Urban built-up area extraction using triangle threshold algorithm and Naive Bayes classification model with multidata fusion

Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of single-data-source methods in capturing human activities, this study proposes a novel approach for urban built-up area extraction, based on mac...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 40175 - 13
Hlavní autori: Li, Yuan, Zhong, Xia, Liu, Hua, Liao, Ming, Lu, Yue-feng, Liu, Bo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 17.11.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of single-data-source methods in capturing human activities, this study proposes a novel approach for urban built-up area extraction, based on machine learning techniques, and multi-source data fusion (POI, Luojia-1 nighttime light, and Landsat 8 imagery). First, we construct the POI-Adjusted Luojia-1 Urban Index (PALUI) by combining POI and Luojia-1nighttime light data quantify population distribution patterns. Next, we segment remote sensing indices (NDVI, MNDWI, NDBI) using the triangle threshold algorithm to differentiate vegetation, water, and built-up areas. Finally, a Naive Bayes classifier is used to fuse these features for built-up area extraction. Experiments in Nanchang City show that the proposed method achieves a precision of 0.89 and recall of 0.76, outperforming SVM, Random Forest, U-net, and YOLO11. The PALUI index effectively reduces light overflow issues in nighttime data, while the multi-source fusion strategy improves edge accuracy in complex urban environments. This method offers a reliable solution for high-precision urban mapping.
AbstractList Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of single-data-source methods in capturing human activities, this study proposes a novel approach for urban built-up area extraction, based on machine learning techniques, and multi-source data fusion (POI, Luojia-1 nighttime light, and Landsat 8 imagery). First, we construct the POI-Adjusted Luojia-1 Urban Index (PALUI) by combining POI and Luojia-1nighttime light data quantify population distribution patterns. Next, we segment remote sensing indices (NDVI, MNDWI, NDBI) using the triangle threshold algorithm to differentiate vegetation, water, and built-up areas. Finally, a Naive Bayes classifier is used to fuse these features for built-up area extraction. Experiments in Nanchang City show that the proposed method achieves a precision of 0.89 and recall of 0.76, outperforming SVM, Random Forest, U-net, and YOLO11. The PALUI index effectively reduces light overflow issues in nighttime data, while the multi-source fusion strategy improves edge accuracy in complex urban environments. This method offers a reliable solution for high-precision urban mapping.
Abstract Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of single-data-source methods in capturing human activities, this study proposes a novel approach for urban built-up area extraction, based on machine learning techniques, and multi-source data fusion (POI, Luojia-1 nighttime light, and Landsat 8 imagery). First, we construct the POI-Adjusted Luojia-1 Urban Index (PALUI) by combining POI and Luojia-1nighttime light data quantify population distribution patterns. Next, we segment remote sensing indices (NDVI, MNDWI, NDBI) using the triangle threshold algorithm to differentiate vegetation, water, and built-up areas. Finally, a Naive Bayes classifier is used to fuse these features for built-up area extraction. Experiments in Nanchang City show that the proposed method achieves a precision of 0.89 and recall of 0.76, outperforming SVM, Random Forest, U-net, and YOLO11. The PALUI index effectively reduces light overflow issues in nighttime data, while the multi-source fusion strategy improves edge accuracy in complex urban environments. This method offers a reliable solution for high-precision urban mapping.
Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of single-data-source methods in capturing human activities, this study proposes a novel approach for urban built-up area extraction, based on machine learning techniques, and multi-source data fusion (POI, Luojia-1 nighttime light, and Landsat 8 imagery). First, we construct the POI-Adjusted Luojia-1 Urban Index (PALUI) by combining POI and Luojia-1nighttime light data quantify population distribution patterns. Next, we segment remote sensing indices (NDVI, MNDWI, NDBI) using the triangle threshold algorithm to differentiate vegetation, water, and built-up areas. Finally, a Naive Bayes classifier is used to fuse these features for built-up area extraction. Experiments in Nanchang City show that the proposed method achieves a precision of 0.89 and recall of 0.76, outperforming SVM, Random Forest, U-net, and YOLO11. The PALUI index effectively reduces light overflow issues in nighttime data, while the multi-source fusion strategy improves edge accuracy in complex urban environments. This method offers a reliable solution for high-precision urban mapping.Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of single-data-source methods in capturing human activities, this study proposes a novel approach for urban built-up area extraction, based on machine learning techniques, and multi-source data fusion (POI, Luojia-1 nighttime light, and Landsat 8 imagery). First, we construct the POI-Adjusted Luojia-1 Urban Index (PALUI) by combining POI and Luojia-1nighttime light data quantify population distribution patterns. Next, we segment remote sensing indices (NDVI, MNDWI, NDBI) using the triangle threshold algorithm to differentiate vegetation, water, and built-up areas. Finally, a Naive Bayes classifier is used to fuse these features for built-up area extraction. Experiments in Nanchang City show that the proposed method achieves a precision of 0.89 and recall of 0.76, outperforming SVM, Random Forest, U-net, and YOLO11. The PALUI index effectively reduces light overflow issues in nighttime data, while the multi-source fusion strategy improves edge accuracy in complex urban environments. This method offers a reliable solution for high-precision urban mapping.
ArticleNumber 40175
Author Li, Yuan
Liu, Hua
Liu, Bo
Lu, Yue-feng
Liao, Ming
Zhong, Xia
Author_xml – sequence: 1
  givenname: Yuan
  surname: Li
  fullname: Li, Yuan
  organization: School of Surveying and Geoinformation Engineering, East China University of Technology
– sequence: 2
  givenname: Xia
  surname: Zhong
  fullname: Zhong, Xia
  organization: School of Surveying and Geoinformation Engineering, East China University of Technology
– sequence: 3
  givenname: Hua
  surname: Liu
  fullname: Liu, Hua
  organization: School of Surveying and Geoinformation Engineering, East China University of Technology
– sequence: 4
  givenname: Ming
  surname: Liao
  fullname: Liao, Ming
  organization: Jiangxi Provincial Natural Resources Cause Development Center
– sequence: 5
  givenname: Yue-feng
  surname: Lu
  fullname: Lu, Yue-feng
  organization: School of Civil Engineering and Geomatics, Shandong University of Technology
– sequence: 6
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  email: liubo@ecut.edu.cn
