Urban built-up area extraction using triangle threshold algorithm and Naive Bayes classification model with multidata fusion
Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of single-data-source methods in capturing human activities, this study proposes a novel approach for urban built-up area extraction, based on mac...
Uložené v:
| Vydané v: | Scientific reports Ročník 15; číslo 1; s. 40175 - 13 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
17.11.2025
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of single-data-source methods in capturing human activities, this study proposes a novel approach for urban built-up area extraction, based on machine learning techniques, and multi-source data fusion (POI, Luojia-1 nighttime light, and Landsat 8 imagery). First, we construct the POI-Adjusted Luojia-1 Urban Index (PALUI) by combining POI and Luojia-1nighttime light data quantify population distribution patterns. Next, we segment remote sensing indices (NDVI, MNDWI, NDBI) using the triangle threshold algorithm to differentiate vegetation, water, and built-up areas. Finally, a Naive Bayes classifier is used to fuse these features for built-up area extraction. Experiments in Nanchang City show that the proposed method achieves a precision of 0.89 and recall of 0.76, outperforming SVM, Random Forest, U-net, and YOLO11. The PALUI index effectively reduces light overflow issues in nighttime data, while the multi-source fusion strategy improves edge accuracy in complex urban environments. This method offers a reliable solution for high-precision urban mapping. |
|---|---|
| AbstractList | Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of single-data-source methods in capturing human activities, this study proposes a novel approach for urban built-up area extraction, based on machine learning techniques, and multi-source data fusion (POI, Luojia-1 nighttime light, and Landsat 8 imagery). First, we construct the POI-Adjusted Luojia-1 Urban Index (PALUI) by combining POI and Luojia-1nighttime light data quantify population distribution patterns. Next, we segment remote sensing indices (NDVI, MNDWI, NDBI) using the triangle threshold algorithm to differentiate vegetation, water, and built-up areas. Finally, a Naive Bayes classifier is used to fuse these features for built-up area extraction. Experiments in Nanchang City show that the proposed method achieves a precision of 0.89 and recall of 0.76, outperforming SVM, Random Forest, U-net, and YOLO11. The PALUI index effectively reduces light overflow issues in nighttime data, while the multi-source fusion strategy improves edge accuracy in complex urban environments. This method offers a reliable solution for high-precision urban mapping. Abstract Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of single-data-source methods in capturing human activities, this study proposes a novel approach for urban built-up area extraction, based on machine learning techniques, and multi-source data fusion (POI, Luojia-1 nighttime light, and Landsat 8 imagery). First, we construct the POI-Adjusted Luojia-1 Urban Index (PALUI) by