Soft Computing
– volume: 8
  year: 2022
  article-title: A DBULSTM‐Adaboost model for sea surface temperature prediction
  publication-title: PeerJ Computer Science
– volume: 14
  start-page: 669
  issue: 4
  year: 2022
  end-page: 678
  article-title: Sea surface temperature prediction model for the Black Sea by employing time‐series satellite data: A machine learning approach
  publication-title: Applied Geomatics
– volume: 11
  issue: 15
  year: 2022
  article-title: A hybrid ARIMA‐GABP model for predicting sea surface temperature
  publication-title: Electronics
– volume: 13
  issue: 18
  year: 2021
  article-title: Can the structure similarity of training patches affect the sea surface temperature deep learning super‐resolution?
  publication-title: Remote Sensing
– volume: 2020
  issue: 1
  year: 2020
  article-title: A novel method for sea surface temperature prediction based on deep learning
  publication-title: Mathematical Problems in Engineering
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 11
  article-title: A machine learning based prediction system for the Indian Ocean dipole
  publication-title: Scientific Reports
– volume: 16
  start-page: 173
  issue: 2
  year: 2019
  end-page: 177
  article-title: Inpainting of remote sensing SST images with deep convolutional generative adversarial network
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 90
  start-page: 1787
  issue: 7
  year: 2021
  end-page: 1800
  article-title: Sea temperature effects on depth use and habitat selection in a marine fish community
  publication-title: Journal of Animal Ecology
– volume: 12
  start-page: 1
  issue: 4
  year: 2023
  end-page: 16
  article-title: CiteSpace and bibliometric analysis of published research on forest ecosystem services for the period 2018–2022
  publication-title: Landscape
– volume: 131
  start-page: 1055
  issue: 3–4
  year: 2018
  end-page: 1067
  article-title: Urban Heat Island research from 1991 to 2015: A bibliometric analysis
  publication-title: Theoretical and Applied Climatology
– volume: 9
  issue: 2
  year: 2019
  article-title: A bibliometric analysis of research on intangible cultural heritage using CiteSpace
  publication-title: SAGE Open
– volume: 14
  issue: 14
  year: 2022
  article-title: Prediction of sea surface temperature in the East China Sea based on LSTM neural network
  publication-title: Remote Sensing
– volume: 29
  start-page: 255
  issue: 3
  year: 2022
  end-page: 264
  article-title: Predicting sea surface temperatures with coupled reservoir computers
  publication-title: Nonlinear Processes in Geophysics
– volume: 15
  issue: 6
  year: 2023
  article-title: Prediction of sea surface temperature in the South China Sea based on deep learning
  publication-title: Remote Sensing
– volume: 39
  start-page: 257
  issue: 1
  year: 2022
  end-page: 278
  article-title: Artificial intelligence with American values and Chinese characteristics: A comparative analysis of American and Chinese governmental AI policies
  publication-title: Ai & Society
– volume: 15
  start-page: 207
  issue: 2
  year: 2018
  end-page: 211
  article-title: A CFCC‐LSTM model for sea surface temperature prediction
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 9
  issue: 3
  year: 2021
  article-title: Restoration of missing patterns on satellite infrared sea surface temperature images due to cloud coverage using deep generative Inpainting network
  publication-title: Journal of Marine Science and Engineering
– volume: 118