  organization: School of Surveying and Geoinformation Engineering, East China University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41249309$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxSNUREvpF-CALHHhEojtOLGPUNFSqYILPVuTeLzrlWMvdsJSiQ-Pd7cUxAFf_Ee_9zyjec-rkxADVtVL2rylDZfvckuFknXDRM24kl29e1KdsabdXxk7-et8Wl3kvGnKEky1VD2rTlvKWsUbdVb9vEsDBDIszs_1siWQEAj-mBOMs4uBLNmFFZmTg7DySOZ1wryO3hDwq5jcvJ4IBEM-g_uO5APcYyajh5yddSMcHKZo0JNdQcm0-NkZmIHY4hvDi-qpBZ_x4mE_r-6uPn69_FTffrm-uXx_W49c8F1tuWKccqPGvgPaQyMba4RFIZXqOR0GkILZTgqj7NApKVG1qu0tjthhJzp-Xt0cfU2Ejd4mN0G61xGcPjzEtNKQZjd61EBHaQahhGxk23Ez9MDB4gDQ99i0e683R69tit8WzLOeXB7RewgYl6w561nPVduJgr7-B93EJYXS6YGSZY6UFurVA7UME5rH8n7PqADsCIwp5pzQPiK00fss6GMWdMmCPmRB74qIH0W5wGGF6c_f_1H9Ag4Yt6c
Cites_doi 10.1016/j.jksus.2022.101887
10.1117/12.714998
10.1201/9781315140919
10.3390/s20102918
10.3390/rs13091801
10.1007/978-3-540-31865-1_25
10.3390/land11081212
10.1016/0031-3203(86)90030-0
10.5194/isprs-archives-XLII-3-79-2018
10.1016/j.rse.2021.112515
10.1002/9781118358887.ch1
10.1080/014311697218485
10.1007/s11042-022-13644-y
10.3390/ijerph191912198
10.1080/15481603.2014.939539
10.3390/rs9030236
10.1109/LGRS.2018.2830797
10.1016/j.scib.2021.01.012
10.1109/ACCESS.2019.2903127
10.11834/jrs.20211018
10.1038/s41598-024-55214-2
10.5194/essd-2021-7
10.1371/journal.pone.0198189
10.3390/rs12030541
10.3390/rs15123021
10.1038/s41598-024-84925-9
10.3390/rs11212516
10.1016/j.jclepro.2021.129488
10.1111/1467-9671.00058
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-23986-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_a1c8db595808463db7a3afebaa77e046
41249309
10_1038_s41598_025_23986_w
Genre Journal Article
GeographicLocations Yangtze River
GeographicLocations_xml – name: Yangtze River
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: 42161064; 42161064; 42161064
– fundername: Ganpo Talent Support Program - Key Disciplinary Academic and Technical Leader Development Project
  grantid: 20243BCE51111; 20243BCE51111; 20243BCE51111
– fundername: Science and Technology Innovation Project of the Department of Natural Resources of Jiangxi Province
  grantid: ZRKJ20242620; ZRKJ20242620; ZRKJ20242620
– fundername: Jiangxi Provincial Natural Science Foundation
  grantid: 20232ACB204032, 20242BAB20129; 20232ACB204032, 20242BAB20129; 20232ACB204032, 20242BAB20129; 20232ACB204032, 20242BAB20129
– fundername: the National Natural Science Foundation of China
  grantid: 42161064
– fundername: Jiangxi Provincial Natural Science Foundation
  grantid: 20232ACB204032, 20242BAB20129
– fundername: Science and Technology Innovation Project of the Department of Natural Resources of Jiangxi Province
  grantid: ZRKJ20242620
– fundername: Ganpo Talent Support Program - Key Disciplinary Academic and Technical Leader Development Project
  grantid: 20243BCE51111
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c353w-f392313d9c76a17a080fd5fe5899731bba852f685d9fb6988e94947fece6e6563
IEDL.DBID M2P
ISSN 2045-2322
IngestDate Mon Nov 24 19:21:18 EST 2025
Tue Nov 18 17:31:08 EST 2025
Wed Nov 19 03:27:56 EST 2025
Fri Nov 21 01:40:36 EST 2025
Thu Nov 20 00:38:00 EST 2025
Tue Nov 18 01:10:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Triangular threshold segmentation algorithm
Naive-Bayes classification model
Built-up area extraction Multidata Fusion
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353w-f392313d9c76a17a080fd5fe5899731bba852f685d9fb6988e94947fece6e6563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3272810311?pq-origsite=%requestingapplication%
PMID 41249309
PQID 3272810311
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_a1c8db595808463db7a3afebaa77e046
proquest_miscellaneous_3272739465
proquest_journals_3272810311
pubmed_primary_41249309
crossref_primary_10_1038_s41598_025_23986_w
springer_journals_10_1038_s41598_025_23986_w
PublicationCentury 2000
PublicationDate 20251117
PublicationDateYYYYMMDD 2025-11-17