combining POI and Luojia-1nighttime light data quantify population distribution patterns. Next, we segment remote sensing indices (NDVI, MNDWI, NDBI) using the triangle threshold algorithm to differentiate vegetation, water, and built-up areas. Finally, a Naive Bayes classifier is used to fuse these features for built-up area extraction. Experiments in Nanchang City show that the proposed method achieves a precision of 0.89 and recall of 0.76, outperforming SVM, Random Forest, U-net, and YOLO11. The PALUI index effectively reduces light overflow issues in nighttime data, while the multi-source fusion strategy improves edge accuracy in complex urban environments. This method offers a reliable solution for high-precision urban mapping. Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of single-data-source methods in capturing human activities, this study proposes a novel approach for urban built-up area extraction, based on machine learning techniques, and multi-source data fusion (POI, Luojia-1 nighttime light, and Landsat 8 imagery). First, we construct the POI-Adjusted Luojia-1 Urban Index (PALUI) by combining POI and Luojia-1nighttime light data quantify population distribution patterns. Next, we segment remote sensing indices (NDVI, MNDWI, NDBI) using the triangle threshold algorithm to differentiate vegetation, water, and built-up areas. Finally, a Naive Bayes classifier is used to fuse these features for built-up area extraction. Experiments in Nanchang City show that the proposed method achieves a precision of 0.89 and recall of 0.76, outperforming SVM, Random Forest, U-net, and YOLO11. The PALUI index effectively reduces light overflow issues in nighttime data, while the multi-source fusion strategy improves edge accuracy in complex urban environments. This method offers a reliable solution for high-precision urban mapping.Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of single-data-source methods in capturing human activities, this study proposes a novel approach for urban built-up area extraction, based on machine learning techniques, and multi-source data fusion (POI, Luojia-1 nighttime light, and Landsat 8 imagery). First, we construct the POI-Adjusted Luojia-1 Urban Index (PALUI) by combining POI and Luojia-1nighttime light data quantify population distribution patterns. Next, we segment remote sensing indices (NDVI, MNDWI, NDBI) using the triangle threshold algorithm to differentiate vegetation, water, and built-up areas. Finally, a Naive Bayes classifier is used to fuse these features for built-up area extraction. Experiments in Nanchang City show that the proposed method achieves a precision of 0.89 and recall of 0.76, outperforming SVM, Random Forest, U-net, and YOLO11. The PALUI index effectively reduces light overflow issues in nighttime data, while the multi-source fusion strategy improves edge accuracy in complex urban environments. This method offers a reliable solution for high-precision urban mapping. |
| ArticleNumber | 40175 |
| Author | Li, Yuan Liu, Hua Liu, Bo Lu, Yue-feng Liao, Ming Zhong, Xia |
