Square Root Modified Bryson-Frazier Smoother

We derive here an algorithm for a complete square root implementation of the modified Bryson-Frazier (MBF) smoother. The MBF algorithm computes the smoothed covariance as the difference of two symmetric matrices. Numerical errors in this differencing can result in the covariance matrix not being pos...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control Vol. 56; no. 2; pp. 452 - 456
Main Author: Gibbs, R G
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.02.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9286, 1558-2523
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We derive here an algorithm for a complete square root implementation of the modified Bryson-Frazier (MBF) smoother. The MBF algorithm computes the smoothed covariance as the difference of two symmetric matrices. Numerical errors in this differencing can result in the covariance matrix not being positive semi-definite. Earlier algorithms implemented the computation of intermediate quantities in square root form but still computed the smoothed covariance as the difference of two matrices. We show how to compute the square root of the smoothed covariance by solving an equation in the form CCT = AAT - BBT using QR decomposition with hyperbolic Householder transformations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2010.2089753