PublicationDate_xml – month: 11
  year: 2025
  text: 20251117
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Y Sun (23986_CR4) 2024; 127
VS Bramhe (23986_CR6) 2018; 42
23986_CR44
F Wu (23986_CR8) 2021; 262
L Sun (23986_CR15) 2020; 45
23986_CR28
23986_CR29
D Wei (23986_CR2) 2025; 15
M Liu (23986_CR27) 2024; 62
Y Zhang (23986_CR31) 2009; 11
23986_CR42
X Tang (23986_CR18) 2023; 38
J Zhang (23986_CR22) 2022; 19
23986_CR40
23986_CR41
M Thurstain-Goodwin (23986_CR43) 2000; 4
J Li (23986_CR3) 2024; 14
X Jin (23986_CR25) 2023; 11
F Li (23986_CR24) 2021; 46
B Xue (23986_CR32) 2019; 35
T Ai (23986_CR20) 2015; 44
Z Liang (23986_CR16) 2020; 39
BL Yu (23986_CR37) 2021; 25
Y Zheng (23986_CR11) 2021; 328
J Liu (23986_CR21) 2020; 12
Y Bingchen (23986_CR33) 2018; 20
J Zhang (23986_CR9) 2022; 11
F Li (23986_CR35) 2020; 20
Y Yao (23986_CR36) 2018; 13
23986_CR17
J Kittler (23986_CR39) 1986; 19
B Yu (23986_CR14) 2018; 15
23986_CR38
X Ma (23986_CR13) 2019; 11
H Xu (23986_CR30) 2005; 9
T Diwan (23986_CR45) 2023; 82
W Li (23986_CR7) 2019; 7
N Zhou (23986_CR19) 2022; 34
Y Wang (23986_CR26) 2023; 15
L Zhang (23986_CR5) 2024; 15
X Ma (23986_CR12) 2017; 9
CD Elvidge (23986_CR34) 1997; 18
SS Bhatti (23986_CR10) 2014; 51
H Guo (23986_CR1) 2021; 66
X He (23986_CR23) 2021; 13
References_xml – ident: 23986_CR17
– volume: 34
  start-page: 101887
  issue: 3
  year: 2022
  ident: 23986_CR19
  publication-title: J. King Saud University-Science
  doi: 10.1016/j.jksus.2022.101887
– ident: 23986_CR42
  doi: 10.1117/12.714998
– ident: 23986_CR38
  doi: 10.1201/9781315140919
– volume: 20
  start-page: 2918
  issue: 10
  year: 2020
  ident: 23986_CR35
  publication-title: Sensors
  doi: 10.3390/s20102918
– volume: 13
  start-page: 1801
  issue: 9
  year: 2021
  ident: 23986_CR23
  publication-title: Remote Sens.
  doi: 10.3390/rs13091801
– ident: 23986_CR44
  doi: 10.1007/978-3-540-31865-1_25
– volume: 20
  start-page: 854
  issue: 6
  year: 2018
  ident: 23986_CR33
  publication-title: J. Geo-Information Sci.
– volume: 11
  start-page: 1212
  issue: 8
  year: 2022
  ident: 23986_CR9
  publication-title: Land
  doi: 10.3390/land11081212
– volume: 19
  start-page: 41
  issue: 1
  year: 1986
  ident: 23986_CR39
  publication-title: Pattern Recogn.
  doi: 10.1016/0031-3203(86)90030-0
– ident: 23986_CR40
– volume: 42
  start-page: 79
  year: 2018
  ident: 23986_CR6
  publication-title: Int. Archives Photogrammetry Remote Sens. Spat. Inform. Sci.
  doi: 10.5194/isprs-archives-XLII-3-79-2018
– volume: 262
  start-page: 112515
  year: 2021
  ident: 23986_CR8
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112515
– ident: 23986_CR29
– ident: 23986_CR41
  doi: 10.1002/9781118358887.ch1
– volume: 39
  start-page: 92
  issue: 1
  year: 2020
  ident: 23986_CR16
  publication-title: Geogr. Res.
– volume: 18
  start-page: 1373
  issue: 6
  year: 1997
  ident: 23986_CR34
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697218485
– volume: 82
  start-page: 9243
  issue: 6
  year: 2023
  ident: 23986_CR45
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-022-13644-y
– volume: 11
  start-page: 256
  issue: 4
  year: 2009
  ident: 23986_CR31
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 19
  start-page: 12198
  issue: 19
  year: 2022
  ident: 23986_CR22
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph191912198
– volume: 51
  start-page: 445
  issue: 4
  year: 2014
  ident: 23986_CR10
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2014.939539
– volume: 46
  start-page: 825
  issue: 6
  year: 2021
  ident: 23986_CR24
  publication-title: Geomatics Inform. Sci. Wuhan Univ.