| Author_xml | – sequence: 1 givenname: Yuan surname: Li fullname: Li, Yuan organization: School of Surveying and Geoinformation Engineering, East China University of Technology – sequence: 2 givenname: Xia surname: Zhong fullname: Zhong, Xia organization: School of Surveying and Geoinformation Engineering, East China University of Technology – sequence: 3 givenname: Hua surname: Liu fullname: Liu, Hua organization: School of Surveying and Geoinformation Engineering, East China University of Technology – sequence: 4 givenname: Ming surname: Liao fullname: Liao, Ming organization: Jiangxi Provincial Natural Resources Cause Development Center – sequence: 5 givenname: Yue-feng surname: Lu fullname: Lu, Yue-feng organization: School of Civil Engineering and Geomatics, Shandong University of Technology – sequence: 6 givenname: Bo surname: Liu fullname: Liu, Bo email: liubo@ecut.edu.cn organization: School of Surveying and Geoinformation Engineering, East China University of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41249309$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk9v1DAQxSNUREvpF-CALHHhEojtOLGPUNFSqYILPVuTeLzrlWMvdsJSiQ-Pd7cUxAFf_Ee_9zyjec-rkxADVtVL2rylDZfvckuFknXDRM24kl29e1KdsabdXxk7-et8Wl3kvGnKEky1VD2rTlvKWsUbdVb9vEsDBDIszs_1siWQEAj-mBOMs4uBLNmFFZmTg7DySOZ1wryO3hDwq5jcvJ4IBEM-g_uO5APcYyajh5yddSMcHKZo0JNdQcm0-NkZmIHY4hvDi-qpBZ_x4mE_r-6uPn69_FTffrm-uXx_W49c8F1tuWKccqPGvgPaQyMba4RFIZXqOR0GkILZTgqj7NApKVG1qu0tjthhJzp-Xt0cfU2Ejd4mN0G61xGcPjzEtNKQZjd61EBHaQahhGxk23Ez9MDB4gDQ99i0e683R69tit8WzLOeXB7RewgYl6w561nPVduJgr7-B93EJYXS6YGSZY6UFurVA7UME5rH8n7PqADsCIwp5pzQPiK00fss6GMWdMmCPmRB74qIH0W5wGGF6c_f_1H9Ag4Yt6c |
| Cites_doi | 10.1016/j.jksus.2022.101887 10.1117/12.714998 10.1201/9781315140919 10.3390/s20102918 10.3390/rs13091801 10.1007/978-3-540-31865-1_25 10.3390/land11081212 10.1016/0031-3203(86)90030-0 10.5194/isprs-archives-XLII-3-79-2018 10.1016/j.rse.2021.112515 10.1002/9781118358887.ch1 10.1080/014311697218485 10.1007/s11042-022-13644-y 10.3390/ijerph191912198 10.1080/15481603.2014.939539 10.3390/rs9030236 10.1109/LGRS.2018.2830797 10.1016/j.scib.2021.01.012 10.1109/ACCESS.2019.2903127 10.11834/jrs.20211018 10.1038/s41598-024-55214-2 10.5194/essd-2021-7 10.1371/journal.pone.0198189 10.3390/rs12030541 10.3390/rs15123021 10.1038/s41598-024-84925-9 10.3390/rs11212516 10.1016/j.jclepro.2021.129488 10.1111/1467-9671.00058 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-23986-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_a1c8db595808463db7a3afebaa77e046 41249309 10_1038_s41598_025_23986_w |
| Genre | Journal Article |
| GeographicLocations | Yangtze River |
| GeographicLocations_xml | – name: Yangtze River |
| GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: 42161064; 42161064; 42161064 – fundername: Ganpo Talent Support Program - Key Disciplinary Academic and Technical Leader Development Project grantid: 20243BCE51111; 20243BCE51111; 20243BCE51111 – fundername: Science and Technology Innovation Project of the Department of Natural Resources of Jiangxi Province grantid: ZRKJ20242620; ZRKJ20242620; ZRKJ20242620 – fundername: Jiangxi Provincial Natural Science Foundation grantid: 20232ACB204032, 