  year: 2023
  article-title: Assessment of the spatiotemporal prediction capabilities of machine learning algorithms on sea surface temperature data: A comprehensive study
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 14
  issue: 19
  year: 2022
  article-title: Prediction of sea surface temperature by combining interdimensional and self‐attention with neural networks
  publication-title: Remote Sensing
– volume: 6
  year: 2019
  article-title: Observational needs of sea surface temperature
  publication-title: Frontiers in Marine Science
– volume: 15
  start-page: 1
  issue: 5
  year: 2023
  end-page: 26
  article-title: Synthesizing Sea surface temperature and satellite altimetry observations using deep learning improves the accuracy and resolution of Gridded Sea surface height anomalies
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 39
  start-page: 4214
  issue: 12
  year: 2019
  end-page: 4231
  article-title: Prediction of daily sea surface temperature using artificial neural networks
  publication-title: International Journal of Remote Sensing
– volume: 127
  start-page: 1403
  issue: 3
  year: 2022
  end-page: 1429
  article-title: An evolving international research collaboration network: Spatial and thematic developments in Co‐authored higher education research, 1998–2018
  publication-title: Scientometrics
– volume: 60
  start-page: 1
  year: 2022
  end-page: 13
  article-title: W‐net: A deep network for simultaneous identification of gulf stream and rings from concurrent satellite images of sea surface temperature and height
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  end-page: 16
  article-title: Hybrid systems using residual modeling for sea surface temperature forecasting
  publication-title: Scientific Reports
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  article-title: Optically enhanced super‐resolution of sea surface temperature using deep learning
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 2
  start-page: 1
  issue: 8
  year: 2020
  end-page: 14
  article-title: Prediction of sea surface temperatures using deep learning neural networks
  publication-title: SN Applied Sciences
– volume: 112
  year: 2022
  article-title: Prediction of long lead monthly three‐Dimensional Ocean temperature using time series gridded Argo data and a deep learning method
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 15
  start-page: 1625
  issue: 21
  year: 2022
  article-title: Prediction of Daily Sea water temperature in Turkish seas using machine learning approaches
  publication-title: Arabian Journal of Geosciences
– volume: 60
  start-page: 1
  year: 2022
  end-page: 11
  article-title: Cloud‐Free Sea‐surface‐temperature image reconstruction from anomaly Inpainting network
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 14
  issue: 6
  year: 2022
  article-title: A hybrid deep learning model for the bias correction of SST numerical forecast products using satellite data
  publication-title: Remote Sensing
– volume: 8
  start-page: 4
  issue: 1
  year: 2021
  article-title: Applications of soft computing models for predicting sea surface temperature: A comprehensive review and assessment
  publication-title: Progress in Earth and Planetary Science
– volume: 14
  issue: 6
  year: 2022
  article-title: Time series prediction of sea surface temperature based on an adaptive graph learning neural model
  publication-title: Future Internet
– volume: 6
  issue: 1
  year: 2022