– volume: 11
  start-page: 1202512
  year: 2023
  ident: 23986_CR25
  publication-title: Front. Earth Sci.
– volume: 9
  start-page: 236
  issue: 3
  year: 2017
  ident: 23986_CR12
  publication-title: Remote Sens.
  doi: 10.3390/rs9030236
– volume: 15
  start-page: 1279
  issue: 8
  year: 2018
  ident: 23986_CR14
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2830797
– volume: 66
  start-page: 1050
  issue: 11
  year: 2021
  ident: 23986_CR1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2021.01.012
– volume: 62
  start-page: 1
  year: 2024
  ident: 23986_CR27
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 15
  start-page: 227
  issue: 3
  year: 2024
  ident: 23986_CR5
  publication-title: Remote Sens. Lett.
– volume: 7
  start-page: 36274
  year: 2019
  ident: 23986_CR7
  publication-title: Ieee Access.
  doi: 10.1109/ACCESS.2019.2903127
– volume: 25
  start-page: 342
  issue: 1
  year: 2021
  ident: 23986_CR37
  publication-title: Natl. Remote Sens. Bull.
  doi: 10.11834/jrs.20211018
– volume: 14
  start-page: 4567
  year: 2024
  ident: 23986_CR3
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-55214-2
– ident: 23986_CR28
  doi: 10.5194/essd-2021-7
– volume: 44
  start-page: 82
  issue: 1
  year: 2015
  ident: 23986_CR20
  publication-title: Acta Geodaetica Cartogr. Sin.
– volume: 13
  start-page: e0198189
  issue: 5
  year: 2018
  ident: 23986_CR36
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0198189
– volume: 45
  start-page: 1619
  issue: 10
  year: 2020
  ident: 23986_CR15
  publication-title: Geomatics Inform. Sci. Wuhan Univ.
– volume: 127
  start-page: 103732
  year: 2024
  ident: 23986_CR4
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 12
  start-page: 541
  issue: 3
  year: 2020
  ident: 23986_CR21
  publication-title: Remote Sens.
  doi: 10.3390/rs12030541
– volume: 38
  start-page: 78
  year: 2023
  ident: 23986_CR18
  publication-title: Remote Sens. Inform.
– volume: 15
  start-page: 3021
  issue: 12
  year: 2023
  ident: 23986_CR26
  publication-title: Remote Sens.
  doi: 10.3390/rs15123021
– volume: 35
  start-page: 51
  year: 2019
  ident: 23986_CR32
  publication-title: Geo-Inf Sci.
– volume: 15
  start-page: 1234
  year: 2025
  ident: 23986_CR2
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-84925-9
– volume: 11
  start-page: 2516
  issue: 21
  year: 2019
  ident: 23986_CR13
  publication-title: Remote Sens.
  doi: 10.3390/rs11212516
– volume: 9
  start-page: 589
  issue: 5
  year: 2005
  ident: 23986_CR30
  publication-title: J. Remote Sensing-Beijing
– volume: 328
  start-page: 129488
  year: 2021
  ident: 23986_CR11
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.129488
– volume: 4
  start-page: 305
  issue: 4
  year: 2000
  ident: 23986_CR43
  publication-title: Trans. GIS
  doi: 10.1111/1467-9671.00058
SSID ssj0000529419
Score 2.464529
Snippet Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the limitations of...
