Square Root Modified Bryson-Frazier Smoother

We derive here an algorithm for a complete square root implementation of the modified Bryson-Frazier (MBF) smoother. The MBF algorithm computes the smoothed covariance as the difference of two symmetric matrices. Numerical errors in this differencing can result in the covariance matrix not being pos...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 56; číslo 2; s. 452 - 456
Hlavní autor: Gibbs, R G
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.02.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We derive here an algorithm for a complete square root implementation of the modified Bryson-Frazier (MBF) smoother. The MBF algorithm computes the smoothed covariance as the difference of two symmetric matrices. Numerical errors in this differencing can result in the covariance matrix not being positive semi-definite. Earlier algorithms implemented the computation of intermediate quantities in square root form but still computed the smoothed covariance as the difference of two matrices. We show how to compute the square root of the smoothed covariance by solving an equation in the form CCT = AAT - BBT using QR decomposition with hyperbolic Householder transformations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2010.2089753