  article-title: The impact of artificial intelligence on information dissemination mechanisms—Bibliometric analysis based on CiteSpace
  publication-title: Applied Science and Innovative Research
– volume: 124
  start-page: 2333
  issue: 7
  year: 2024
  end-page: 2363
  article-title: Understanding AI innovation contexts: A review and content analysis of artificial intelligence and entrepreneurial ecosystems research
  publication-title: Industrial Management and Data Systems
– volume: 48
  issue: 17
  year: 2021
  article-title: Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning
  publication-title: Geophysical Research Letters
– volume: 77
  start-page: 1274
  issue: 4
  year: 2020
  end-page: 1285
  article-title: Machine intelligence and the data‐driven future of marine science
  publication-title: ICES Journal of Marine Science
– volume: 14
  start-page: 1
  issue: 4
  year: 2023
  end-page: 19
  article-title: HiGRN: A hierarchical graph recurrent network for Global Sea surface temperature prediction
  publication-title: ACM Transactions on Intelligent Systems and Technology
– year: 2018
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 9
  article-title: A novel method for sea surface temperature prediction based on deep learning
  publication-title: Mathematical Problems in Engineering
– volume: 12
  issue: 5
  year: 2022
  article-title: Solar radiation prediction model for the Yellow River Basin with deep learning
  publication-title: Agronomy
– volume: 263
  year: 2021
  article-title: Convolutional neural networks for satellite remote sensing at coarse resolution. Application for the SST retrieval using IASI
  publication-title: Remote Sensing of Environment
– volume: 16
  start-page: 6433
  issue: 22
  year: 2023
  end-page: 6458
  article-title: Machine learning for numerical weather and climate modelling: A review
  publication-title: Geoscientific Model Development
– volume: 4
  year: 2022
  article-title: Predictability of sea surface temperature anomalies at the eastern pole of the Indian Ocean dipole—Using a convolutional neural network model
  publication-title: Frontiers in Climate
– volume: 12
  start-page: 1
  issue: 1
  year: 2023
  end-page: 19
  article-title: Bibliometric analysis of the research (2000–2020) on land‐use carbon emissions based on CiteSpace
  publication-title: Landscape
– volume: 4
  start-page: 410
  issue: 2
  year: 2021
  end-page: 428
  article-title: Education informatization 2.0 in China: Motivation, framework, and vision
  publication-title: ECNU Review of Education
– volume: 99
  start-page: 231
  year: 2019
  end-page: 239
  article-title: Sea surface temperature inversion model for infrared remote sensing images based on deep neural network
  publication-title: Infrared Physics & Technology
– volume: 2
  start-page: 1
  issue: 6
  year: 2021
  end-page: 20
  article-title: Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions
  publication-title: SN Computer Science
– volume: 14
  start-page: 887
  year: 2021
  end-page: 896
  article-title: Applications of deep learning‐based super‐resolution for sea surface temperature reconstruction
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 119
  year: 2023
  article-title: Multi‐source deep data fusion and super‐resolution for downscaling sea surface temperature guided by generative adversarial network‐based spatiotemporal dependency learning
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 208
  year: 2023
  article-title: Deep‐learning model for sea surface temperature prediction near the Korean peninsula