20242BAB20129; 20232ACB204032, 20242BAB20129; 20232ACB204032, 20242BAB20129; 20232ACB204032, 20242BAB20129 – fundername: the National Natural Science Foundation of China grantid: 42161064 – fundername: Jiangxi Provincial Natural Science Foundation grantid: 20232ACB204032, 20242BAB20129 – fundername: Science and Technology Innovation Project of the Department of Natural Resources of Jiangxi Province grantid: ZRKJ20242620 – fundername: Ganpo Talent Support Program - Key Disciplinary Academic and Technical Leader Development Project grantid: 20243BCE51111 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c353w-f392313d9c76a17a080fd5fe5899731bba852f685d9fb6988e94947fece6e6563 |
| IEDL.DBID | M2P |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 24 19:21:18 EST 2025 Tue Nov 18 17:31:08 EST 2025 Wed Nov 19 03:27:56 EST 2025 Fri Nov 21 01:40:36 EST 2025 Thu Nov 20 00:38:00 EST 2025 Tue Nov 18 01:10:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Triangular threshold segmentation algorithm Naive-Bayes classification model Built-up area extraction Multidata Fusion |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353w-f392313d9c76a17a080fd5fe5899731bba852f685d9fb6988e94947fece6e6563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3272810311?pq-origsite=%requestingapplication% |
| PMID | 41249309 |
| PQID | 3272810311 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a1c8db595808463db7a3afebaa77e046 proquest_miscellaneous_3272739465 proquest_journals_3272810311 pubmed_primary_41249309 crossref_primary_10_1038_s41598_025_23986_w springer_journals_10_1038_s41598_025_23986_w |
| PublicationCentury | 2000 |
| PublicationDate | 20251117 |
| PublicationDateYYYYMMDD | 2025-11-17 |
| PublicationDate_xml | – month: 11 year: 2025 text: 20251117 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Y Sun (23986_CR4) 2024; 127 VS Bramhe (23986_CR6) 2018; 42 23986_CR44 F Wu (23986_CR8) 2021; 262 L Sun (23986_CR15) 2020; 45 23986_CR28 23986_CR29 D Wei (23986_CR2) 2025; 15 M Liu (23986_CR27) 2024; 62 Y Zhang (23986_CR31) 2009; 11 23986_CR42 X Tang (23986_CR18) 2023; 38 J Zhang (23986_CR22) 2022; 19 23986_CR40 23986_CR41 M Thurstain-Goodwin (23986_CR43) 2000; 4 J Li (23986_CR3) 2024; 14 X Jin (23986_CR25) 2023; 11 F Li (23986_CR24) 2021; 46 B Xue (23986_CR32) 2019; 35 T Ai (23986_CR20) 2015; 44 Z Liang (23986_CR16) 2020; 39 BL Yu (23986_CR37) 2021; 25 Y Zheng (23986_CR11) 2021; 328 J Liu (23986_CR21) 2020; 12 Y Bingchen (23986_CR33) 2018; 20 J Zhang (23986_CR9) 2022; 11 F Li (23986_CR35) 2020; 20 Y Yao (23986_CR36) 2018; 13 23986_CR17 J Kittler (23986_CR39) 1986; 19 B Yu (23986_CR14) 2018; 15 23986_CR38 X Ma (23986_CR13) 2019; 11 H Xu (23986_CR30) 2005; 9 T Diwan (23986_CR45) 2023; 82 W Li (23986_CR7) 2019; 7 N Zhou (23986_CR19) 2022; 34 Y Wang (23986_CR26) 2023; 15 L Zhang (23986_CR5) 2024; 15 X Ma (23986_CR12) 2017; 9 CD Elvidge (23986_CR34) 1997; 18 SS Bhatti (23986_CR10) 2014; 51 H Guo (23986_CR1) 2021; 66 X He (23986_CR23) 2021; 13 |