Abstract Accurate identification of urban built-up areas is crucial for monitoring urbanization and promoting sustainable development. To overcome the...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 40175
SubjectTerms 639/705
704/172
704/844
Accuracy
Algorithms
Built-up area extraction Multidata Fusion
Cities
Datasets
Deep learning
Distribution patterns
Humanities and Social Sciences
Land use planning
Landsat
Light
Machine learning
multidisciplinary
Naive-Bayes classification model
Nighttime
Overflow
Population distribution
Remote sensing
Science
Science (multidisciplinary)
Sensors
Support vector machines
Sustainable development
Triangular threshold segmentation algorithm
Urban areas
Urban environments
Urbanization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAQUbiBlYTP2L7SBEVB7TiQFFvlp3Yy0pLtsqjq0r98fXY2aUIEBeuSRTZ_saesWf8fQi9qRtqveKOgPIi4bTyxAnqiGqsDXWgPqSj7G-f5WKhzs70lxtSX1ATlumB88Ad2apRrRNaqDK6SmADtswG76yV0sfNHay-pdQ3NlOZ1ZtqXun5lkzJ1NEQPRXcJqOCAOVdTba_eKJE2P-nKPO3DGlyPCf30b05YsTvc0sfoFu-e4juZA3Jy0fo6rR3tsNuWq1HMp1jG6NAHFfcPt9YwFDYvsQgztEt1x6PEbsBUk7YrpebfjV-_4Ft1-KFjcsePraXfsANRNRQQpRQw0ksB8OBLU7lh1BUisMEx2yP0enJx68fPpFZUoE0TLAtCQwCOtbqRta2kjbGi6EVwYu47ZKscs4qQUOtRKuDq7VSXnPNZfCNr30M_dgTdNBtOv8MYd5yHoHgifNPVFZrXrZN1TrrWuGEKNDb3fCa88ycYVLGmymTwTARDJPAMNsCHQMC-y-B9To9iLZgZlsw_7KFAh3u8DPzVBwMo5IqELOoCvR6_zpOIsiM2M5vpvyNZJrXsdVPM-77liR5blbqAr3bGcLPn_-9Q8__R4deoLsULBbKDuUhOhj7yb9Et5uLcTX0r5LJXwOSawY9
  priority: 102
  providerName: Directory of Open Access Journals
Title Urban built-up area extraction using triangle threshold algorithm and Naive Bayes classification model with multidata fusion
URI https://link.springer.com/article/10.1038/s41598-025-23986-w
https://www.ncbi.nlm.nih.gov/pubmed/41249309
https://www.proquest.com/docview/3272810311
https://www.proquest.com/docview/3272739465
https://doaj.org/article/a1c8db595808463db7a3afebaa77e046
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYChIvfI8FRmUk3sBaEtux_YQo2gQSqyLEUHmK7MQuk0raJQ3VJP54fE7aCfHxwosfEiu56O7sX-7O90PoRVam2kpmCDAvEpYmlhieGiJLrV3mUutCKPvzBzGdytlM5UPArR3KKrdrYlioq2UJMfJjmopUAidB8np1SYA1CrKrA4XGHhp5ZJNASddZmu9iLJDFYokazsrEVB63fr-CM2UpJ9D4LiObX_aj0Lb_T1jztzxp2H5O7_6v4PfQnQF44je9pdxHN2z9AN3qqSivHqIf543RNTbdxWJNuhXWHkxiv3A3_cEHDPXxcwwcH_V8YfHam0ALmSusF3P_tvXXb1jXFZ5qv3riib6yLS4BmEMlUlA-Dpw7GOK-OFQxQm0qdh1E6x6h89OTT2_fkYGZgZSU0w1xFHAhrVQpMp