  publication-title: Deep Sea Research Part II: Topical Studies in Oceanography
– volume: 18
  start-page: 429
  issue: 3
  year: 2015
  end-page: 472
  article-title: Bibliometric methods in management and organization
  publication-title: Organizational Research Methods
– volume: 233
  year: 2019
  article-title: Short and mid‐term sea surface temperature prediction using time‐series satellite data and LSTM‐AdaBoost combination approach
  publication-title: Remote Sensing of Environment
– volume: 9
  start-page: 1
  year: 2022
  end-page: 13
  article-title: Seven‐day sea surface temperature prediction using a 3DConv‐LSTM model
  publication-title: Frontiers in Marine Science
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  article-title: Sea surface temperature forecasting with Ensemble of Stacked Deep Neural Networks
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 15
  issue: 8
  year: 2023
  article-title: On evaluating the predictability of sea surface temperature using entropy
  publication-title: Remote Sensing
– year: 2015
– volume: 26
  start-page: 108
  issue: 1
  year: 2018
  end-page: 126
  article-title: Climate change and tourism: A Scientometric analysis using CiteSpace
  publication-title: Journal of Sustainable Tourism
– volume: 23
  start-page: 90
  issue: 3
  year: 2021
  article-title: Development strategy for the Core software and hardware of artificial intelligence in China
  publication-title: Chinese Journal of Engineering Science
– volume: 11
  start-page: 611
  issue: 7
  year: 2020
  end-page: 619
  article-title: Prediction of sea surface temperature using a multiscale deep combination neural network
  publication-title: Remote Sensing Letters
– volume: 11
  start-page: 376
  issue: 1
  year: 2019
  end-page: 399
  article-title: Applications of deep learning to ocean data inference and subgrid parameterization
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 61
  start-page: 1
  year: 2023
  end-page: 13
  article-title: Physical knowledge‐enhanced deep neural network for sea surface temperature prediction
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 37
  start-page: 1197
  issue: 4
  year: 2024
  end-page: 1211
  article-title: A Relative Sea surface temperature index for classifying ENSO events in a changing climate
  publication-title: Journal of Climate
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  article-title: An evolving sea surface temperature predicting method based on multidimensional spatiotemporal influences
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 181
  issue: December 2022
  year: 2023
  article-title: A deep leaning approach to predict sea surface temperature based on multiple modes
  publication-title: Ocean Modelling
– volume: 15
  issue: 4
  year: 2022
  article-title: Review on deep learning research and applications in wind and wave energy
  publication-title: Energies
– volume: 287
  year: 2023
  article-title: Progress, knowledge gap and future directions of urban heat mitigation and adaptation research through a bibliometric review of history and evolution
  publication-title: Energy and Buildings
– volume: 12
  issue: 1
  year: 2019
  article-title: Knowledge mapping analysis of rural landscape using CiteSpace
  publication-title: Sustainability
– volume: 2
  start-page: 312
  issue: 6
  year: 2020
  end-page: 316
  article-title: Towards a new generation of artificial intelligence in China