| References_xml | – ident: 23986_CR17 – volume: 34 start-page: 101887 issue: 3 year: 2022 ident: 23986_CR19 publication-title: J. King Saud University-Science doi: 10.1016/j.jksus.2022.101887 – ident: 23986_CR42 doi: 10.1117/12.714998 – ident: 23986_CR38 doi: 10.1201/9781315140919 – volume: 20 start-page: 2918 issue: 10 year: 2020 ident: 23986_CR35 publication-title: Sensors doi: 10.3390/s20102918 – volume: 13 start-page: 1801 issue: 9 year: 2021 ident: 23986_CR23 publication-title: Remote Sens. doi: 10.3390/rs13091801 – ident: 23986_CR44 doi: 10.1007/978-3-540-31865-1_25 – volume: 20 start-page: 854 issue: 6 year: 2018 ident: 23986_CR33 publication-title: J. Geo-Information Sci. – volume: 11 start-page: 1212 issue: 8 year: 2022 ident: 23986_CR9 publication-title: Land doi: 10.3390/land11081212 – volume: 19 start-page: 41 issue: 1 year: 1986 ident: 23986_CR39 publication-title: Pattern Recogn. doi: 10.1016/0031-3203(86)90030-0 – ident: 23986_CR40 – volume: 42 start-page: 79 year: 2018 ident: 23986_CR6 publication-title: Int. Archives Photogrammetry Remote Sens. Spat. Inform. Sci. doi: 10.5194/isprs-archives-XLII-3-79-2018 – volume: 262 start-page: 112515 year: 2021 ident: 23986_CR8 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112515 – ident: 23986_CR29 – ident: 23986_CR41 doi: 10.1002/9781118358887.ch1 – volume: 39 start-page: 92 issue: 1 year: 2020 ident: 23986_CR16 publication-title: Geogr. Res. – volume: 18 start-page: 1373 issue: 6 year: 1997 ident: 23986_CR34 publication-title: Int. J. Remote Sens. doi: 10.1080/014311697218485 – volume: 82 start-page: 9243 issue: 6 year: 2023 ident: 23986_CR45 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-022-13644-y – volume: 11 start-page: 256 issue: 4 year: 2009 ident: 23986_CR31 publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 19 start-page: 12198 issue: 19 year: 2022 ident: 23986_CR22 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph191912198 – volume: 51 start-page: 445 issue: 4 year: 2014 ident: 23986_CR10 publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2014.939539 – volume: 46 start-page: 825 issue: 6 year: 2021 ident: 23986_CR24 publication-title: Geomatics Inform. Sci. Wuhan Univ. – volume: 11 start-page: 1202512 year: 2023 ident: 23986_CR25 publication-title: Front. Earth Sci. – volume: 9 start-page: 236 issue: 3 year: 2017 ident: 23986_CR12 publication-title: Remote Sens. doi: 10.3390/rs9030236 – volume: 15 start-page: 1279 issue: 8 year: 2018 ident: 23986_CR14 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2830797 – volume: 66 start-page: 1050 issue: 11 year: 2021 ident: 23986_CR1 publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.01.012 – volume: 62 start-page: 1 year: 2024 ident: 23986_CR27 publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 15 start-page: 227 issue: 3 year: 2024 ident: 23986_CR5 publication-title: Remote Sens. Lett. – volume: 7 start-page: 36274 year: 2019 ident: 23986_CR7 publication-title: Ieee Access. doi: 10.1109/ACCESS.2019.2903127 – volume: 25 start-page: 342 issue: 1 year: 2021 ident: 23986_CR37 publication-title: Natl. Remote Sens. Bull. doi: 10.11834/jrs.20211018 – volume: 14 start-page: 4567 year: 2024 ident: 23986_CR3 publication-title: Sci. Rep. doi: 10.1038/s41598-024-55214-2 – ident: 23986_CR28 doi: 10.5194/essd-2021-7 – volume: 44 start-page: 82 issue: 1 year: 2015 ident: 23986_CR20 publication-title: Acta Geodaetica Cartogr. Sin. – volume: 13 start-page: e0198189 issue: 5 year: 2018 ident: 23986_CR36 publication-title: PLoS One doi: 10.1371/journal.pone.0198189 – volume: 45 start-page: 1619 issue: 10 year: 2020 ident: 23986_CR15 publication-title: Geomatics Inform. Sci. Wuhan Univ. – volume: 127 start-page: 103732 year: 2024 ident: 23986_CR4 publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 12 start-page: 541 issue: 3 year: 2020 ident: 23986_CR21 publication-title: Remote Sens. doi: 10.3390/rs12030541 – volume: 38 start-page: 78 year: 2023 ident: 23986_CR18 publication-title: Remote Sens. Inform. – volume: 15 start-page: 3021 issue: 12 year: 2023 ident: 23986_CR26 publication-title: Remote Sens. doi: 10.3390/rs15123021 – volume: 35 start-page: 51 year: 2019 ident: 23986_CR32 publication-title: Geo-Inf Sci. – volume: 15 start-page: 1234 year: 2025 ident: 23986_CR2 publication-title: Sci. Rep. doi: 10.1038/s41598-024-84925-9 – volume: 11 start-page: 2516 issue: 21 year: 2019 ident: 23986_CR13 publication-title: Remote Sens. doi: 10.3390/rs11212516 – volume: 9 start-page: 589 issue: 5 year: 2005 ident: 23986_CR30 publication-title: J. Remote Sensing-Beijing – volume: 328 start-page: 129488 year: 2021 ident: 23986_CR11 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.129488 – volume: 4 start-page: 305 issue: 4 year: 2000 ident: 23986_CR43 publication-title: Trans. GIS doi: 10.1111/1467-9671.00058 |
| SSID | ssj0000529419 |
| Score | 2.464529 |
| Snippet | Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of... Abstract Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 40175 |
| SubjectTerms | 639/705 704/172 704/844 Accuracy Algorithms Built-up area extraction Multidata Fusion Cities Datasets Deep learning Distribution patterns Humanities and Social Sciences Land use planning Landsat Light Machine learning multidisciplinary Naive-Bayes classification model Nighttime Overflow Population distribution Remote sensing Science Science (multidisciplinary) Sensors Support vector machines Sustainable development Triangular threshold segmentation algorithm Urban areas Urban environments Urbanization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAQUbiBlYTP2L7SBEVB7TiQFFvlp3Yy0pLtsqjq0r98fXY2aUIEBeuSRTZ_saesWf8fQi9qRtqveKOgPIi4bTyxAnqiGqsDXWgPqSj7G-f5WKhzs70lxtSX1ATlumB88Ad2apRrRNaqDK6SmADtswG76yV0sfNHay-pdQ3NlOZ1ZtqXun5lkzJ1NEQPRXcJqOCAOVdTba_eKJE2P-nKPO3DGlyPCf30b05YsTvc0sfoFu-e4juZA3Jy0fo6rR3tsNuWq1HMp1jG6NAHFfcPt9YwFDYvsQgztEt1x6PEbsBUk7YrpebfjV-_4Ft1-KFjcsePraXfsANRNRQQpRQw0ksB8OBLU7lh1BUisMEx2yP0enJx68fPpFZUoE0TLAtCQwCOtbqRta2kjbGi6EVwYu47ZKscs4qQUOtRKuDq7VSXnPNZfCNr30M_dgTdNBtOv8MYd5yHoHgifNPVFZrXrZN1TrrWuGEKNDb3fCa88ycYVLGmymTwTARDJPAMNsCHQMC-y-B9To9iLZgZlsw_7KFAh3u8DPzVBwMo5IqELOoCvR6_zpOIsiM2M5vpvyNZJrXsdVPM-77liR5blbqAr3bGcLPn_-9Q8__R4deoLsULBbKDuUhOhj7yb9Et5uLcTX0r5LJXwOSawY9 priority: 102 providerName: Directory of Open Access Journals |
| Title | Urban built-up area extraction using triangle threshold algorithm and Naive Bayes classification model with multidata fusion |
