Square Root Modified Bryson-Frazier Smoother
We derive here an algorithm for a complete square root implementation of the modified Bryson-Frazier (MBF) smoother. The MBF algorithm computes the smoothed covariance as the difference of two symmetric matrices. Numerical errors in this differencing can result in the covariance matrix not being pos...
Saved in:
| Published in: | IEEE transactions on automatic control Vol. 56; no. 2; pp. 452 - 456 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.02.2011
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9286, 1558-2523 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We derive here an algorithm for a complete square root implementation of the modified Bryson-Frazier (MBF) smoother. The MBF algorithm computes the smoothed covariance as the difference of two symmetric matrices. Numerical errors in this differencing can result in the covariance matrix not being positive semi-definite. Earlier algorithms implemented the computation of intermediate quantities in square root form but still computed the smoothed covariance as the difference of two matrices. We show how to compute the square root of the smoothed covariance by solving an equation in the form CCT = AAT - BBT using QR decomposition with hyperbolic Householder transformations. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2010.2089753 |