  publication-title: Nature Machine Intelligence
– volume: 30
  start-page: 26338
  issue: 10
  year: 2023
  end-page: 26356
  article-title: Preliminary investigation of saline water intrusion (SWI) and submarine groundwater discharge (SGD) along the south‐eastern coast of Andhra Pradesh, India, using groundwater dynamics, sea surface temperature and field water quality anomalies
  publication-title: Environmental Science and Pollution Research
– volume: 120
  year: 2019
  article-title: A spatiotemporal deep learning model for sea surface temperature field prediction using time‐series satellite data
  publication-title: Environmental Modelling & Software
– volume: 14
  issue: 3
  year: 2023
  article-title: Knowledge map of climate change and transportation: A bibliometric analysis based on CiteSpace
  publication-title: Atmosphere
– volume: 10
  start-page: 1
  year: 2022
  end-page: 21
  article-title: Visualization analysis of research on climate innovation on CiteSpace
  publication-title: Frontiers in Environmental Science
– volume: 37
  start-page: 788
  issue: 2
  year: 2023
  end-page: 832
  article-title: Forecast evaluation for data scientists: Common pitfalls and best practices
  publication-title: Data Mining and Knowledge Discovery
– volume: 197
  year: 2023
  article-title: Deep learning approach for forecasting sea surface temperature response to tropical cyclones in the Western North Pacific
  publication-title: Deep‐Sea Research Part I: Oceanographic Research Papers
– volume: 8
  issue: 4
  year: 2020
  article-title: Monthly and quarterly sea surface temperature prediction based on gated recurrent unit neural network
  publication-title: Journal of Marine Science and Engineering
– ident: e_1_2_13_13_1
  doi: 10.1016/j.dsr2.2023.105263
– ident: e_1_2_13_72_1
  doi: 10.5670/oceanog.2017.421
– ident: e_1_2_13_21_1
  doi: 10.1007/s11192‐021‐04200‐w
– ident: e_1_2_13_45_1
  doi: 10.1109/GECOST55694.2022.10010371
– ident: e_1_2_13_11_1
  doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00106
– ident: e_1_2_13_53_1
  doi: 10.1007/s11356‐021‐13825‐6
– ident: e_1_2_13_77_1
  doi: 10.3390/s22041636
– ident: e_1_2_13_76_1
  doi: 10.1177/2158244019840119
– ident: e_1_2_13_75_1
  doi: 10.1007/s42979‐021‐00815‐1
– ident: e_1_2_13_83_1
  doi: 10.3389/fmars.2022.905848
– ident: e_1_2_13_14_1
  doi: 10.5194/egusphere‐2023‐350
– ident: e_1_2_13_26_1
  doi: 10.3390/rs14194737
– ident: e_1_2_13_30_1
  doi: 10.1109/JSTARS.2021.3065585
– ident: e_1_2_13_90_1
  doi: 10.1016/j.jag.2022.102971
– ident: e_1_2_13_46_1
  doi: 10.1016/j.jag.2023.103312
– ident: e_1_2_13_51_1
  doi: 10.3390/land12040845
– ident: e_1_2_13_69_1
  doi: 10.3390/rs13040744
– ident: e_1_2_13_10_1
  doi: 10.3390/electronics11152359
– volume-title: How to use CiteSpace
  year: 2015
  ident: e_1_2_13_8_1
– ident: e_1_2_13_3_1
  doi: 10.1016/j.rse.2021.112553
– ident: e_1_2_13_32_1
  doi: 10.3390/en13061369
– ident: e_1_2_13_33_1
  doi: 10.1007/s10618‐022‐00894‐5
– ident: e_1_2_13_52_1
  doi: 10.3390/land12010165
– ident: e_1_2_13_82_1
  doi: 10.3390/app12125905
– ident: e_1_2_13_59_1
  doi: 10.1175/WAF‐D‐22‐0094.1
– ident: e_1_2_13_68_1
  doi: 10.3390/rs13183568
– ident: e_1_2_13_99_1
  doi: 10.1109/LGRS.2017.2780843
– ident: e_1_2_13_23_1
  doi: 10.15302/J‐SSCAE‐2021.03.008
– ident: e_1_2_13_104_1
  doi: 10.3390/jmse8040249
– ident: e_1_2_13_24_1
  doi: 10.3390/en15041510
– ident: e_1_2_13_103_1
  doi: 10.1109/LGRS.2019.2947170
– ident: e_1_2_13_61_1
  doi: 10.3389/fmars.2019.00420
– ident: e_1_2_13_18_1
  doi: 10.3390/rs14061339
– ident: e_1_2_13_49_1
  doi: 10.1175/JCLI‐D‐23‐0406.1
– ident: e_1_2_13_41_1
  doi: 10.3389/fmars.2022.920994
– ident: e_1_2_13_79_1
  doi: 10.1007/s00500‐022‐06899‐y
– ident: e_1_2_13_62_1
  doi: 10.1007/s12517‐022‐10893‐x
– ident: e_1_2_13_106_1
  doi: 10.1177/1094428114562629
– ident: e_1_2_13_22_1
  doi: 10.1007/s11042‐022‐12208‐4
– ident: e_1_2_13_60_1
  doi: 10.1007/s11356‐022‐23973‐y
– ident: e_1_2_13_105_1
  doi: 10.3390/agronomy12051081
– ident: e_1_2_13_102_1
  doi: 10.1016/j.dsr.2023.104042
– ident: e_1_2_13_27_1
  doi: 10.1186/s40645‐020‐00400‐9
– ident: e_1_2_13_19_1
  doi: 10.3389/fclim.2022.925068
– ident: e_1_2_13_55_1
  doi: 10.1109/TGRS.2021.3094117
– ident: e_1_2_13_86_1
  doi: 10.1038/s42256‐020‐0183‐4
– ident: e_1_2_13_42_1
  doi: 10.3390/rs15081956
– ident: e_1_2_13_6_1
  doi: 10.1007/s12518‐022‐00462‐y
– ident: e_1_2_13_91_1
  doi: 10.1109/IGARSS46834.2022.9883749
– ident: e_1_2_13_73_1
  doi: 10.1108/IMDS‐08‐2023‐0551
– ident: e_1_2_13_15_1
  doi: 10.1038/s41598‐021‐04238‐z
– ident: e_1_2_13_80_1
  doi: 10.5194/npg‐29‐255‐2022
– ident: e_1_2_13_20_1
  doi: 10.1111/1365‐2656.13497
– ident: e_1_2_13_38_1
– ident: e_1_2_13_35_1
  doi: 10.1109/TGRS.2021.3111649
– ident: e_1_2_13_94_1
  doi: 10.1080/2150704X.2020.1746853
– ident: e_1_2_13_87_1
  doi: 10.3390/su12010066
– ident: e_1_2_13_56_1
  doi: 10.1093/icesjms/fsz057
– ident: e_1_2_13_44_1
  doi: 10.1016/j.engappai.2022.105675
– ident: e_1_2_13_89_1
  doi: 10.1016/j.envsoft.2019.104502
– ident: e_1_2_13_57_1
  doi: 10.1029/2022MS003589
– ident: e_1_2_13_31_1
  doi: 10.1016/j.enbuild.2023.112976
– ident: e_1_2_13_81_1
  doi: 10.3390/fi14060171
– ident: e_1_2_13_70_1
  doi: 10.1007/s11704‐021‐1080‐7
– ident: e_1_2_13_7_1
  doi: 10.1029/2018MS001472
– ident: e_1_2_13_5_1
  doi: 10.1080/01431161.2018.1454623
– ident: e_1_2_13_9_1
  doi: 10.1515/jdis‐2017‐0006
– ident: e_1_2_13_4_1
  doi: 10.1080/01431161.2018.1454623
– ident: e_1_2_13_92_1
  doi: 10.1109/LGRS.2021.3049406
– ident: e_1_2_13_96_1
  doi: 10.1177/2096531120944929
– ident: e_1_2_13_37_1
  doi: 10.1007/s00704‐016‐2025‐1
– ident: e_1_2_13_85_1
  doi: 10.1016/j.jmarsys.2020.103347
– ident: e_1_2_13_40_1
  doi: 10.3390/rs14143300
– ident: e_1_2_13_78_1
  doi: 10.1016/j.bdr.2021.100237
– ident: e_1_2_13_101_1
  doi: 10.1155/2020/6387173
– ident: e_1_2_13_93_1
  doi: 10.22158/asir.v6n1p39
– ident: e_1_2_13_88_1
  doi: 10.1016/j.rse.2019.111358
– ident: e_1_2_13_98_1
  doi: 10.7717/peerj‐cs.1095
– ident: e_1_2_13_71_1
  doi: 10.1038/s41598‐019‐57162‐8
– ident: e_1_2_13_12_1
  doi: 10.3389/fenvs.2022.1025128
– ident: e_1_2_13_95_1
  doi: 10.1016/j.ocemod.2022.102158
– ident: e_1_2_13_63_1
  doi: 10.1007/s00477‐022‐02371‐3
– ident: e_1_2_13_54_1
  doi: 10.1029/2021GL094772
– ident: e_1_2_13_64_1
  doi: 10.1175/JTECH‐D‐17‐0217.1
– ident: e_1_2_13_34_1
  doi: 10.1007/s00146‐022‐01499‐8
– ident: e_1_2_13_48_1
  doi: 10.1007/s10236‐023‐01595‐3
– ident: e_1_2_13_36_1
  doi: 10.1016/j.oceaneng.2022.111932
– ident: e_1_2_13_84_1
  doi: 10.1109/LGRS.2019.2926992
– ident: e_1_2_13_47_1
  doi: 10.3390/rs12213654
– ident: e_1_2_13_39_1
  doi: 10.1109/LGRS.2021.3098425
– ident: e_1_2_13_43_1
  doi: 10.3390/jmse9030310
– ident: e_1_2_13_28_1
  doi: 10.1016/j.scib.2021.03.009
– ident: e_1_2_13_17_1
  doi: 10.1080/09669582.2017.1329310
– ident: e_1_2_13_67_1
  doi: 10.1109/JSTARS.2020.3042242
– ident: e_1_2_13_97_1
  doi: 10.1145/3597937
– ident: e_1_2_13_107_1
  doi: 10.1007/s11356‐019‐07100‐y
– ident: e_1_2_13_2_1
  doi: 10.1016/j.infrared.2019.04.022
– ident: e_1_2_13_16_1
  doi: 10.1109/LGRS.2018.2870880
– ident: e_1_2_13_29_1
  doi: 10.3390/rs15061656
– ident: e_1_2_13_74_1
  doi: 10.1007/s42452‐020‐03239‐3
– ident: e_1_2_13_25_1
  doi: 10.3389/fpubh.2022.933665
– ident: e_1_2_13_58_1
  doi: 10.1109/TGRS.2023.3257039
– ident: e_1_2_13_66_1
  doi: 10.3390/atmos14030434
– ident: e_1_2_13_50_1
  doi: 10.1109/TGRS.2021.3096202
– ident: e_1_2_13_100_1
  doi: 10.1155/2020/6387173
– ident: e_1_2_13_65_1
  doi: 10.1109/ACCESS.2022.3167176
SSID ssj0001511153
Score 2.2605581
SecondaryResourceType review_article
Snippet This study explored the potential application of deep learning techniques in sea surface temperature (SST) investigations using a mixed method, bibliometric...
Abstract This study explored the potential application of deep learning techniques in sea surface temperature (SST) investigations using a mixed method,...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Artificial intelligence
Bibliometrics
CiteSpace
Computer science
Deep learning
Geography
Keywords
Knowledge
marine environment
meteorology
Methods
R&D
Remote sensing
Research & development
research hotspots
Scientists
Scientometrics
Sea surface temperature
SST
Thermal pollution
Trends
Visualization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JS8QwFMYfOgp6cRfHjQjirdolbRMv4jLqaRRR8BaydUaQmbHjCP73vrSpy0Ev3kpb2sJ7L_ll6fcB7IeFREhgrpCKPKCUm4ApGgW8iIqYaprYvKjMJvJulz0-8ls_4Tb22yqbNrFqqM1QuznyowRRHmE4TbOT0UvgXKPc6qq30JiGGadUhnk-c9bp3t59zbIgT0SVFGWMbIKDJcobBdowPurZYXwYpdGPPqmS7v_Bm9-ptep2Lhf_-8FLsOCBk5zWGbIMU3awAouNmQPxtb0Cc94Ovf--Cu8X1o6IN5ToEeRaghVBxpOykNoSJ2fltZjJ9wXwY3JK3Bb10vbrbfFEPaln93-_swEg0uuf4IEhtXN10_KSRtp8DR4uO_fn14H3aAh0kmJMMxVzaTViIdNGpkmsZSpDJnlqndYdVYgASicmKbIESYbjQD5kVNnMmFQ6o-N1aA2GA7sBJNcGx2JMmhzvoNKy0CIt8sLaJNI8Y23Ya6IkRrUUh6hFl2PhIikwkm04c-H7vO7Es6sTw7InfC0KRC6mIqk105rmlCvNKA-lzFiu8FVZG7abiApf0WPxFc42HFQJ8etHiKvOjSOpzb-fswXzMRJSvfd3G1qv5cTuwKx-e30al7s-kz8AI6v9Pg
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsQwEA6igl78F9c_Ioi3um2Stom3VXf1pHtQ2FtI0nR3QXalVUGfxmfxyZy0qa4HQfBWmpSGzEzyTTLzDULHYa4AJHBnSHkaMCaygGsWBSKPcsIMozbNq2IT6c0NHwxE30dVulyYmh_i68DNWUa1XjsDV7psf5OGDu2UnEYue3ohimjqNJqw_vf5CiCJqCKhJIBKwE1iouGeDUm7-fjHblSR9v9AmrN4tdpweqv_GeoaWvEwE3dqvVhHc3aygZZ8xfPR6yZ6u7T2EfuaEUMM0BWD0uPyuciVsdgxVnm6ZTx7x32GOx_vLgy9sKM69B3rsX5wOfyO6h8rz3ECDxmuq1M3qytu6Mu30H2ve3dxHfg6DIGhMcgt0UQoawD6cZOpmBKjYhVyJWLr-OyYhm1eG5rRPKGAVgQ46yFn2iZZFitXzHgbzU-mE7uDcGoy8Le4ylLowZTloQVEKHJraWREwlvoqJGHfKzpNmRNrEykm0UJs9hC505QX-2OILt6MS2G0tubBFjFdaSM4cawlAltOBOhUglPNfwqaaH9RszSW20pKbiL4HDFMTSfVAL9dRDyqnvr0NLuXzvuoWUCeKiO9N1H80_Fsz1Ai-blaVwWh5XufgIpyvMW
  priority: 102
  providerName: Wiley-Blackwell
Title Deep learning for sea surface temperature applications: A comprehensive bibliometric analysis and methodological approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgeo2.151
https://www.proquest.com/docview/3149118556
https://doaj.org/article/8468b1acc8cc4749bc8490aa687b31c6
Volume 11
WOSCitedRecordID wos001314419300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2054-4049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511153
  issn: 2054-4049
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2054-4049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511153
  issn: 2054-4049
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2054-4049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511153
  issn: 2054-4049
  databaseCode: PCBAR
  dateStart: 20140701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2054-4049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511153
  issn: 2054-4049
  databaseCode: BENPR
  dateStart: 20140701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2054-4049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511153
  issn: 2054-4049
  databaseCode: PIMPY
  dateStart: 20140701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2054-4049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511153
  issn: 2054-4049
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2054-4049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511153
  issn: 2054-4049
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xqNReKqCt2BZWRkK9BZLYTuzeeCyPA9sIURVOlu04CxJa0D6Q4MBv6W_hlzGOE7QcKi5cosTOwZrxZL5Rxt8HsBlXGkGC8IFU5RFjsoyEYUkkq6RKmWXU5VUtNpH3--L8XBYzUl--JyzQAwfDbWN-FCbR1gprWc6ksYLJWOtM5IYmtibbjnM5U0yF88EYw5y2bLNxuj1wN-lWwpNX-aem6X-FLWcRap1iDpbgc4MNyU5Y0zLMueEKfGxkyi_vv8DDvnO3pBF6GBDEmwR3KhlPR5W2jniaqYYjmcz-mP5Fdp7--d7xkbsM_erEXJlrf_De8_MT3RCT4E1JgqR0-0kkLef4V_hz0DvbO4oa8YTIUo7GzkwqtbOI14QtNaep1VzHQkvuPAkdM5ibjaUlrTKKEENihR0LZlxWllx7BeJvsDC8GbpVILktsUgSuszxDaadiB3COFk5hw6QmejARmtSdRs4MlRgQ06VN7tCs3dg19v6Zd6zWtcD6GvV-Fq95esOrLWeUk2ojRXFGg-rJM5x-mftvf8uQh32fnuI8_09FvMDPqUIcELr7hosTEZTtw4f7N3kajzqwnzKii4s7vb6xWm33px4PXns4VhxfFJc4NPf4_4zS37thg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLVJ7oVBALBQwEnALTRwnsZEQKrSlq7bLHopUTsZf2VaqdpdsC9o_xW9knNi0PcCtB25REiWW8zzzxnbeA3iZ1gpJAvcDqa4SxoRNuGZZIuqspsyw3FV1azZRDYf8-FiMluBX_BfGb6uMMbEN1HZq_Bz5Zo5UHslwUZTvZ98T7xrlV1ejhUYHi323-Ikl2_zdYBu_7ytKd3eOPu4lwVUgMXmBrSg1FcoZJDLcWFXk1KhCpVyJwnl1NqYxaWmT27wuc8y9AkvPlDPtSmsL5a158bm3YJl5sPdgeTQ4HH29nNVB_pK10pcUuRAWZ0xExduUbo7dlL7JiuxaDmytAq7x26ssuU1zu2v_WwfdhTuBUJOtbgTcgyU3WYe1aFZBQuxah5Vg936yuA-LbedmJBhmjAnydoItJ_OLplbGES_XFbSmydUF_rdki_gt-I076bb9E32qz7x-gbc5ICrou-CBJZ0zd8wsJEq3P4AvN9IZD6E3mU7cIyCVsVhrcmUrvIMpx1OHbFjUzuWZESXvw4uICjnrpEZkJypNpUeOROT04YOHy5_rXhy8PTFtxjLEGomUkutMGcONYRUT2nAmUqVKXml8VdmHjYggGSLWXF7Cpw-vWwD-tRHy085nzxQf__s5z2Fl7-jwQB4MhvtPYJUiG-z2OW9A77y5cE_htvlxfjpvnoVRRODbTePyN1CQWV8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHQJeGAwQhQFGAt5CE8dJbCSEBl2hGpQ-gDSejD-7Sagt6QbqX-PXcZ04bHuAtz3wFiWRYznH9x5_nQPwJPUKSQIPHclXCWPCJlyzLBE-85QZlrvKN2YT1WTCDw7EdAN-dWdhwrbKLiY2gdouTJgjH-RI5ZEMF0U58HFbxHQ4erX8ngQHqbDS2tlptBDZd-ufOHxbvRwP8V8_pXS09-nNuyQ6DCQmL7BGpaZCOYOkhhuripwaVaiUK1G4oNTGNCYwbXKb-zLHPCxwGJpypl1pbaGCTS-Wewk2kZIz2oPN6fjD9MvpDA9ymayRwaTIi3CgxkSnfpvSwcwt6POsyM7lw8Y24BzXPcuYm5Q32vqfG-sGXI9Em-y2PeMmbLj5Nmx1JhYkxrRtuBpt4A_Xt2A9dG5JopHGjCCfJ1hzsjqpvTKOBBmvqEFNzi78vyC7JGzNr91hexyA6CP9LegaBPsDoqLuC15Y0jp2dxmHdJLut-HzhTTGHejNF3N3F0hlLI5BubIVvsGU46lDliy8c3lmRMn78LhDiFy2EiSyFZumMqBIIor68DpA58_zIBre3FjUMxljkESqyXWmjOHGIGKFNpyJVKmSVxo_VfZhp0OTjJFsJU-h1IdnDRj_Wgn5du9jYJD3_l3OI7iCYJTvx5P9-3CNIklstz_vQO-4PnEP4LL5cXy0qh_GDkXg60XD8jcBEmIf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+sea+surface+temperature+applications%3A+A%C2%A0comprehensive+bibliometric+analysis+and+methodological+approach&rft.jtitle=Geo+%3A+geography+and+environment&rft.au=Redouane+Larbi+Boufeniza&rft.au=Luo+Jingjia&rft.au=Kemal+Adem+Abdela&rft.au=Karam+Alsafadi&rft.date=2024-07-01&rft.pub=Wiley&rft.eissn=2054-4049&rft.volume=11&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fgeo2.151&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8468b1acc8cc4749bc8490aa687b31c6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-4049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-4049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-4049&client=summon