| URI | https://link.springer.com/article/10.1038/s41598-025-23986-w https://www.ncbi.nlm.nih.gov/pubmed/41249309 https://www.proquest.com/docview/3272810311 https://www.proquest.com/docview/3272739465 https://doaj.org/article/a1c8db595808463db7a3afebaa77e046 |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYChIvfI8FRmUk3sBaEtux_YQo2gQSqyLEUHmK7MQuk0raJQ3VJP54fE7aCfHxwosfEiu56O7sX-7O90PoRVam2kpmCDAvEpYmlhieGiJLrV3mUutCKPvzBzGdytlM5UPArR3KKrdrYlioq2UJMfJjmopUAidB8np1SYA1CrKrA4XGHhp5ZJNASddZmu9iLJDFYokazsrEVB63fr-CM2UpJ9D4LiObX_aj0Lb_T1jztzxp2H5O7_6v4PfQnQF44je9pdxHN2z9AN3qqSivHqIf543RNTbdxWJNuhXWHkxiv3A3_cEHDPXxcwwcH_V8YfHam0ALmSusF3P_tvXXb1jXFZ5qv3riib6yLS4BmEMlUlA-Dpw7GOK-OFQxQm0qdh1E6x6h89OTT2_fkYGZgZSU0w1xFHAhrVQpMp0I7WGnq7iz3P-9CZoYoyVPXSZ5pZzJlJRWMcWEs6XNrEeQ9ADt18vaHiLMKsa0syy0DuSJVorFVZlURpuKG84j9HKrn2LVN-AoQuKcyqLXZuG1WQRtFpsITUCFu5nQPDtcWDbzYvDFQielrAxXXMYefUGDaU29CEZrIWzMsggdbTVZDB7dFtdqjNDz3W3vi5Bg0bVddv0cQRXLvNSPe8PZSRJYvmmsIvRqa0nXD__7Bz35tyxP0e0UjBnqEsUR2l83nX2Gbpbf1xdtM0Z7YibCKMdoNDmZ5h_HIegwDn4Co_DjKH9_ln_5CfpoGk0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKAcGFfRkoYCQ4gdXES2IfEKJA1arDqIcW9WbsxB4qDZlhkjAaid_Eb8TPmUyFWG49cE0sy04-v_f8tg-hZ1lBjZPcEmBeJJymjlhBLZGFMT7z1Pnoyv44zEcjeXKiDjfQj74WBtIqe5kYBXU5LcBHvs1oTiVwEqSvZ18JsEZBdLWn0OhgceCWi3Blq1_tvwv_9zmlu--P3u6RFasAKZhgC-IZ2DSsVEWemTQ3wWTypfBOhJtHzlJrjRTUZ1KUyttMSekUVzz3rnCZC9YPC_NeQBc5dBaDVEF6uPbpQNSMp2pVm5MwuV0H_Qg1bFQQaLSXkcUv-i_SBPzJtv0tLhvV3e71_-1D3UDXVoY1ftOdhJtow1W30OWOanN5G30_nltTYdueThrSzrAJxjIOimneFXZgyP8fY-AwqcYTh5sA8Roic9hMxmF3zecv2FQlHpmgHfCOWboaF3DxgEyrCG4cOYUw-LVxzNKE3FvsW_BG3kHH57L1u2izmlbuPsK85Nx4x2NrRJEapXhSFmlpjS2FFWKAXvR40LOuwYiOiQFM6g49OqBHR_ToxQDtAGTWI6E5eHwwnY_1StZokxaytEIJmQTrEhpoGxaWYI3Jc5fwbIC2euTolcSq9RlsBujp-nWQNRBAMpWbtt2YnCmehVXf64C6XklkMWeJGqCXPXLPJv_7hh78ey1P0JW9ow9DPdwfHTxEVykcJMjBzLfQZjNv3SN0qfjWnNbzx_EkYvTpvBH9E8_yb4U |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4gX7pfCACPBE1htfEnsB4QYY6LaqPrA0PZk7MQuk0pampaqEr-MX4ePk3RCXN72wGtiWcfJ5-Pjc_sQeprm1DjJLQHmRcJp4ogV1BKZG-NTT52PruyPh9lwKI-P1WgL_WhrYSCtstWJUVEX0xx85D1GMyqBkyDp-SYtYrS3_2r2lQCDFERaWzqNGiIHbr0K17fq5WAv_OtnlO6__fDmHWkYBkjOBFsRz8C-YYXKs9QkmQnmky-EdyLcQjKWWGukoD6VolDepkpKp7jimXe5S12whFiY9wLaDiY5px20PRq8H51sPDwQQ-OJaip1-kz2qnBaQkUbFQTa7qVk9ctpGEkD_mTp_haljYff_rX_-bNdR1cbkxu_rvfIDbTlypvoUk3Cub6Fvh_NrSmxXZ5OFmQ5wyaY0TgsYF6XfGCoDBhjYDcpxxOHFwH8FcTssJmMw-oWn79gUxZ4aMK5gXfN2lU4hysJ5GBF2OPINoTB441j_iZk5WK_BD_lbXR0Lku_gzrltHT3EOYF58Y7HpsmisQoxftFnhTW2EJYIbroeYsNPatbj-iYMsCkrpGkA5J0RJJeddEuwGczEtqGxwfT-Vg3WkibJJeFFUrIfrA7obW2YUEEa0yWuT5Pu2inRZFudFmlzyDURU82r4MWgtCSKd10WY_JmOJpkPpuDdqNJJHfnPVVF71oUXw2-d8XdP_fsjxGlwOQ9eFgePAAXaGwpyA5M9tBncV86R6ii_m3xWk1f9RsS4w-nTekfwKJdXnO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Urban+built-up+area+extraction+using+triangle+threshold+algorithm+and+Naive+Bayes+classification+model+with+multidata+fusion&rft.jtitle=Scientific+reports&rft.au=Li%2C+Yuan&rft.au=Zhong%2C+Xia&rft.au=Liu%2C+Hua&rft.au=Liao%2C+Ming&rft.date=2025-11-17&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-23986-w&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |