Urban built-up area extraction using triangle threshold algorithm and Naive Bayes classification model with multidata fusion

Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of single-data-source methods in capturing human activities, this study proposes a novel approach for urban built-up area extraction, based on mac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 15; číslo 1; s. 40175 - 13
Hlavní autoři: Li, Yuan, Zhong, Xia, Liu, Hua, Liao, Ming, Lu, Yue-feng, Liu, Bo
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 17.11.2025
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of single-data-source methods in capturing human activities, this study proposes a novel approach for urban built-up area extraction, based on machine learning techniques, and multi-source data fusion (POI, Luojia-1 nighttime light, and Landsat 8 imagery). First, we construct the POI-Adjusted Luojia-1 Urban Index (PALUI) by combining POI and Luojia-1nighttime light data quantify population distribution patterns. Next, we segment remote sensing indices (NDVI, MNDWI, NDBI) using the triangle threshold algorithm to differentiate vegetation, water, and built-up areas. Finally, a Naive Bayes classifier is used to fuse these features for built-up area extraction. Experiments in Nanchang City show that the proposed method achieves a precision of 0.89 and recall of 0.76, outperforming SVM, Random Forest, U-net, and YOLO11. The PALUI index effectively reduces light overflow issues in nighttime data, while the multi-source fusion strategy improves edge accuracy in complex urban environments. This method offers a reliable solution for high-precision urban mapping.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-23986-w