0I7WGnq7iz3P-9CZoYoyVPXSZ5pZzJlJRWMcWEs6XNrEeQ9ADt18vaHiLMKsa0syy0DuSJVorFVZlURpuKG84j9HKrn2LVN-AoQuKcyqLXZuG1WQRtFpsITUCFu5nQPDtcWDbzYvDFQielrAxXXMYefUGDaU29CEZrIWzMsggdbTVZDB7dFtdqjNDz3W3vi5Bg0bVddv0cQRXLvNSPe8PZSRJYvmmsIvRqa0nXD__7Bz35tyxP0e0UjBnqEsUR2l83nX2Gbpbf1xdtM0Z7YibCKMdoNDmZ5h_HIegwDn4Co_DjKH9_ln_5CfpoGk0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKAcGFfRkoYCQ4gdXES2IfEKJA1arDqIcW9WbsxB4qDZlhkjAaid_Eb8TPmUyFWG49cE0sy04-v_f8tg-hZ1lBjZPcEmBeJJymjlhBLZGFMT7z1Pnoyv44zEcjeXKiDjfQj74WBtIqe5kYBXU5LcBHvs1oTiVwEqSvZ18JsEZBdLWn0OhgceCWi3Blq1_tvwv_9zmlu--P3u6RFasAKZhgC-IZ2DSsVEWemTQ3wWTypfBOhJtHzlJrjRTUZ1KUyttMSekUVzz3rnCZC9YPC_NeQBc5dBaDVEF6uPbpQNSMp2pVm5MwuV0H_Qg1bFQQaLSXkcUv-i_SBPzJtv0tLhvV3e71_-1D3UDXVoY1ftOdhJtow1W30OWOanN5G30_nltTYdueThrSzrAJxjIOimneFXZgyP8fY-AwqcYTh5sA8Roic9hMxmF3zecv2FQlHpmgHfCOWboaF3DxgEyrCG4cOYUw-LVxzNKE3FvsW_BG3kHH57L1u2izmlbuPsK85Nx4x2NrRJEapXhSFmlpjS2FFWKAXvR40LOuwYiOiQFM6g49OqBHR_ToxQDtAGTWI6E5eHwwnY_1StZokxaytEIJmQTrEhpoGxaWYI3Jc5fwbIC2euTolcSq9RlsBujp-nWQNRBAMpWbtt2YnCmehVXf64C6XklkMWeJGqCXPXLPJv_7hh78ey1P0JW9ow9DPdwfHTxEVykcJMjBzLfQZjNv3SN0qfjWnNbzx_EkYvTpvBH9E8_yb4U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4gX7pfCACPBE1htfEnsB4QYY6LaqPrA0PZk7MQuk0pampaqEr-MX4ePk3RCXN72wGtiWcfJ5-Pjc_sQeprm1DjJLQHmRcJp4ogV1BKZG-NTT52PruyPh9lwKI-P1WgL_WhrYSCtstWJUVEX0xx85D1GMyqBkyDp-SYtYrS3_2r2lQCDFERaWzqNGiIHbr0K17fq5WAv_OtnlO6__fDmHWkYBkjOBFsRz8C-YYXKs9QkmQnmky-EdyLcQjKWWGukoD6VolDepkpKp7jimXe5S12whFiY9wLaDiY5px20PRq8H51sPDwQQ-OJaip1-kz2qnBaQkUbFQTa7qVk9ctpGEkD_mTp_haljYff_rX_-bNdR1cbkxu_rvfIDbTlypvoUk3Cub6Fvh_NrSmxXZ5OFmQ5wyaY0TgsYF6XfGCoDBhjYDcpxxOHFwH8FcTssJmMw-oWn79gUxZ4aMK5gXfN2lU4hysJ5GBF2OPINoTB441j_iZk5WK_BD_lbXR0Lku_gzrltHT3EOYF58Y7HpsmisQoxftFnhTW2EJYIbroeYsNPatbj-iYMsCkrpGkA5J0RJJeddEuwGczEtqGxwfT-Vg3WkibJJeFFUrIfrA7obW2YUEEa0yWuT5Pu2inRZFudFmlzyDURU82r4MWgtCSKd10WY_JmOJpkPpuDdqNJJHfnPVVF71oUXw2-d8XdP_fsjxGlwOQ9eFgePAAXaGwpyA5M9tBncV86R6ii_m3xWk1f9RsS4w-nTekfwKJdXnO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Urban+built-up+area+extraction+using+triangle+threshold+algorithm+and+Naive+Bayes+classification+model+with+multidata+fusion&rft.jtitle=Scientific+reports&rft.au=Li%2C+Yuan&rft.au=Zhong%2C+Xia&rft.au=Liu%2C+Hua&rft.au=Liao%2C+Ming&rft.date=2025-11-17&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-23986-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon